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Non-small cell lung cancer (NSCLC) immunotherapy has been revolutionized by

immune checkpoint inhibitors (ICIs), yet response heterogeneity persists due to

dynamic tumor-immune interactions. This review summarizes recent studies in

understanding tumor-infiltrating lymphocyte (TIL) biology, highlighting CD8+

cytotoxic T cells and regulatory T cells (Tregs) as pivotal regulators of immune

surveillance and suppression. We summarize emerging biomarkers such as TCR

clonality, spatial distribution of tumor-infiltrating lymphocytes (TILs), and

exhaustion markers including PD-1, TCF1, and TIM-3, which predict immune

checkpoint inhibitor (ICI) efficacy beyond PD-L1 expression. This review

specifically describes radiotherapy-induced immunogenic remodeling and

peripheral T cell dynamics as innovative strategies to monitor immune

response and resistance mechanisms. By integrating results from single-cell

omics and AI-driven spatial analysis, we proposemultidimensional frameworks of

TIL in NSCLC to overcome resistance and optimize immunotherapy

combinations. These insights collectively advance NSCLC immunotherapy

toward precision modulation of the tumor immune microenvironment.
KEYWORDS
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1 Introduction

Lung cancer remains the leading cause of malignancy-related mortality worldwide,

with non-small cell lung cancer (NSCLC) accounting for over 85% of histological subtypes

(1). Although immune checkpoint inhibitors (ICIs) targeting axes such as PD-1/PD-L1

have revolutionized therapeutic paradigms, patient response rates remain constrained by

the dynamic heterogeneity of the tumor microenvironment (TME) (2). Studies

demonstrate that tumor-infiltrating T lymphocytes (TILs), as core TME components,

form dual regulatory networks through subtype distribution and functional states: CD8+ T

cells mediate tumor cell killing via the perforin-granzyme system (3), while regulatory T
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cells (Tregs) foster disease progression by establishing an

immunosuppressive niche through IL-10/TGF-b (4–6).

The cancer immunoediting framework further reveals that

tumor cells drive T cell exhaustion via PD-1, CTLA-4, and Tim-

3, characterized by loss of effector function, inhibitory receptor

upregulation, and metabolic reprogramming (7–11). Notably,

exhausted T cells retain partial clonal expansion potential,

offering therapeutic targets for ICI intervention (12–15). Single-

cell sequencing identifies PD-1+CD8+ T cell clonal expansion as a

predictive biomarker for ICI efficacy (16), while CD4+ T cells

synergistically amplify antitumor immunity by regulating

dendritic cell antigen presentation (17, 18) and inducing CD8+ T

cell IFN-g secretion (17). Recent advances highlight activated CD8+

T cells as inducers of tumor ferroptosis (19), though their efficacy is

compromised by Treg/CD8+ ratio imbalance (12) and spatial

distribution heterogeneity (20–23). Current research focuses on

deciphering epigenetic remodeling mechanisms underlying T cell

exhaustion and integrating single-cell omics with spatial

transcriptomics to transcend limitations of traditional biomarkers

like PD-L1, thereby propelling NSCLC immunotherapy from

empirical practice toward multidimensional precision modulation.
2 Multidimensional regulatory
networks of tumor-infiltrating
lymphocytes in NSCLC

Tumor-infiltrating lymphocytes, as key effectors within the

tumor immune microenvironment, play a pivotal role in

determining NSCLC prognosis and therapeutic response. TILs are

primarily composed of T lymphocytes (24), including CD8+

cytotoxic T cells that mediate tumor cell lysis through perforin–

granzyme pathways (25, 26), CD4+ helper T cells (Th1/Th2) that

regulate cellular and humoral immunity via IL-2/IFN-g and IL-4/

IL-5, respectively, and Foxp3+ Tregs that exert immunosuppressive

effects through IL-10 and TGF-b secretion (27–29). Single-cell

sequencing reveals spatial-specific functional specialization in

CD4+ and CD8+ T cells (24), with their equilibrium predicting

immunotherapy outcomes. Current biomarkers face limitations:

