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Comprehensive analysis of
single-cell and bulk RNA
sequencing data reveals an
EGFR signature for predicting
immunotherapy response and
prognosis in pan-cancer
Changchun Ye1,2†, Xiaoya Chen2†, Zilu Chen2, Shiyuan Liu1,
Ranran Kong1, Wenhao Lin2, Minxia Zhu3,
Xuejun Sun2* and Zhengshui Xu1*

1Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an,
Shaanxi, China, 2Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, Shaanxi, China, 3Department of Thoracic Surgery, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang, China
Introduction: Immune checkpoint inhibitors (ICIs) have changed the paradigm of

cancer treatment, but their effectiveness in some patients with epidermal growth

factor receptor (EGFR) mutations is unsatisfactory. Therefore, it is necessary to

develop a new biomarker for combined immunotherapy strategies to maximize

the clinical benefits.

Methods: We collected and investigated 34 pan-cancer scRNA-Seq cohorts

from The Cancer Genome Atlas (TCGA) and 10 bulk RNA-Seq cohorts utilizing

multiple machine learning (ML) algorithms to identify and verify a representative

EGFR-related gene signature (EGFR.Sig) as a predictive biomarker for

immunotherapy response. Core genes were identified as Hub-EGFR.Sig to

predict the prognosis of cancers and to understand the crosstalk between

EGFR and the tumor immune microenvironment (TIME).

Results: EGFR.Sig can accurately predict the ICI response with an AUC of 0.77,

demonstrating superior predictive performance compared to previously

established signatures. Twelve core genes in EGFR.Sig were identified as Hub-

EGFR.Sig, of which 4 immune resistance genes were previously verified in

different CRISPR cohorts. Notably, the prognosis most related to Hub-EGFR.Sig

was bladder cancer, which can be divided into two clusters with different

responses to immunotherapy based on Hub-EGFR.Sig.
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Discussion: We developed a promising pan-cancer signature based on EGFR-

related genes to serve as a biomarker for immunotherapy response and survival

outcome prediction. Furthermore, core genes were identified for future

targeting, which will pave the way for improving the effect of immunotherapy

in the context of combination immunotherapies.
KEYWORDS

immune checkpoint inhibitors (ICIs), epidermal growth factor receptor (EGFR), pan-
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1 Introduction

Immunotherapy with immune checkpoint inhibitors (ICIs) has

innovatively expanded the field of cancer treatment and conferred

substantial clinical benefits to patients over the past decade (1, 2).

Since approved for clinical use, ICIs targeting humanized cytotoxic

T lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD-1)

or PD-1 ligand 1 (PD-L1) have been used to treat an ever-growing

list of malignant tumors, such as melanoma, lung cancers, head and

neck squamous cell cancer, bladder cancer (BLCA), and gastro-

esophageal cancer (3). However, only a subset of patients respond to

ICIs (4). Hence, the advancement of strategies for accurately

predicting ICI response and improving understanding of

resistance mechanisms to optimize ICI regimens is paramount (2,

5, 6). All of the above highlight the importance of identifying and

developing predictive biomarkers for an ICI response.

Epidermal growth factor receptor (EGFR), which is widely

distributed on the surface of epithelial cells in various tissues of

mammals, is studied as one of the most well-known kinase

receptors in the mechanism of tumorigenesis (7). The robust

signaling of EGFR in the activation of prosurvival and antiapoptotic

pathways can promote tumorigenesis, proliferation and invasiveness

(8–10). Consequently, therapies targeting EGFR have advanced

precision oncology. There are currently dozens of EGFR-targeting

drugs for various tumors according to the updated directory of the

FDA (11), such as gefitinib for the first-line treatment of non-small cell

lung cancer (NSCLC) (12) and erdafitinib, which was first approved

for urothelial carcinoma (UC) (13), and the drug catalogue is in

continuous iteration (7). Therefore, EGFR may have the potential to

be a powerful predictive biomarker for ICI response.

Currently, the crosstalk between immunotherapy and EGFR has

received increasing attention (14, 15). Several clinical trials in

NSCLC have suggested that most EGFR-mutated NSCLC shows a

poor response to anti-PD-1/PD-L1 treatment (16–18). Initial results

indicated that this phenomenon may be related to the interplay

between EGFR and the immune environment, such as weakening

immunogenicity through low PD-L1 expression, low CD8+ tumor-

infiltrating lymphocytes, and low tumor mutational burden (TMB);

however, the specific mechanism is unclear (7, 16). Therefore, there

is an urgent need for relevant research to comprehensively
02
understand the relationship between EGFR and the tumor

immunotherapy response in pan-cancer.

Compared with the traditional study of biomarkers based on the

average genetic spectrum of many different cell populations in

tumor tissue, the advent of single-cell RNA sequencing (scRNA-

Seq) makes it possible to dissect gene expression in the single-cell

dimension of malignant tumors, which enables us to identify more

accurate and higher performance gene signatures as biomarkers

(19). In the present study, we revealed the potential relationship

between EGFR and immunotherapy response in two scRNA-Seq

cohorts of patients treated with ICI therapy. Subsequently, we

conducted a comprehensive analysis of 34 pan-cancer scRNA-Seq

and 10 bulk RNA-Seq cohorts to identify a representative EGFR-

related gene signature (EGFR.Sig). Furthermore, we extensively

investigated and verified the predictive effectiveness of EGFR.Sig

for immunotherapy response and identified hub genes in EGFR.Sig

(Hub-EGFR.Sig) with the help of multiple machine learning (ML)

algorithms to explore the relationship between EGFR and cancer

prognosis. Finally, the prognosis of BLCA was found to be most

significantly associated with Hub-EGFR.Sig and was analyzed in

depth. Our findings more convincingly emphasize the potential

of EGFR as a promising biomarker for predicting tumor

immunotherapy response and prognosis across multiple

cancer types.
2 Materials and methods

2.1 Data download

A total of 36 EGFR-related genes were obtained through the

Gene Set Enrichment Analysis database (GSEA, https://www.gsea-

msigdb.org/gsea, Supplementary Table S1). Gene set variation

analysis (GSVA) can transform the expression matrix of genes

into gene sets among different samples to evaluate the results of

gene set enrichment (20). According to GSVA, the expression

scores of EGFR-related gene sets in the datasets could be obtained.

To research the relationship between EGFR and the

immunotherapy response of cancer cells, two scRNA−Seq ICI cohorts

with definite curative effects were downloaded from the Gene
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Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo)

database. One was a melanoma cohort (GSE115978, 33 patient

samples, 7186 cells) for analysis (21), and the other was an

independent basal cell carcinoma (BCC) cohort (GSE123813, 10

patient samples, 43640 cells) for verification (22).

To construct EGFR.Sig in pan-cancer, 34 scRNA-Seq datasets

including 345 patients and 663760 cells were collected from the

Tumor Immune Single-cell Hub (TISCH, http://tisch.comp-

genomics.org/) portal (23). The TISCH database employs

multiple integrated methodologies for comprehensive single-cell

annotation within the tumor microenvironment. The datasets

covered 17 cancer types, namely, BCC, breast cancer (BRCA),

cholangiocarcinoma (CHOL), colorectal cancer (CRC), lower

grade glioma (LGG), head and neck cancer (HNSC), liver

hepatocellular carcinoma (LIHC), medulloblastoma (MB), Merkel

cell carcinoma (MCC), multiple myeloma (MM), neuroendocrine

tumor (NET), NSCLC, ovarian serous cystadenocarcinoma (OV),

pancreatic adenocarcinoma (PAAD), skin cutaneous melanoma

(SKCM), stomach adenocarcinoma (STAD), and uveal

melanoma (UVM).

