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Cell-free DNA profiles of
dermatomyositis and its potential
role in discriminating phenotypes
Zhuang-li Tang†, Peng-yu Chen †, Heng Zhang†, Hua-li Cao,
Ru Dai, Yu-chen Lou, Yan-hong Sun, Yuan Zhou, Xue-yan Chen,
Mei-jie Zhang, Ya-qi Wang and Xiao-yong Man*

Department of Dermatology, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
Background: Cell-free DNA (cfDNA) functions in the early-detection and

monitoring of autoimmune diseases including systemic lupus erythematosus

and rheumatoid arthritis. However, investigations into cfDNA profiles in

dermatomyositis and their potential clinical implications remain scarce.

Objectives: To explore the overall landscape of cfDNA profi les in

dermatomyositis and investigate potential roles in discriminating subtypes.

Methods: Following informed consent, 24 treatment-naïve patients diagnosed

with dermatomyositis and 16 healthy controls were enrolled. We examined

cfDNA concentrations, fragment distribution patterns, 5’-end motif frequencies

and genetic variation profiles in all participants and studied potential correlation

with laboratory parameters. Moreover, intergroup differences of cfDNA profiles

among patients and potential correlation between extracellular DNases levels

and cfDNA were investigated.

Results: Compared to healthy controls, dermatomyositis patients exhibited

elevated cfDNA concentrations, with significantly longer cfDNA fragments,

primarily centered around 180–360 bp; nonetheless, no correlation was

witnessed between lab parameters and cfDNA levels. The A-end predominated

the 5’-end motif, whereas the C-end was underrepresented, contrasting with the

patterns observed in healthy controls. In addition, genetic variations in several

genes, including PDE4DIP and BRCA2, were commonly detected in cfDNA from

dermatomyositis patients. Notably, end-motif profiles and cfDNA fragment length

exhibited variations between anti-transcription intermediary factor 1-gamma

positive patients with and without malignancies. However, owing to limited

sample size, we failed to draw conclusions regarding extracellular DNase levels.

Conclusions: This study presents the first comprehensive depiction of cfDNA

profiles in patients with dermatomyositis. Furthermore, cfDNA features exhibit

variability across some sub-phenotypes and may serve as discriminatory indices.

Finally, potential involvement of extracellular DNases in cfDNA profiles in

dermatomyositis shall be further investigated.
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Introduction

Dermatomyositis is a severe condition that can result in

significant morbidity and mortality. However, many patients

remain undiagnosed based on current diagnostic and

classification criteria (1). The delay between initial clinical

manifestations and definitive diagnosis is common, with a median

delay of 15.5 months (2). Furthermore, although the categories of

dermatomyositis are far accurate on the basis of myositis-specific

antibodies (MSAs) and other laboratory parameters, heterogeneity

remains a significant concern in certain phenotypes, such as

concomitant malignant tumors, if any, in dermatomyositis with

anti-transcription intermediary factor 1-gamma (TIF1g)

antibody (3).

Cell-free DNA (cfDNA) represents a small fraction of the total

DNA pool that circulates freely in the bloodstream under both

normal and pathological conditions. Altered cfDNA profiles have

been observed in numerous autoimmune diseases, including

systemic lupus erythematosus and rheumatoid arthritis (4).

Recent studies have demonstrated the potential of cfDNA profiles

in assisting patient stratification, monitoring therapeutic responses,

and predicting disease progression (5).

Prior research has exhibited the potential clinical value of

cfDNA levels in monitoring disease severity indices of

dermatomyositis including the cutaneous dermatomyositis disease

area and severity index (CDASI) and myositis disease activity

assessment visual analogue scale (MYOACT) (6, 7). However,

these studies have primarily focused on specific phenotypes of

dermatomyositis, leaving the overall cfDNA profile of the disease

still poorly understood.

The present study aims to explore the overall plasma cfDNA

levels, fragmentation profiles and genetic variances landscapes of

patients with dermatomyositis. We also seek to investigate

correlation between cfDNA and laboratory parameters and

compare cfDNA profiles between anti-TIF1g antibody-positive

dermatomyositis patients with and without malignancies, as well

as other MSA phenotypes, to assess its potential in distinguishing

phenotypes. Additionally, we aim to elucidate the role of

extracellular DNases, i.e., DNase-1 and DNase1l3, in the cleavage

and fragments formation of cfDNA fragments, and their potential

correlation with phenotypic variations.
Patients and methods

Patient selection and sample collection

This study enrolled 24 treatment-naïve patients diagnosed with

dermatomyositis according to the 2017 EULAR/ACR classification

criteria without any active infection or inflammation aside from

dermatomyositis and its associated conditions, from the inpatient

ward of dermatology, and 16 healthy controls from physical

examination center of the Second Affiliated Hospital of Zhejiang

University (Hangzhou, China) from 2022 to 2024. Ethical approval

was granted by the Ethics Committee of the Second Affiliated
Frontiers in Immunology 02
Hospital of Zhejiang University (IR2023343). All participants

have signed written informed consent. The study adhered to the

principles of the Declaration of Helsinki.