PD-L1, the sole FDA-approved ICI marker, remains limited by

tissue heterogeneity and detection variability (30), while threshold

ambiguities and translational challenges hinder TMB and ctDNA

clinical application (31, 32). Novel strategies leverage baseline TCR

diversity (3) and spatial CD8+ TIL patterns, including associated

with prognosis in stage I–IIIA NSCLC (33) and tumor nest

localization observed in stage IV disease (34). Terminally

exhausted CD8+ TILs (TIM-3+PD-1+) require CTLA-4 inhibitor-

driven Treg depletion combined with PD-1 blockade (4, 35, 36),

while epigenetic reversal of exhaustion (16) and adoptive therapy

dose-responses (3) offer multidimensional interventions. Future

integration of single-cell omics and spatial transcriptomics must

map TIL functional subsets and spatial niches, propelling NSCLC

immunotherapy toward systems biology-driven precision (37, 38).
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2.1 The dual roles of tumor-infiltrating T
lymphocytes in NSCLC tumorigenesis and
progression

Tumor-infiltrating T lymphocytes in NSCLC exhibit dual

functions, either suppressing or promoting tumor progression. This

dynamic interplay reflects the immune system’s balance between

resisting immune evasion and sustaining antitumor responses (39).

As primary antitumor effectors, CD8+ CTLs eliminate tumor cells via

perforin/granzyme-induced membrane disruption, Fas/FasL-

mediated apoptosis, and TNF/TNFR signaling amplification (40).

CD4+ Th1 cells further support this by presenting antigens (MHC-

II), secreting IFN-g and TNF-a to activate antigen-presenting cells

and enhance MHC-I expression, and mediating direct tumoricidal

effects via FasL (41). Together, these cells coordinate spatiotemporally

to form a robust T cell-mediated cytotoxic network. Conversely,

Foxp3+ Tregs and Th2 cells foster tumor immune evasion. Tregs

enhance tumor invasiveness through Foxp3-dependent epigenetic

reprogramming (42), secrete IL-10 and TGF-b to inhibit CD8+ T cell

cytotoxicity (43), and downregulate costimulatory molecules,

hindering effective T cell activation. Th2 cells complement this by

activating the IL-4/Gata3/STAT6 axis, inducing genes linked to

proliferation and metastasis, and promoting integrin-mediated

tumor invasion (44). The synergistic action of Tregs and Th2 cells

reshapes tumor immunoediting via paracrine cytokine signaling and

cell–cell interactions, ultimately undermining immune surveillance

and advancing malignancy (Table 1).
2.2 Prognostic significance of tumor-
infiltrating T lymphocytes in NSCLC

The prognostic value of TILs hinges on subtype-specific

distribution, spatial localization, and functional states (45, 46),

with CD8+ CTLs exhibiting marked prognostic heterogeneity.

MANDARANO et al. (47) demonstrated that intratumoral CD8+

TILs correlate with favorable outcomes, while a meta-analysis by LI

et al. (48) further revealed that high intratumoral CD8+ TIL density

associates with prolonged overall survival, progression-free survival,

and a 4.08-fold increase in objective response rate following

immunotherapy, though peripheral blood CD8+ T cell levels show

no clinical relevance. XIA et al. (49) identified significant

enrichment of IFN-g+IL-17A+CD4+ naïve T cells and PD-

1+CTLA-4+CD4+ memory T cells in responders to anti-PD-1

therapy, whereas elevated CTLA-4+CD4+ memory T cells predict

poor prognosis in anti-PD-L1 treatment. Notably, while increased

CD8+ TIL density paradoxically correlated with reduced 5-year

survival, both CD3+ TIL abundance and IL-2-high subgroups

demonstrated significant survival benefits. This counterintuitive

observation suggests that functional activation status may serve as

a more reliable prognostic indicator than mere lymphocyte subtype

density (50). Mechanistic studies on Foxp3+ Treg-mediated

protumor effects (42) reveal their suppression of CD8+ CTL
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cytotoxicity and enhancement of tumor invasiveness, with elevated