To explore the potential association between EGFR.Sig and the

immune response, the transcriptome data of a TCGA pan-cancer

cohort comprising 30 different cancer types were downloaded from

the UCSC XENA (https://xenabrowser.net) data portal (24). Our

analysis excluded some cancer types mainly composed of immune

cells, including diffuse large B-cell lymphoma (DLBC), acute

myeloid leukemia (LAML) and thymoma (THYM) (25). All

downloaded sample data met the following criteria: (a) patients

had mRNA expression data and clinical data, (b) patients had

completed standardized diagnosis and treatment, including surgery,

chemotherapy, and radiotherapy, and (c) survival data were

available for patients with survival times greater than 30 days.

TMB was retrieved from cBioPortal (https://www.cbioportal.org)

(26, 27). The intratumor heterogeneity (ITH) data were from

published research by Thorsson et al. (28). These data were used

to analyze the correlation between EGFR.Sig and TMB or ITH.

Ten ICI RNA-Seq cohorts with clinical information were

systematically collected to construct a prediction model and

subsequent survival analysis. These cohorts included 5 SKCM

cohorts (Hugo 2016 (29), Liu 2019 (30), Gide 2019 (31), Riaz

2017 (32) and Van Allen 2015 (33, 34)), 2 urothelial carcinoma

(UC) cohorts (Mariathasan 2018 (35), Synder 2017 (36)), 1

glioblastoma (GBM) cohort (Zhao 2019 (37)), 1 gastric cancer

(GC) cohort (Kim 2018 (38)) and 1 renal cell carcinoma (RCC)

cohort (Braun 2020 (39)). All included cohort samples were

collected prior to immunotherapy treatment. For the same patient

with multiple tissue samples, an earlier sample was selected, and

each patient was counted as one case. After using COMPAT to

eliminate the batch effect of different cohorts, the Braun 2020 RCC,

Mariathasan 2018 UC, Liu 2019 SKCM, Gide 2019 SKCM and Riaz

2017 SKCM datasets were merged into a large dataset (n=772)

according to a previously reported method (40). The combined

dataset was randomly divided into a training set (80%, n=618) and a

validation set (20%, n=154). In addition, Hugo 2016 SKCM, Synder
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2017 UC and Zhao 2019 GBM were used as independent

verification sets to evaluate the predictive value of the model.

The workflow is presented in Figure 1.
2.2 ScRNA-Seq data analysis

All scRNA-Seq data analyses and integrations were performed

using R software Seurat v4.0.6. Based on the current mainstream

practice in the field of scRNA-Seq of tumor tissues, we set strict

quality control thresholds, excluding cells with less than 300 genes

in a single cell and cells with more than 20% of mitochondrial genes

(41). The data normalization and standardization of each sample

were achieved by principal component analysis (PCA), and the

batch differences between samples were achieved by the “harmony”

package. The annotation of major cell types was performed based

on well-established canonical marker genes from the TISCH

database and relevant literature (23). Detailed procedures can

refer to the TISCH portal website (http://tisch.comp-

genomics.org/documentation/). Then, we reduced the dimension

and visualized the scRNA-Seq data by the uniform manifold

approximation and projection (UMAP) algorithm. The R

“FindAllMarkers” package was used to identify differentially

expressed genes between different cell types. Genes with a log2-

fold change (log2FC) ≥1 and a false discovery rate (FDR) <1e-05

were considered differentially upregulated genes for each cell

subtype (23). For malignant tumor cells, Spearman correlation

analysis was used to discover the relationship between EGFR-

related gene expression and EGFR scores in 34 scRNA-Seq datasets.
2.3 Evaluation of clinical efficacy

The main index of clinical outcomes was the objective response

rate (ORR). ORR of all cohorts was assessed with the use of

Response Evaluation Criteria in Solid Tumors (RECIST) version

1.1, except Hugo 2016, which was assessed with the immune-related

RECIST (irRECIST) (42). According to the response status, patients

with complete response (CR) and partial response (PR) were

grouped as responders (R), while those with stable disease (SD)

and progressive disease (PD) were considered nonresponders (NR).

Moreover, TN represents treatment-naive patients.
2.4 Machine learning and prediction model
construction

Eight common ML algorithms were used to train and adjust

prediction models of ICI response based on EGFR.Sig. For the

support vector machine (SVM), naive bayes (NB), random forest

(RF), k-nearest neighbors (KNN), Adaptive Boosting (AdaBoost),

logistic regression model (Logistic) and boosted logistic regression

(LogiBoost) algorithms, fivefold cross-validation was used for

hyperparameter tuning to optimize the performance of the model
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(43). To ensure robustness, we repeated the optimization process 10

times using different random seeds for each single resampling (44).

For cancer class algorithms, which do not require parameters, we

directly used the entire training set to train the model. The receiver

operating characteristic (ROC) curve and the area under the curve

(AUC) were used to evaluate the sensitivity and specificity of the

models. The analyses were performed using R packages including

caret (v6.0-93), randomForest (v4.7-1.1), e1071 (v1.7-13), nnet (v7.3-

18), and adabag (v4.2). Finally, the models constructed with the above

algorithms were analyzed by the validation set to screen out the

efficacy prediction model in pan-cancer immunotherapy.

Furthermore, we compared the predictive efficiency of gene

signatures in our study and other previously reported ICI response

pan-cancer biomarkers, including INFG.Sig (45), T.cell.inflamed.Sig

(45), PDL1.Sig (46) and Cytotoxic.Sig (47)(Supplementary Table S2).

To further screen the core EGFR-related immune efficacy genes,

we used 5 ML algorithms, namely, Wrapper, learning vector
Frontiers in Immunology 04
quantization (LQV), RF, bagged decision tree and Bayesian, for the

training set to analyze the important role of EGFR-related genes in

immunotherapy. The random forest method was configured with 500

decision trees. The Wrapper method employed stepwise feature

selection, while the Bayesian approach utilized a naïve Bayes

classifier. Both LQV and bagged decision trees adopted the default

parameters from the R caret package. For eachmodel, gene importance

was ranked based on feature importance scores (e.g., mean decrease in

accuracy for random forest, selection frequency for Wrapper, etc.).

Finally, the genes that made sense in at least three algorithms were

selected as the hub EGFR-related gene signature (Hub-EGFR.Sig).

To explore the relationship between Hub-EGFR.Sig and the

prognosis of cancer patients, we constructed Hub-EGFR.Sig-related

prediction models with a total of 18 algorithm models using 5 ML

algorithms, namely, elastic network (Enet), random survival forest

(RSF), generalized boosted regression modelling (GBM), stepwise

Cox and survival support vector machine (Survival-SVM). For the
FIGURE 1

Workflow of this study.
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Enet model, we tested alpha values ranging from 0 to 1 with

increments of 0.1, ultimately selecting the optimal model with

alpha=0.2. For the RSF, we configured the following parameters:

number of trees (n.tree)=1000, node size (nodesize)=10, splitting

rule=logrank test, and proximity calculation using inbag samples.