Foxp3+/CD8+ and Foxp3+/CD4+ ratios confirmed as independent

risk factors for postoperative recurrence (51). Current heterogeneity

in findings likely stems from methodological disparities, sampling

sites, and analytical threshold variability, underscoring the urgent

need for standardized multidimensional frameworks integrating

TIL spatial distribution, clonal diversity, and functional activation

to es tab l i sh re l i ab le prognost i c mode l s for NSCLC

precision immunotherapy.
2.3 The role of tumor-infiltrating T
lymphocytes in NSCLC immunotherapy

Despite the transformative clinical impact of ICIs in NSCLC,

heterogeneous patient responses underscore the urgent need for

precision biomarkers. High TIL density is significantly associated

with prolonged progression-free and overall survival following

immunotherapy (52), underscoring TILs as predictive biomarkers

of treatment responsiveness. Immune-inflamed tumors with high

TIL infiltration demonstrate superior clinical outcomes compared to

immune-desert phenotypes lacking immune cells, while immune-

excluded and immune-suppressed subtypes exhibit intermediate

responses (53). Multidimensional immunohistochemical analysis by

KIM et al. (54) revealed that ICI responders display elevated CD3+

and CD8+ TIL densities, increased CD8+/CD3+ ratios (reflecting

effector T cell activation), and reduced Foxp3+/CD8+ ratios

(indicative of immunosuppressive microenvironment attenuation).

Multivariate regression identified CD3+ TIL densityand Foxp3+/

CD8+ ratio as independent predictors of ICI clinical benefit.

Notably, EGFR-mutant tumors exhibit markedly diminished CD3+

TIL infiltration, providing a microenvironmental basis for their

reduced ICI responsiveness. Collectively, these findings advocate

for composite predictive models integrating T cell subset spatial

distribution (intratumoral vs. stromal) and functional activation/

exhaustion markers, thereby advancing precision stratification

beyond PD-L1 monotherapy paradigms (Figure 1).
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3 Roles of T cells in defining the NSCLC
tumor immune microenvironment

3.1 Tumor immune microenvironment
classification

The TIME classification system, based on TIL spatial patterns,

stratifies tumors into immune-inflamed, immune-excluded, and

immune-desert subtypes (55, 56). Immune-inflamed tumors

feature dense CD8+/CD4+ T cell infiltration and PD-1/PD-L1

activation near tumor nests, correlating with better responses to

ICIs. In contrast, immune-excluded tumors are characterized by

stromal T cell accumulation without infiltration into the tumor

parenchyma, while immune-desert tumors are devoid of T cells

altogether, both exhibiting limited sensitivity to immune

checkpoint inhibitors. To overcome the subjectivity of traditional

histopathology, Park et al. (57) developed an AI-based whole-slide

imaging (WSI) model to classify TIME phenotypes using H&E

slides. This system predicted clinical outcomes, with immune-

inflamed tumors showing significantly improved progression-free

survival and overall survival versus immune-excluded and immune-

desert subtypes. Expanding on this, Teng et al. (58) introduced a

four-tier model incorporating PD-L1 status and TIL density: Type I

(PD-L1+/TIL+), Type II (PD-L1-/TIL-), Type III (PD-L1+/TIL-), and

Type IV (PD-L1-/TIL+). Shirasawa et al. (59) validated its

prognostic value, showing that Type I had the highest response

rate and longest median PFS, while Type III reflected resistance due

to immune exhaustion. Further refinements include Wu et al’s (60)

identification of stage-specific TIME features and transcriptomic

model (61), which defines immune-enriched, immune-enriched

fibrotic, fibrotic, and depleted TIME subtypes. Notably, immune-

excluded subtypes respond best to ICIs, and therapy-induced TIME

transitions highlight the plasticity of the immune landscape.

Together, these evolving frameworks support multidimensional

TIME classification, but require further multicenter validation

and mechanistic dissection of treatment-induced remodeling.
TABLE 1 Tumor-infiltrating lymphocyte (TIL) subtypes in NSCLC.

TIL Subtype Functional Role Key Mechanisms Prognostic Association

CD8+ Cytotoxic T Direct tumor lysis via perforin/granzyme;
IFN-g-mediated TME remodeling

Fas/FasL, TNF/TNFR pathways; Induces
tumor ferroptosis

High intratumoral density: OS HR=0.52, PFS
HR=0.52; Stromal density (stage I-IIIA): HR=0.62

CD4+ Th1 Enhances CTL activation via IL-2/IFN-g;
MHC-II antigen presentation

Synergizes with DCs; FasL-mediated
direct cytotoxicity

IFN-g+IL-17A+ naïve CD4+ T cells predict ICI
response (AUC=0.849)

CD4+ Th2 Promotes immune evasion via IL-4/IL-5 STAT6 activation; Integrin-mediated
tumor invasiveness

Elevated Th2/Treg ratios correlate with
advanced metastasis

Foxp3+ Treg Immunosuppression via IL-10/TGF-b;
Inhibits CD8+ T cell function

Downregulates APC costimulatory molecules;
Epigenetic reprogramming via Foxp3

Foxp3+/CD8+ ratio >0.3: HR=2.15 for recurrence;
Independent risk factor

Exhausted CD8+ Loss of effector function; Partial clonal
expansion potential

PD-1/CTLA-4/TIM-3 upregulation;
Metabolic reprogramming

TIM-3+PD-1+ terminal exhaustion requires dual
ICI therapy; TCF1+PD-1+ predicts better PFS
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3.2 T Cell-related biomarkers in TIME

The dual PD-L1 expression on tumor and immune cells confers

dynamic biological functions. High infiltration of CD8+PD-L1+

TILs exhibited hot tumor features but correlated with shorter

progression-free survival due to concurrent CD68+ macrophage

and CD163+ M2 polarization fostering an immunosuppressive

niche (62). Conversely, in advanced patients receiving PD-1

inhibitors, the high CD8+PD-L1+ TILs group showed improved

objective response rate and PFS via T cell exhaustion reversal. This

duality underscores PD-L1’s spatiotemporal regulatory role—

exacerbating Treg-mediated suppression in native immunity while

serving as a therapeutic vulnerability under ICI intervention—

complementing TIME classification theories and offering a novel

composite biomarker for precision immunotherapy stratification.

Emerging evidence highlights the clinical significance of T cell

exhaustion states in NSCLC. Pre-exhausted TCF1+PD-1+

populations demonstrate superior prognostic value compared to

terminally exhausted TIM-3+TIGIT+ subsets, as revealed through

single-cell sequencing (63). In clinical validation, abundant

TCF1+PD-1+ tumor-infiltrating lymphocytes correlated with

sustained treatment benefit in a 116-patient surgical cohort

receiving immune checkpoint inhibitors, suggesting these pre-

exhausted cells maintain functional memory potential (64).

However, CD8+PD-1High TILs exhibiting TIM-3/CTLA-4 co-
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expression along with impaired IFN-g/TNF production showed

opposite associations with reduced disease-free survival (65), a

pattern subsequently confirmed in advanced NSCLC cohorts (66).

This dichotomy mirrors PD-L1+CD8+ TIL dualism, advocating

dynamic models integrating exhaustion-stage-specific markers.

While limited by retrospective designs, these findings highlight

multidimensional T cell functional assessment as a breakthrough

beyond PD-L1 limitations.

Beyond CD8+ T cells, CD4+ T cell subsets demonstrate distinct

prognostic value in NSCLC through neoantigen recognition and

immunomodulatory functions. In advanced NSCLC, elevated

FoxP3+CD4+ TIL infiltration was associated with improved

progression-free and overall survival (67), potentially reflecting

regulatory T cell-mediated mitigation of T cell exhaustion. Spatial

transcriptomic analyses using digital profiling further revealed that

CD4+ T cell localization within specific immune niches

significantly enhanced survival outcomes, with observed

synergistic effects from co-localized CD56+ NK cells (68). This

spatially resolved approach advances beyond conventional

immunohistochemistry by precisely mapping topological

relationships between CD4+ T cells and NK cells, offering three-

dimensional insights into tumor immune microenvironment

heterogeneity. When integrated with T cell exhaustion profiling,

these spatial and functional characterization methods collectively

enhance precision immunotherapy strategies.
FIGURE 1

The role of tumor-infiltrating T lymphocytes in NSCLC.
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4 T Cell-based immunotherapy in
NSCLC treatment