The GBM was implemented with these specifications: number of

trees (n.tree)=10000, interaction depth=3, minimum observations

in terminal nodes (n.minobsinnode)=10, and shrinkage=0.001. The

Stepwise Cox regression was performed with 1000 steps, while the

Survival-SVM used gamma.mu=1 as its key parameter. All model

algorithms were based on leave-one-out cross-validation, and the

prediction performance of the models was evaluated by Harrell’s

concordance index (C-index). The optimal algorithm was selected

by comparing the C-index values of different ML algorithms.
2.5 CRISPR analysis

To explore potential therapeutic targets based on EGFR.Sig,

seven published CRISPR screening studies covering melanoma,

breast, colon, and renal cancer cell lines were collected, namely,

Freeman 2019 (48), Kearney 2018 (49), Manguso 2017 (50), Pan

2018 (51), Patel 2017 (52), Vredevoogd 2019 (53), and Lawson 2020

(54). According to the model cell lines and treatment conditions,

these seven CRISPR studies were divided into 17 datasets that

evaluated the individual effects of each gene knockout on tumor

immunity (40). Data were utilized to identify genes that were more

likely to influence the response to immunotherapy across different

cancer cell lines.

Generally, the first step of CRISPR screening is to conduct genome-

wide CRISPR–Cas9 knockout across various cancer cells. Then, the cells

are either cocultured with cytotoxic lymphocytes (CTLs) in vitro or

implanted in immunodeficient/immunocompetentmice in vivo. Finally,

ten RNA sequences are used to estimate the sgRNA abundance of the

genes studied. By calculating the log-fold changes in sgRNA readings

between gene knockout cell lines and control groups, we can understand

the effect of gene knockout on cancer under the pressure of CTLs or

antitumor immunity (54). This study invokes the normalized z scores

from log-fold changes to eliminate the batch effect and compare genes in

different CRISPR datasets. The genes were sorted from low to high

according to their average z scores across the 17 datasets. The top-

ranked genes have lower average z scores, and the lower z scores indicate

a better immune response after gene knockout, so these genes were

identified as immune resistance genes. Referring to previous studies, the

proportion of the first 6% top-ranked immune resistance genes in

EGFR.Sig and other published ICI response signatures (CRMA.Sig (55),

LRRC15.CAF.Sig (56), IMS.Sig (57), TcellExc.Sig (21),

ImmmunCells.Sig (58)) was compared (40).
2.6 Survival analysis

We used 1000 iterations of 10-fold cross-validation LASSO-Cox

for dimensionality reduction screening. Each patient’s risk score

was computed by summing the products of expression levels of
Frontiers in Immunology 05
selected Hub-EGFR.Sig genes and their corresponding LASSO-Cox

regression coefficients, following the formula: risk score = (b1 ×

expression of gene1) + (b2 × expression of gene2) +… + (bn ×

expression of genen). The cancer patients were divided into a high-

risk group and a low-risk group according to the median score to

explore the relationship between Hub-EGFR.Sig and prognosis in

pan-cancer by Kaplan–Meier (K–M) survival analysis. The

“survival” package of R was used to perform survival analyses.

Disease-specific survival (DSS) and progression-free interval (PFI)

were used in the survival analysis of this study because they can well

reflect the effectiveness of clinical treatment (59). We also analyzed

the Spearman correlation and drew the correlation heatmap of DSS

or PFI through the “cowplot” package and verified it by the

“GOSemSim” package.
2.7 Molecular subtype identification and
characteristic analysis

Consensus clustering using the “ConsensusClusterPlus” package

was conducted to identify different populations with EGFR functional

phenotypes in BLCA based on Hub-EGFR.Sig. Principal coordinate

analysis (PCoA) was used to verify the results of consensus clustering.

The immunotherapy response of BLCA patients in different clusters

was predicted by Tumor Immune Dysfunction and Exclusion (TIDE,

http://tide.dfci.harvard.edu), which is a widely recognized program

for evaluating the prognosis of ICI therapy (60, 61). The R “ggpubr”

package was used to draw a bar graph of immunotherapy response

between different clusters. From Genomic Data Commons (GDC,

https://portal.gdc.cancer.gov), we obtained the mutation

information of TCGA datasets and analyzed the characteristics

with the “maftools” packet. To systematically identify pathway-level

alterations associated with the observed mutational profiles, we first

identified significantly differentially mutated genes (q-value < 0.1)

with high mutation frequencies between two clusters. These selected

genes were then subjected to pathway enrichment analysis through

hypergeometric testing against two comprehensive pathway

databases: the Hallmark gene sets from MSigDB (https://

www.gsea-msigdb.org/gsea/msigdb) and the Reactome database

(https://reactome.org/). All analyses were performed using the

clusterProfiler R “clusterProfiler” package, with statistical

significance of pathway enrichment determined after Benjamini-

Hochberg multiple testing correction (FDR < 0.05). Moreover, the

Drug Gene Interaction database (DGIdb) was used to predict the

mutant gene druggability of different subtypes.
2.8 Immune cell infiltration analysis

The infiltration of immune cells in the TIME was evaluated by

CIBERSORT (https://cibersort.stanford.edu/) and single-sample

gene set enrichment analysis (ssGSEA). For CIBERSORT, we first

uploaded gene expression data to the CIBERSORT portal and then

evaluated the infiltration of immune cells in samples based on the

gene expression features of 22 known immune cell subtypes (62).
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For ssGSEA, the enrichment scores calculated by ssGSEA were used

to express the relative abundance of immune cell infiltration in each

sample. Finally, we used the “ggplot2” and “pheatmap” packages to

present the results.
2.9 Network regulation and interaction
analysis

We searched the regulatory relationship and network interaction of

Hub-EGFR.Sig in the miRTarBase v8.0 (https://mirtarbase.cuhk.edu.cn/)

and ENCODE (https://www.encodeproject.org/) databases, and the

mRNA–miRNA and mRNA-TF network information was

collected. Then, we predicted the interaction between proteins

corresponding to the key genes through the online database

STRING (https://string-db.org). All interactive networks were

visualized with Cytoscape software.
2.10 Cells and cell culture

Human ureteral epithelial immortalized cell line SV-HUC-1

and human bladder cancer cell line 5637 were purchased from

Wuhan Servicebio Technology Co., Ltd (Wuhan, China). Cells were

cultured in a 37°C, 5% CO2 incubator using special media

purchased from Servicebio, Inc. (GZ12301, GZ11703).
2.11 Western blotting

Total protein was obtained with RIPA lysis buffer (P0013B,

Beyotime, Shanghai, China). BCA Protein Assay Kit (P0012,

Beyotime, Shanghai, China) was employed to measure protein

concentration. Proteins were subjected to SDS-page for separation

and then transferred to PVDF membranes (0.22 µm, Millipore). 5%

milk blocking buffer (P30500, NCM Biotech, Soochow, China) was

used to block nonspecific binding sites. The membranes were incubated

with specific primary antibodies overnight at 4°C. Subsequently, washed

membranes were incubated with corresponding secondary antibodies

for 1 h at room temperature. ECL Chemiluminescence kit was

purchased from Mishu Biotechnology (MI00607B, Xi ‘an, China).

The primary antibodies included ABCA7(YP-mAb-05349, UpingBio,

China), HOOK2 (YP-mAb-10034, UpingBio, China), VMP1 (F1488,

Selleck, China), JUNB (F0578, Selleck, China), ACTG1(YP-mAb-

06774, UpingBio, China), RHOB (YP-mAb-16239, UpingBio, China).

The second antibodies included goat anti-mouse IgG-HRP (abs20039,

Absin, China) and goat anti-rabbit IgG-HRP (abs20040, Absin, China).
2.12 The Human Protein Atlas analysis

The Human Protein Atlas (HPA, https://www.proteinatlas.org/)

is a human proteome atlas database containing information on

the protein distribution of human tissues and cells. To analyze the

differential expression of ABCA7, HOOK2, VMP1, JUNB,

ACTG1 and RHOB at the protein level, we downloaded
Frontiers in Immunology 06
immunohistochemical images of bladder tumor tissues with their

corresponding normal tissues from HPA.
2.13 Statistical analysis

All data processing and analysis were performed with R software

(version 4.0.2). For comparisons of continuous variables between the

two groups, the statistical significance of normally distributed

variables was estimated with an independent Student’s t test, and

differences between variables that were not normally distributed were

analysed with the Mann–Whitney U test (i.e., the Wilcoxon rank-

sum test). The chi-square test or Fisher’s exact test was used to

compare and analyze the statistical significance between the two

groups of categorical variables. P<0.05 was used as the criterion for

significantly different results if there were no special notes.
3 Results

3.1 Relationship between EGFR-related
genes and tumor immunotherapy efficacy

Two scRNA-Seq GEO datasets with clear efficacy of tumor

immunotherapy were downloaded to evaluate the relationship

between EGFR-related genes and tumor immunotherapy outcomes.

After quality control, 33 samples were included in the GSE115978

cohort (melanoma, TN=16, NR=16, R=1), and 10 patients were

included in the GSE123813 cohort (BCC, NR=4, R=6). First, we

comprehensively presented the distribution of EGFR scores (defined

as the ssGSEA-derived enrichment score of the EGFR gene set) among

single-cell samples and found that the distribution was uneven

(Figures 2A, B). Considering the presence of different cell types in

tumor tissues, we marked these cells and found that they could be

roughly divided into three categories: immune cells, stromal cells and

malignant cells (Figures 2C, D). Then, we investigated the differences in

EGFR scores among different cell subtypes. The results demonstrate a

statistically significant difference in EGFR scores betweenmalignant and

immune cells (Figures 2E, F). This discrepancy was particularly

pronounced in the GSE123813 dataset, where malignant cells

demonstrated significantly elevated EGFR scores while immune cells

showed markedly lower scores (mean=0.89 vs 0.47, Figure 2F).

Subsequent analysis revealed that the EGFR scores of patients in

GSE115978 who were untreated or did not respond to

immunotherapy were higher than those of patients who responded to

immunotherapy (P < 0.001, Figure 2G). Similar results were also

observed in GSE123813 (P < 0.001, Figure 2H). These results

indicated that the EGFR-related genes may have a potential

connection with the response to immunotherapy in cancer patients.
3.2 Development of EGFR.Sig based on
pan-cancer scRNA-Seq analysis

As there were differences in the EGFR scores of cancer patients

with different immunotherapy responses, we hypothesized that the
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evaluation of EGFR.Sig expression levels could predict the efficacy

of immunotherapy to some extent. Therefore, 34 pan-cancer

scRNA-Seq datasets were included to screen important EGFR-

related genes for EGFR.Sig (Figure 3A). First, Spearman

correlation was performed to analyze the relationship between

EGFR-related genes and EGFR scores in malignant tumor cells

across 34 scRNA-Seq datasets. If there was a positive correlation

(Spearman R > 0.2 and FDR < 0.05), the gene was labelled Gx. Then,
Frontiers in Immunology 07
genes highly expressed in malignant tumor cells were screened and

marked as Gy (logFC ≥ 0.5 and FDR < 0.05). Gn was generated by

the intersection of Gx and Gy in each dataset to identify the

upregulated genes in specific tumors that were positively related

to EGFR. For example, Gx and Gy were screened out in the first

scRNA-Seq dataset, and their common genes make up G1. Finally,

the geometric mean of Spearman R was calculated, and genes with a

geometric mean R > 0.4 (moderate to strong correlation) in G1-G34
FIGURE 2

Relationship between EGFR related genes and immunotherapy efficacy. (A, B) UMAP plot of EGFR related genes scores in GSE115978 and
GSE123813. (C, D) UMAP plot of different cell subtypes in GSE115978 and GSE123813. (E, F) Differences in EGFR related gene scores among different
cell subtypes in GSE115978 and GSE123813 (Wilcoxon test). (G, H) EGFR related genes scores of patients with different immunotherapy responses in
GSE115978 and GSE123813(Wilcoxon test). Abbreviation: SKCM, skin cutaneous melanoma; BCC, basal cell carcinoma; NR, non-responders;
R, responders; TN, treatment naïve patients.
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were merged as EGFR.Sig (Supplementary Table S3). Furthermore,

we investigated the biological functions of EGFR.Sig. The EGFR.Sig

enrichment pathways mainly included RHO GTPase effectors,

translocation of SLC2A4 and RHO GTPases activating formins

(Figure 3B), and there were interrelations and interaction networks

among these functional pathways (Figure 3C).
3.3 Potential link between EGFR.Sig and
immune suppression across cancers

To further explore the relationship between EGFR.Sig and the

effect of cancer immunotherapy, we comprehensively analysed the

correlation between EGFR.Sig and 75 immune-related genes previously
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published in the pan-cancer TCGA cohort (Supplementary Table S4)

(28). A generally correlation between EGFR.Sig and most of the

immune-related genes across 30 different cancers was observed

(Figure 4A). Then, we evaluated the CIBERSORT infiltration

abundance of immune cells in the TIME across TCGA pan-cancer

cohort. The results demonstrated that EGFR.Sig was negatively

correlated with the infiltration of various immune-promoting cells,

including CD8+ T cells, NK cells and macrophages, in different cancer

types (Figure 4B). Next, we analysed the hallmark pathways associated

with EGFR.Sig in the TCGA pan-cancer dataset by calculating

Spearman correlation coefficients between EGFR.Sig expression and

the enrichment scores (obtained by ssGSEA calculations) of each

hallmark pathway. In our analysis, we observed that EGFR.Sig

showed a positive correlation with certain immune-related biological
FIGURE 3

Development of EGFR related gene signature and enrichment analysis. (A) Circle diagram depicting the development of EGFR.Sig. (B) Top 10
enriched Reactome pathways of genes in EGFR.Sig. (C) The network of enriched Reactome pathways of EGFR.Sig. The colored dots indicate the
corresponding pathway, the size of the dots indicates the number of enriched genes in the pathway, and the depth of the color indicates the
P value.
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pathways (e.g., P53, UV response up and DNA repair pathway)

(Figure 4C) (63–65). Furthermore, the relationship between

EGFR.Sig and ITH, which is a stem-related trait associated with

tumor immunosuppression (66), was analysed. Similarly, ITH was

positively correlated with EGFR.Sig in pan-cancer (R = 0.42, P = 0.021,

Figure 4D). Moreover, the TMB, a well-known molecular marker

related to immunotherapy efficacy, was also detected to have a similar

positive association with EGFR.Sig (R = 0.47, P = 0.0083, Figure 4E). In

summary, EGFR.Sig was observed to be negatively correlated with the

tumor immune response.
3.4 Immune response prediction by
EGFR.Sig

To effectively predict the immunotherapy response of cancer

patients through EGFR.Sig, bulk RNA-Seq cohorts with clear
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immunotherapy response information were identified and assessed.