4.1 Predictive value of T cell receptor
dynamics in immunotherapy efficacy

As the central molecular determinant of T cell antigen

recognition, TCR diversity metrics and clonal evolution are

emerging as novel biomarkers for predicting immune checkpoint

inhibitor efficacy. Han et al. (69) demonstrated in a seminal study

that patients with high TCRb chain CDR3 region diversity in

peripheral PD-1+CD8+ T cells exhibited significantly superior

disease control rates and survival benefits, with treatment-induced

TCR clonal expansion correlating positively with tumor regression.

The team further proposed the Tumor-Immune Repertoire (TIR)

index—quantifying shared TCR clones between tumor and

peripheral blood—showing that high TIR index patients achieved

improved PFS and OS, mechanistically linked to elevated

immunomodulatory cytokine levels (70). Notably, TCR clonal

dynamics analysis effectively differentiates pseudoprogression. For

instance, pseudoprogressive patients exhibit clonal expansion

patterns and dominant clone overlap rates akin to partial

responders, distinct from true progression cohorts, providing

critical molecular insights for clinical decision-making. Zhang

et al. (71) identified via multi-site TCR sequencing that only the

top 1% high-frequency clones correlate with therapeutic response,

with elevated tumor-peripheral TCR clonal concordance

significantly enhancing major pathological response rates. These

findings functionally complement prior CD4+/CD8+ T cell subset

studies, collectively establishing a multidimensional predictive

framework integrating T cell quantity and functional activity.

Despite current limitations in sample sizes, TCR clonal

monitoring demonstrates transformative potential in efficacy

prediction, toxicity management, and progression discrimination,

necess i ta t ing s tandardized sequencing protocols for

clinical translation.
4.2 Radiotherapy-mediated remodeling of
the tumor immune microenvironment

Radiotherapy remodels the TIME in NSCLC through

multidimensional mechanisms, exhibiting dose-dependent

biphasic immunomodulation. Preclinical studies demonstrate that

conventional-dose radiotherapy activates PI3K/AKT and STAT3

signaling pathways to upregulate tumor cell PD-L1 expression while

reducing immunosuppressive regulatory T cells (iTregs) and

myeloid-derived suppressor cell (MDSC) infiltration, thereby

promoting CD8+ T cell clonal expansion to establish an

immunologically active niche (72). Preclinical models confirm

synergistic antitumor effects when combining radiotherapy with

PD-1/PD-L1 inhibitors, mechanistically linked to enhanced TCR

diversity and spatial CD8+ T cell infiltration remodeling (73, 74).

Notably, radiation fractionation patterns critically dictate

immunomodulatory outcomes: hypofractionated radiotherapy
Frontiers in Immunology 05
outperforms conventional fractionation in activating systemic

antitumor immunity via immunogenic cell death induction and

proinflammatory cytokine release (75). A prospective cohort study

by Theelen et al. (76) revealed that early-phase immune checkpoint

inhibitor co-administration during radiotherapy synchronizes

CD8+ T cell expansion peaks with radiation cycles, significantly

improving objective response rates, though radiation pneumonitis

risks require further evaluation. Current evidence highlights that

spatiotemporal synergy between radiotherapy and ICIs transcends

conventional therapeutic paradigms by reprogramming TIME

immunoediting equilibria, offering advanced NSCLC patients a

dual strategy for local control and systemic efficacy. Optimal

intervention timing and safety management warrant validation

through multicenter phase III trials.
4.3 Immunotherapy in non-small cell lung
cancer