The cohorts were divided into a training set (n = 618) and a validation

set (n = 154). First, we used eight ML algorithms to construct and

optimize prediction models for immunotherapy efficacy and verified

the models by ROC. By comparing the AUCs of different algorithm

models, we found that the logistic regression model had better

predictive efficiency than the other algorithms, with an AUC of 0.77

(Figures 5A, B). Then, we compared the predictive performance of

EGFR.Sig with that of previously published gene signatures in another

independent validation set to validate the superiority of EGFR.Sig. The

results demonstrated that that EGFR.Sig exhibited superior predictive

performance compared to other published gene signatures in the Zhao

2019 GBM cohort, while maintaining consistently robust predictive

power relative to existing signatures across multiple independent

validation cohorts (Figure 5C, Supplementary Table S2). As revealed

in the heatmap, the average AUC of EGFR.Sig ranked at the top of the

published gene signatures (Figure 5D), which indicated a better ability
FIGURE 4

Potential links between EGFR.Sig and immune resistance in pan-cancer. (A) Circos plot depicting the correlation between the expression levels of
EGFR.Sig and immune related genes in pan-cancer. Types of cancer from inner to outer rings refer to the y-axis of plot (B) B. Heatmap depicting the
correlation between EGFR.Sig and the infiltration of immune cells across multiple cancer types. (C) Correlation between EGFR.Sig and hallmark
pathways. (D) Correlation between median EGFR.Sig score and median ITH score across cancer types. (E) Correlation between median EGFR score
and median TMB score across cancer types.
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of EGFR.Sig to predict the immunotherapy response, especially for the

Zhao 2019 GBM cohort. Taken together, the EGFR.Sig predictive

models developed with the logistic regression algorithm can effectively

predict the response of cancer patients to immunotherapy.
3.5 Screening potential therapeutic targets
associated with EGFR.Sig

Seven CRISPR cohorts including 17 CRISPR datasets were

systematically collected to further explore potential therapeutic

targets, and 22505 knockout genes with immune response data
Frontiers in Immunology 10
were ranked according to the average z scores. Lower z-scores

indicate that gene knockout enhances tumor cell susceptibility to

immune-mediated killing. Therefore, the top genes were considered

immune resistance genes, while those at the bottom were

considered immune sensitive genes (Figure 5E). Then, we

calculated the proportion of the first 6% top-ranked genes in

EGFR.Sig and other published ICI response signatures. The

results showed that there were four top 6% CRISPR genes, which

accounted for 12.5% of EGFR.Sig, and the proportion of immune

resistance genes (6% top-ranked genes) in EGFR.Sig was much

higher than that of other gene signatures (Figure 5F). The four

identified immune resistance genes were MAT2A, JUNB, C12orf57
FIGURE 5

Predictive value to immunotherapy and potential therapeutic targets of EGFR.Sig. (A) AUC of the prediction models constructed by eight ML
algorithms in the validation set. (B) ROC plot of Logistic regression algorithm. (C) The performance of immune response signatures in independent
external validation set. The vertical axis indicated AUC values. The independent external validation set comprises three different cohorts including
Hugo 2016 SKCM, Zhao 2019 GBM and Synder 2017 UC. (D) The predictive value of immune response signatures. The signatures are ordered by
mean AUC from top to bottom. (E) Genes ranking at top and bottom according to their average z-scores across 17 CRISPR datasets. Top-ranked
(bottom-ranked) genes associated with immune resistance (sensitive) and the anti-tumor immune response is better (worse) after knockout. Blank
squares indicate the missing values of gene data in the corresponding cohorts. (F) Comparing the percentage of top-ranked genes among immune
response signatures. (G) The z-scores of the four screened EGFR.Sig genes in the different CRISPR datasets. CRISPR immune scores represent the
average normalized z-score of each gene across 17 CRISPR datasets. AUC, area under the curve; Sig, signature.
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and NR4A1, which were verified in the CRISPR dataset and were

thought to promote antitumor immunotherapy after knockout

(Figure 5G). Therefore, these genes may be meaningful targets in

synergy with immunotherapy for cancer patients.
3.6 Identification of prognostic genes in
EGFR.Sig

To further screen the core genes in EGFR.Sig and explore its

relationship with the prognosis of cancer patients, five ML

algorithms were used to analyze the importance of genes for

tumor immunotherapy response in the tra in ing se t

(Supplementary Figures S1A-E). The genes determined to be

most closely related to tumor immunotherapy efficacy in at least

three algorithms were ABCA7, ACTB, ACTG1, C12orf57, EEF1A1,

HOOK2, JUNB, MAT2A, NR4A1, RHOB, SEMA4B and VMP1

(Supplementary Figure S1F), and they were considered the hub
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genes comprising Hub-EGFR.Sig (Figure 6A). Furthermore, cancer

patients in the total ICI cohorts were divided into two subgroups

according to the risk scores of Hub-EGFR.Sig (Figures 6B, C), and

Hub-EGFR.Sig gene expression varied between the two groups

(Figure 6D). To understand the relationship between Hub-

EGFR.Sig and the immunotherapy prognosis of pan-cancer, PFI

were calculated, and the results indicated that patients with higher

scores of Hub-EGFR.Sig had a worse prognosis in the training set

(P = 0.045, Figure 6E). As expected, similar results were also

observed in the verification set (P = 0.041, Figure 6F).
3.7 Protein interaction networks of Hub-
EGFR.Sig

In the above combined ICI treatment cohort, we investigated

the expression of immunogenic death (ICD)-related genes that are

closely related to the efficacy of immunotherapy (67). The
FIGURE 6

Identification of the Hub-EGFR.Sig and survival analysis in pan-cancer. (A) Intersection of the core genes in 5 different ML algorithms. (B) Distribution
of patients according to the Hub-EGFR.Sig risk score from low to high. Patients were divided into high and low risk groups with 0.01 as the best
cutoff value. (C) Survival time and status distribution of patients in high and low risk groups. (D) Heatmap of Hub-EGFR.Sig expression in high and
low risk groups. (E, F) K-M survival analysis of the high and low risk groups in the training set and validation set (Log-rank test). (G) The relationship
between Hub-EGFR.Sig and DSS or PFI in different cancers. The p values in the figure are converted, and the darker the colour means the lower the
P value. (H, I) DSS and PFI of high and low Hub-EGFR.Sig score groups in bladder cancer (Log-rank test). DSS, disease specific survival; PFI,
progression free interval.
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expression of 13 ICD-related genes showed significant differences

between the R and NR cancer patients treated with ICIs. Among

them, BAX, CALR, FOXP3, HSP90AA1, IFNB1, IL6, PIK3CA and

TLR4 were highly expressed in the NR group, while CXCR3,

EIF2AK3, ENTPD1, IFNG and PRF1 were highly expressed in

the R group (Supplementary Figures S2A-M). To further analyze

the interaction between Hub-EGFR.Sig and ICD genes, we

constructed PPI networks using the STRING database. Finally, we

obtained a regulatory network of 38 nodes with a wide range of

connections (Supplementary Figure S2N), which reflected the

universal and close relationship of Hub-EGFR.Sig and ICD in the

immune response of pan-cancer. In addition, we constructed the

mRNA–miRNA network and mRNA-TF network to reveal

potentially regulated molecules of Hub-EGFR.Sig. There were 49

interactions, including 11 genes in Hub-EGFR.Sig and 17 miRNAs

from the miRTarBase v8.0 database (Supplementary Figure S2O).

Among them, EEF1A1 interacted with 11 miRNAs, MAT2A and

ACTB interacted with 6 miRNAs, and RHOB interacted with 5

miRNAs, showing the most common connection. Similarly, the

constructed mRNA-TF network included 98 interactions, which

consisted of all the Hub-EGFR.Sig genes and 14 TFs from the

ENCODE database (Supplementary Figure S2P). The Hub-

EGFR.Sig genes that interacted most widely with TFs were

ABCA7, HOOK2, and JUNB, which interacted with all 14 TFs,

and NR4A1, which interacted with 10 TFs. In summary, these

findings provide an important reference for future studies on the

regulatory mechanism of Hub-EGFR.Sig in cancer immunotherapy.
3.8 Landscape of Hub-EGFR.Sig in pan-
cancer

We systematically reviewed the Hub-EGFR.Sig scores in TCGA

pan-cancer datasets. As expected, Hub-EGFR.Sig presented stable

enrichment scores across multiple cancer types, of which LUAD,

LUSC and BLCA showed higher scores (Supplementary Figure

S3A). In addition, various immune cells in the TIME, such as

CD4 memory T cells, M2 macrophages and resting mast cells, were

negatively correlated with Hub-EGFR.Sig in most types of cancer,

while follicular helper T cells, active mast cells, eosinophils and

plasma cells were positively correlated (Supplementary Figure S3B).

Then, the correlation between Hub-EGFR.Sig and microsatellite

instability (MSI) was analysed in pan-cancer samples. The results

suggested that there was a positive correlation between Hub-

EGFR.Sig and MSI in most cancer types but a negative

correlation in adrenocortical carcinoma and pancreatic cancer

(Supplementary Figure S3C). Furthermore, we analysed the

correlation between the 12 genes in Hub-EGFR.Sig and MSI

(Supplementary Figure S3D). The results showed that C17orf57

and SEMA4B were positively correlated with MSI, while RHOB

presented a negative correlation in colon cancer. In BLCA, HOOK2

and ABCA7 were positively correlated with MSI, while SEMA4B

and EEF1A1 were negatively correlated. Moreover, SEMA4B and

HOOK2 were significantly associated with MSI in more than 10
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cancers. In summary, Hub-EGFR.Sig plays an important role in the

TIME of pan-cancer, but there is heterogeneity in different types

of cancer.
3.9 Relationship between Hub-EGFR.Sig
and prognosis in different tumor types

Considering the heterogeneous function of Hub-EGFR.Sig in

pan-cancer, we subsequently performed survival analysis across

tumor types. Correlation analysis demonstrated that the

relationship between Hub-EGFR.Sig and DSS or PFI varied in

different cancers (Figure 6G). Notably, Hub-EGFR.Sig showed the

closest correlation with BLCA both in DSS (HR = 0.61, P = 0.007,

Figure 6H) and PFI (HR = 0.68, P = 0.009, Figure 6I). Next, we

comprehensively evaluated the 12 genes in Hub-EGFR.Sig and

found that the expression levels of 6 genes had a significant effect

on both the DSS and PFI of BLCA patients (Supplementary Figures

S4A-X). In the results of K–M analysis, higher expression of ABCA7

(Supplementary Figures S4A, B), HOOK2 (Supplementary Figures

S4K, L), JUNB (Supplementary Figures S4M, N), RHOB

(Supplementary Figures S4S, T), and VMP1 (Supplementary

Figures S4W, X) indicated better survival viability, while higher

expression of ACTG1 was associated with poorer survival

(Supplementary Figures S4C, D). Altogether, there is a significant

association between Hub-EGFR.Sig and the prognosis of BLCA.
3.10 Prognostic model construction,
subtype distinction and immune cell
infiltration of BLCA based on Hub-EGFR.Sig

In the TCGA-BLCA dataset, we applied 5 ML algorithms and a

total of 18 algorithm models to construct a prognostic model based

on Hub-EGFR.Sig. The C-index indicated that Hub-EGFR.Sig in

most of the prognostic models had a satisfactory performance in

predicting the prognosis of BLCA, among which the Enet[a=0.2]

algorithm had the best prediction performance (C-index = 0.7122,

Figure 7A). Then, we conducted consensus clustering to identify the

Hub-EGFR.Sig-related BLCA subtypes. With a consensus matrix of

k = 2, patients could be divided into two distinct subgroups named

Cluster A and Cluster B (Figure 7B). The stability of consensus

clustering was validated by PCoA (Figure 7C). Further exploration

revealed that patients in Cluster B were more likely to benefit from

immunotherapy predicted by TIDE (Figure 7D). Next, ssGSEA was

used to evaluate the differences in immune cell infiltration between

the two clusters (Supplementary Table S5). Except for CD56-bright

natural killer cells, which had no significance, the results

demonstrated that the levels of all the other immune cells in

Cluster A patients were higher than those in Cluster B patients

(Figure 7E). We further calculated the correlation between Hub-

EGFR.Sig and the content of immune cells separately, and the

results showed that most of the Hub-EGFR.Sig genes were

significantly correlated with the infiltration of immune cells
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(Figure 7F). Among them, HOOK2 was negatively correlated with

the abundance of most immune cells, while NR4A1, JUNB and

ACTG1 were positively associated with the abundance of immune

cells, and their correlation intensities were all above 0.25.

CIBERSORT was also utilized to evaluate the infiltration status of

22 immune cells (Supplementary Figure S5A). The results showed

that the infiltration abundance of naive B cells, M1 macrophages,

M2 macrophages and activated memory CD4+ T cells in Cluster A

patients was significantly higher than that in Cluster B patients,

while the infiltration abundance of dendritic cells and NK cells in

Cluster B patients was significantly higher than that in Cluster A

patients (Supplementary Figure S5B). Heatmap presented the

immune cell infiltration abundance of different clusters in BLCA

(Supplementary Figure S5C). Correlation analysis demonstrated

that some genes in Hub-EGFR.Sig were related to the infiltration of
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immune cells in BLCA. For example, SEMA4B was negatively

correlated with the content of naive B cells (r = -0.3, P < 0.001,

Supplementary Figure S5D), ACTB was positively related to M1

macrophages (r = 0.29, P < 0.001, Supplementary Figure S5E) and

activated memory CD4+ T cells (r = 0.38, P < 0.001, Supplementary

Figure S5F), while HOOK2 was negatively correlated with activated

memory CD4+ T cells (r = -0.26, P < 0.001, Supplementary

Figure S5G).
3.11 Hub-EGFR.Sig-associated mutation
characteristics and drug sensitivity analysis

To screen drugs to potentially combine with immunotherapy

strategies for BLCA, we further investigated the mutation
FIGURE 7

Prognostic model, molecular subtypes and immune cells infiltration (ssGSEA) of bladder cancer based on Hub-EGFR.Sig. (A) C-index of the 18 ML
algorithm models based on Hub-EGFR.Sig to predict the prognosis of patients in BLCA. (B) Consensus cluster analysis of patients in BLCA. (C) PCoA
analysis of patients in BLCA. (D) Immunotherapy response predicted by TIDE in two clusters of BLCA. (E) Immune cell infiltration in the two Hub-
EGFR.Sig subtypes patients of BLCA. Student’s t-test, *P<0.05, **P<0.01, ***P<0.001 and ns means no significant. (F) Correlation analysis between
genes in Hub-EGFR.Sig and immune cell abundance in BLCA.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1604394
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2025.1604394
characteristics in patients with BLCA. TP53, TTN, KMT2D,

KDM6A, MUC16, and ARID1A were found to have high

mutation frequencies in both clusters (Figure 8A). Among them,

the mutation frequencies of TP53 were the highest, which were 48%

in Cluster A and 50% in Cluster B. Moreover, the mutation

frequencies of KMT2D and KDM6A were higher in Cluster B

than in Cluster A. For the biological function changes caused by

mutations, the top pathways were the RTK-RAS, NOTCH and

WNT signaling pathways in Cluster A (Figure 8B) and RTK-RAS,

WNT and NOTCH signaling pathways in Cluster B (Figure 8C).