The therapeutic paradigm for non-small cell lung cancer has

evolved from chemotherapy and radiotherapy to targeted therapies

and, most recently, immune checkpoint inhibitors, which

reprogram antitumor immunity by reversing T cell functional

suppression. PD-1, a pivotal inhibitory receptor on T cells,

initiates downstream immunosuppressive signaling upon

interaction with tumor-expressed PD-L1/L2 ligands, driving T cell

exhaustion and immune evasion (77, 78). ICIs restore T cell

cytotoxic function by blocking the PD-1/PD-L1 axis while

reactivating clonal expansion capabilities of tumor-infiltrating

CD8+ T cells, thereby re-establishing antitumor immune

surveillance networks (79, 80). Globally, multiple PD-1/PD-L1

inhibitors have been approved for NSCLC treatment, with over

200 related agents in clinical trials demonstrating synergistic

therapeutic potential in combination with chemoradiotherapy or

targeted therapies (81, 82). This precision strategy focused on

reversing immunosuppression represents a paradigm shift in

NSCLC treatment, moving beyond single-target approaches to

achieve comprehensive immunomodulation.
4.4 TLS-mature CD8+ T cells to durable ICI
responses in NSCLC

The immunological heterogeneity of NSCLC manifests in the

spatial distribution of immune cells across tumor cores, invasive

margins, and TLS, with hierarchical compartmentalization of

effector populations: T lymphocytes and macrophages dominate

as primary immune effectors, while plasma cells, NK cells, and

myeloid-derived suppressor cells exhibit limited representation

(83–86). In addition to core tumor and invasive margin

compartments, tertiary lymphoid structures have emerged as

crucial immunological hubs influencing NSCLC immunotherapy

outcomes. These ectopic lymphoid aggregates, composed of B cells,

T cells, follicular dendritic cells, and high endothelial venules,

support local antigen presentation and clonal expansion. This
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profoundly immunosuppressive microenvironment subverts

antitumor immunity through multifaceted mechanisms—defective

antigen presentation impairs immune recognition, aberrant

recruitment of Tregs establishes immune-tolerant niches, and

sustained inhibitory cytokine networks suppress CD8+ T cell

functional activity (12, 87). Recent studies have shown that TLS

presence—particularly those containing mature CD8+ T cells—

correlates strongly with durable responses to immune checkpoint

inhibitor and improved overall survival. Spatial transcriptomic

profiling confirmed that TLS-rich tumors exhibit enhanced

infiltration of stem-like TCF1+CD8+ T cells, sustaining antitumor

activity during prolonged ICI exposure (88–90). Furthermore, TLS

density and maturation status may stratify patients beyond PD-L1

expression, offering a reproducible and spatially resolved biomarker

for precision immunotherapy (91, 92). Integrating TLS profiling

into prognostic models may substantially improve patient selection,

therapeutic monitoring, and understanding of immune resistance

dynamics (93).
5 Conclusion

Non-small cell lung cancer represents a paradigm of immune

heterogeneity. The spatial distribution, phenotypic diversity, and

functional states of tumor-infiltrating T lymphocytes critically

determine disease progression and immunotherapeutic outcomes.

This review highlights how distinct T cell subsets, particularly CD8+

cytotoxic T lymphocytes and Foxp3+ regulatory T cells, exert

opposing immunological influences that shape the tumor immune

microenvironment. The prognostic and predictive utility of these

subsets depends not only on their density but also on their

exhaustion status, clonal diversity, and localization within tumor

compartments. Incorporating spatial transcriptomics, single-cell

omics, and AI-assisted histopathological tools offers novel

opportunities to refine TIME classification and advance

immunotherapeutic precision.

Looking ahead, several actionable directions warrant attention.

These include the development of standardized, spatially resolved

biomarkers integrating TIL function and topography; dynamic

monitoring frameworks that combine peripheral immune

signatures with intratumoral exhaustion markers; personalization

of immune checkpoint blockade through TCR repertoire analysis;

and combinatorial strategies leveraging radiotherapy, ICIs, and
Frontiers in Immunology 06
adoptive T cell therapies to overcome resistance in non-inflamed

tumor phenotypes. Multidimensional profiling and systems-level

therapeutic design will be essential to transform NSCLC

immunotherapy into a more precise, effective, and patient-

tailored modality.
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