Next, we analysed the druggability drug-gene interaction of the

mutant genes in the two clusters through the DGIdb database. The

results indicated that the most likely druggable category in Cluster

A was the Druggable Genome, in which the first five potential

druggable genes were ATM, EP300, FAT4, HMCN1 and MUC16

(Figure 8D). The most druggable category in Cluster B was

Clinically Actionable, which contained ARID1A, EP300, FGFR3,
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KDM6A and MT2C as the first five potential druggable genes

(Figure 8E). Finally, the Comparative Toxicogenomics Database

(CTD) was used to identify potentially effective drugs or molecular

compounds for Hub-EGFR.Sig in BLCA. The drug-gene interaction

network demonstrated that 5 Hub-EGFR.Sig genes were in the

interactive network, and 18 drugs or molecular compounds,

including etoposide phosphate, sparsomycin and vincristine, had

effects on them in BLCA to varying degrees (Figure 8F). Although

more clinical trials are needed, these findings provide important

clues for the future development of therapeutic drugs for BLCA.
3.12 Validation of key protein expression
levels

To investigate the protein expression profiles of six genes

(ABCA7, HOOK2, JUNB, RHOB, VMP1, and ACTG1) that
FIGURE 8

Hub-EGFR.Sig associated mutation characteristics and drug sensitivity analysis. (A) Mutant genes landscape in the two Hub-EGFR.Sig subtypes of
BLCA. (B, C) Biological functions pathways affected by mutations in Cluster A and Cluster B. (D, E) Categories of potentially druggable genes in
Cluster A and Cluster B. The horizontal axis is the gene counting in the category. Following each category are the top 5 genes in parentheses, and all
are shown if less than 5 genes in the category. (F) Drug-gene interaction network of Hub-EGFR.Sig and potentially sensitive drugs in BLCA. Nodes
without interaction have been removed.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1604394
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2025.1604394
significantly impact both DSS and PFI in bladder cancer patients, we

conductedWestern blot analyses using SV-HUC-1 and 5637 cell lines.

The results demonstrated significantly lower protein expression levels

of these genes in bladder cancer cell lines compared to normal

epithelial cell lines (Figures 9A-G). Subsequently, we further

analyzed the expression patterns of these six genes in tumor tissue

samples from patients using the HPA database. With the exception of

RHOB, whose expression profile requires further clarification, the

differential expression of the remaining proteins between bladder

cancer and normal tissues was consistent with our analytical results

(Figures 9H-L). Collectively, this study not only reveals the potential of

these genes as novel pan-cancer therapeutic targets but also provides a

theoretical foundation for precise prognostic stratification and

biomarker-driven clinical management of BLCA patients.
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4 Discussion

Resistance to tumor immunotherapy is a critical challenge

hindering the beneficial treatment of cancer patients (2, 68). The

heterogeneous response to immunotherapy across cancer types

aggravates the need for biomarker research to optimize clinical

selection and maximize survival benefits (69, 70). The high

mutation frequency of EGFR in various human cancers inspired

the hypothesis that EGFR could serve as a potential biomarker;

however, the deterministic interaction relationship and mechanism

between EGFR and TIME has not been fully reported (7, 71). Here,

we utilized scRNA-Seq data of ICI cohorts to demonstrate the

potential negative relationship between the EGFR scores of

individual malignant cells and the response to immunotherapy.
FIGURE 9

(A) Representative Western blot images showing the protein expression levels of six bladder cancer prognosis-associated genes. (B-G) Quantification
of protein expression levels from three independent Western blot experiments. Data represent mean ± SD of triplicate measurements normalized to
GAPDH. Statistical significance was determined by Student’s t-test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (H-L) The protein expression levels
of ABCA7, HOOK2, VMP1, JUNB and ACTG1 in normal tissues and bladder cancers from HPA database.
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Subsequently, the interaction analysis of scRNA-Seq and bulk

RNA-Seq in pan-cancer identified EGFR.Sig and confirmed this

phenomenon. Notably, EGFR.Sig showed better predictive

performance for immunotherapy response than previously

published gene signatures. Based on multiple ML algorithms, we

identified Hub-EGFR.Sig and found that it had an extensive

relationship with the TIME and prognosis in pan-cancer.

Focusing on BLCA, we further investigated the complex

connection of Hub-EGFR.Sig and molecular typing, immune cell

infiltration and drug sensitivity screening.

In this study, a generally negative relationship between EGFR

scores and immunotherapy response was observed. This

phenomenon that patients with most EGFR mutation have

generally low response to ICIs is the most widespread concern in

NSCLC (72–74). We excluded the interference of other cells in

tumor tissues at the single-cell level and found that patients who

responded to ICI treatment had lower EGFR scores. To further

investigate the immune resistance of patients with high EGFR

scores in pan-cancer, we developed EGFR.Sig based on the

interactive analysis of 34 scRNA-Seq cohorts. The genes in

EGFR.Sig are mainly enriched in pathways related to Rho GTPase

effectors, which hold critical positions in multiple immune signal

transducers serving as Ras homology (RHO) GTPases (75). Similar

to other members of the small GTPase superfamily, Rho GTPase

effectors have been reported to promote tumor immune evasion

through MAPK- and b-catenin-related pathways (76). Therefore,

we comprehensively screened the immune molecular landscape of

EGFR.Sig across various cancers. As expected, results demonstrated

that EGFR.Sig is positively correlated with most immune inhibitory

genes and pathways but negatively correlated with antitumor

immune cells in the TIME. Moreover, there is a strongly positive

correlation between EGFR.Sig and ITH, which is consistent with

previous studies (77, 78). For the commonly recognized ICI

biomarker TMB, a previous explanation owed the lack of

therapeutic effect in patients with EGFR mutations to its low

expression (7, 79). However, failure to respond to ICIs still exists

in many patients with a high TMB (80), which may lead to our

observation of a positive correlation between EGFR.Sig and TMB.

Altogether, the association between EGFR.Sig and tumor

immunosuppression suggests its potential to serve as a predictive

biomarker of immunotherapy.

Subsequently, multiple ML algorithms confirmed the capability

of EGFR.Sig as a new predictive biomarker for ICI response.

Compared with the previously published gene signatures,

EGFR.Sig has better generalization and achieved an overall

favorable performance in the independent verification set. In

addition to these advantages, EGFR is widely recognized as one of

the primary clinical targets for tumor therapy (7). The approval and

ongoing clinical trials of various drugs have significantly enhanced

the potential for future combined therapies to improve the response

to immunotherapy. Moreover, the percentage of genes verified by in

vivo and in vitro experiments in the CRISPR datasets proved the

reliability of EGFR.Sig, in which MAT2A, JUNB, NR4A1 and

C12orf57 were screened for combined strategies to overcome

immune resistance. The increased expression of MAT2A
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(methionine adenosyltransferase 2A gene) in various cancers,

including liver cancer, CRC, and gastric cancer, is recognized as a

therapeutic target due to its role in regulating cell growth (81–84).

Recent research has also found that the deletion of MAT2A

mediated by CRISPR–Cas9 restricted the growth of hepatocellular

carcinoma in mice by inhibiting T-cell exhaustion, which may be a

potential strategy to enhance the ICI response of HCC (85).

Moreover, JUNB (JunB proto-oncogene) and NR4A1 (nuclear

receptor subfamily 4 group A member 1 gene) can also regulate

the functional state of T cells in the TIME, serving as targets of

tumor immunotherapy (86, 87). C12orf57 (chromosome 12 open

reading frame 57) is found in the interactome atlas of receptor

tyrosine kinase, although there are have been few more detailed

studies to date (88). These studies suggest that the in-depth study of

EGFR.Sig will contribute to the development of new strategies to

strengthen tumor immunotherapy.

Furthermore, genes that are most critical to the immunotherapy

response in EGFR.Sig were identified as Hub-EGFR.Sig. The above

4 genes screened by CRISPR are all in Hub-EGFR.Sig, and most of

the other Hub-EGFR.Sig genes have also been reported to hold a

position in the treatment of tumors. For example, RHOB (Ras

homologue family member B gene) acts as a tumor suppressor most

of the time, unlike other members of the Ras homologue family

(89). RHOB can not only limit EGFR signal transduction on the cell

surface (90) but also participate in antitumor immunity, such as

antigen presentation and T-cell activation (89, 91). In our

investigation, we also discovered that RHOB exhibited significant

upregulation within the low-risk group of Hub-EGFR.Sig. Our

Western blot analyses and HPA validation concordantly

confirmed this expression pattern. In contrast, ABCA7 (ATP

binding cassette subfamily A member 7) was expressed at a

relatively higher level in the high-risk group. A recent study has

shown that the inhibition of RHOB by hsa-miR-3178 can increase

the expression of ABC transporter proteins through the PI3K/Akt

pathway, which finally leads to the resistance of pancreatic cancer to

gemcitabine (92). The antagonistic role of RHOB and ABCA7 in

cancer reveals that there are complex interactions among Hub-

EGFR.Sig, which was also confirmed in our subsequent miRNA–

mRNA and TF-mRNA interactive network analysis. Notably, the

Hub-EGFR.Sig risk scoring model integrates weighted

contributions from multiple genes rather than relying on extreme

expression changes of any single gene. This integrative approach

more effectively captures the global biological characteristics of

EGFR-related signaling and enhances the model’s robustness

against technical variability and biological heterogeneity. Overall,

Hub-EGFR.Sig encompasses a set of characteristic EGFR-related

genes that play a vital role in determining the efficacy of

immunotherapy, so it holds great potential as a novel and

significant therapy target and prognostic biomarker.

In general, our study found that cancer patients with higher

Hub-EGFR.Sig risk scores presented poorer DSS and PFI in pan-

cancer. Elevated EGFR levels have a particularly strong association

with the survival outlook of many cancers (93). Specific to

individual cancer types, LUAD and LUSC have relatively high

Hub-EGFR.Sig scores among cancers, and ample evidence has
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confirmed that EGFR tyrosine kinase inhibitors indeed prolong the

PFS of NSCLC patients (94, 95). EGFR signal transduction also

usually promotes the progression of BLCA (96, 97). However, the

positive prognosis correlation of BLCA with Hub-EGFR.Sig

observed in this study was not consistent with that in pan-cancer,

although both DSS and PFI in BLCA showed the strongest

association with Hub-EGFR.Sig. This observed heterogeneity

primarily stems from differences in tumor microenvironment

composition, molecular subtypes, MSI status, and variable

responses to immunotherapy. Therefore, clinical interpretation of

Hub-EGFR.Sig as a biomarker requires careful consideration of

both the specific cancer type and underlying molecular context.

Further investigation revealed that there were different correlations

of Hub-EGFR.Sig with MSI across different cancer types. The

relatively high Hub-EGFR.Sig score of BLCA was similar to that

of LUAD and LUSC, while there was no significant correlation

between Hub-EGFR.Sig and MSI in BLCA. MSI is observed at

varied frequencies within malignant tumors, and its presence can

serve as a predictor for cancer response to specific treatments,

particularly immunotherapy (98, 99). Crosstalk between MSI affects

the prognosis of tumors (100, 101), which may partly explain this

phenomenon. Second, our study utilized DSS and PFI to better

reflect the impact of immune therapy on the prognosis of BLCA

(59). As we all know, BLCA is one of several tumors that responds

positively to ICI treatment (102, 103). Our Hub-EGFR.Sig

recognition by multiple ML algorithms was based on the

importance of genes for immunotherapy, and deep analysis

revealed that most of the genes in Hub-EGFR.Sig could

independently affect the prognosis of BLCA. Thus, BLCA patients

with higher Hub-EGFR.Sig scores may have better DSS and PFI in

our study. Notably, our study was based on the transcriptional level

analysis of EGFR-related genes. Tumor EGFR status can be

evaluated by more than a dozen different methods, and the

inconsistency in detection can lead to different results, which

increases the variability between studies (93). In summary, Hub-

EGFR.Sig can be used as a predictive biomarker for cancers despite

the heterogeneity in various tumors.

Finally, we found that BLCA patients can be clustered into two

subtypes according to Hub-EGFR.Sig, and there were some

differences in the response of the two clusters to immunotherapy.

Further comparing the infiltration of immune cells revealed an

obvious difference in the TIME between the two clusters, which

could be an important reason for the inconsistent response to

immunotherapy. Although the continuous and complex crosstalk

between multiple interrelated immune cells and tumors in BLCA

still needs to be better characterized (104), several studies have

confirmed that immune cell-related gene signatures can predict the

clinical response of BLCA patients (105, 106). These findings reveal

the possibility of targeted regulation of EGFR signaling combined

with immunotherapy in the treatment of BLCA, which has rarely

been reported in previous studies. By developing a new

combination therapy, the response rate of immunotherapy can be

improved (102, 107). The Hub-EGFR.Sig may serve as a valuable
Frontiers in Immunology 17
theoretical foundation for screening potential novel therapeutic

targets, developing precision combination therapies, and

formulating personalized treatment regimens. Therefore, we

further screened the potentially available drugs for tumor

immune regulation based on Hub-EGFR.Sig. These drugs

included antineoplastic drugs such as etoposide phosphate,

sparsomycin and vincristine, which will contribute to the design

of new combined cancer treatment strategies.

Certainly, our research has several limitations. First, this study

primarily depended on transcriptomic data, whether scRNA-Seq or

bulk RNA-Seq, which may have technically heterogeneous. To

investigate the relationship between EGFR and cancer cell

immunotherapy response, we included two scRNA-Seq ICI cohorts

with clear clinical outcomes from the GEO database. We noted that

these two cohorts differed in their single-cell building and sequencing

processes, resulting in different numbers of patients and cells in each

group. In response to possible technical heterogeneity, stringent

quality control measures were taken, including the exclusion of

low-quality cells and normalization of the different datasets. Batch

effect correction was performed before downstream analyses. In

addition, screening of EGFR.Sig genes was based on the integration

and cross-validation of multiple cohorts and multiple ML algorithms,

thereby minimizing the impact of technical bias in any single dataset.

This approach ensured the robustness and generalization ability of

the identified EGFR-related signature genes. Moreover, the selection

of data and the lack of information on the retrospective pan-cancer

cohorts may have a potential impact on our results. We employed

well-established normalization and batch correction approaches,

including the Harmony package for single-cell data and the

COMPAT tool for bulk RNA-Seq datasets, to ensure the reliability

of downstream analyses. While these methods effectively address

major technical variations, we acknowledge that certain potential

biases may require development of more sophisticated statistical

approaches for comprehensive detection in future studies. Finally,

although multiple ML algorithms were used and many published

cohorts were included to develop and verify EGFR.Sig, it will be

necessary to verify this signature in future experiments and clinical

validation studies.
5 Conclusion

In conclusion, our research offers novel insights into EGFR

linked to immunotherapy response and prognosis in pan-cancer.

Using multiple ML algorithms based on interactive analysis of

scRNA-Seq and bulk RNA-Seq data, we successfully devised an

improved predictive biomarker for immunotherapy and identified

Hub-EGFR.Sig to explore the heterogeneity of different cancer

prognoses. Focusing on BLCA, we investigated its interaction

with molecular typing, TIME and drug sensitivity screening. The

present study provides a potential pan-cancer targeting strategy

related to clinical treatment for precision oncology, which will help

to improve tumor immunotherapy and benefit patients.
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