Cell-free plasma samples were collected from patients once

diagnosed. Patients were subdivided into three subgroups based on

MSAs and cancer history: Subgroup 1 (positive anti-TIF1g antibody

with tumor history, TWT; 6 patients), Subgroup 2 (positive anti-

TIF1g antibody without any malignant tumor up to the most recent

follow-up in Nov, 2024, TOT; 5 patients), and Subgroup 3 (other

MSAs group, OM; 13 patients). Peripheral blood samples were

collected using Streck tubes and were centrifuged within 24h of

collection at 350×g for 10min at room temperature and the plasma

was further centrifuged again at 3000×g for 15min at 4°C. All

plasma samples were collected and stored at -80°C.
cfDNA quantification in plasma and next-
generation sequencing

cfDNA extraction and quantification were performed using a

standard commercial kit following the manufacturer’s instructions

(Plasma cell-free DNA isolation Kit, BunnyMag, Cat. No.

TQ01BT0100). The cfDNA concentration was measured by Qubit

dsDNA HS Assay Kit (Q32854, Invitrogen). Among them, 10

plasma samples meeting the sequencing requirements (total

cfDNA > 20 ng/ml) were additionally processed for library

preparation and 650 genes panel exome sequencing to evaluate

the molecular characteristics of cell-free DNA. The libraries were

constructed using the Hieff NGS Ultima Pro DNA Library Prep Kit

for Illumina (Yeasen, Cat. No. 12201ES24). Exome capture was

performed using SureSelectXT Human All Exon V6 (Agilent)

technology. The sequencing was carried out on the Illumina

NovaSeqXplus PE150 platform (150 bp × 2 paired- end format).
Sequencing data processing and alignment

Quality control was performed with Fastp (v0.20.0) (8) to trim

the sequencing adaptor and eliminate low-quality reads.

Subsequently, the cleaned reads were aligned to the human

reference genome (GRCh37/HG19) using Burrows Wheeler

Aligner (BWA, v0.7.17) as previously described. PCR duplications

were identified using Picard-tools (v4.1.1.0) and subsequently

removed. Reads with low mapping quality (< 30), multiple

alignments, or more than five mismatches were filtered out. Only

paired end reads with proper mapping orientations and an insert

size below 600 bp were retained for downstream analysis.
Detection and annotation of genetic
variances

The SNPs and small fragment insertions/deletions were

detected by Mutect2 software from the Genome Analysis Toolkit

(GATK, v4.1.1.0), meanwhile, detected VCF files were annotated by
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Annovar (v201804). The reference database includes COSMIC

database, dbSNP Database, 1000 Genomes Project, etc. Annotation

included variant location, type, and conservation predictions.
Quantitative analysis of cfDNA

Quantitative levels of cfDNA were measured in haploid genome

equivalents per milliliter (hGE/mL), calculated by multiplying the

total cfDNA concentration by the mean allele fraction of

somatic mutations.
5’ End-motif analysis of cfDNA fragments

End motifs were determined as the terminal nucleotide

sequences at each 5’ fragment end of cfDNA molecules. The base

content proportions of the end motifs were calculated at each

position. Motifs were grouped based on fragment size, and the

frequency of each motif was determined for each fragment size.
Quantification of the level of DNase-1 and
DNase1l3 in plasma

DNase-1 and DNase1l3 levels in plasma were measured using

human DNase-I ELISA kit (Cusabio, CSB-E09068h) and human

DNASE1L3 ELISA kit (Cusabio, CSB-EL007052HU) according to

the manufacturer’s protocol.
Statistical analysis

Differences between groups for continuous variables were

assessed using the Mann-Whitney U-test, Wilcoxon test, and

Kruskal-Wallis-test. The difference in categorical variables

between groups was examined by the Chi-square test or Fisher’s

exact test. Spearman co-efficiency analysis was adopted for

correlation analysis. Statistical significance was defined as a p-

value < 0.05. All statistical analysis was conducted by Prism10 for

macOS (version 10.3.1).

Results

Demographic profiles of dermatomyositis
patients

A total of 24 adult treatment-naïve Chinese patients diagnosed

with dermatomyositis according to the EULAR/ACR classification

criteria (2017) were enrolled from 2022 to 2024. Of these patients,

11 were anti-TIF1g antibodies positive, with 6 having a cancer

diagnosis and 5 without cancer; while the MSAs of the remaining 13

patients were not TIF1g. Demographic and laboratory data are

presented in Table 1, and Figure 1 provides an overview of

the study.
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Increased cfDNA concentration and
possible correlation with lab parameters

Compared to healthy controls, all enrolled patients displayed an

overall higher concentration of cfDNA, with statistical significance,

ranging from 0.15 ng/ml to 2.70 ng/ml (Figure 2A). However, no

intergroup differences were identified (Figure 2B).

The potential pathogenicity of abnormally elevated extracellular

DNA is of interest, with some studies attributing it to the formation

of antinuclear antibodies (ANA) (9). Considering these findings, we

explored whether cfDNA concentration correlates with ANA titers

and inflammatory markers in all patients.

To streamline subsequent research, ANA titers were classified

as 1:40 (dilution 1), 1:80 (dilution 2), and so on, with negative ANA

as dilution 0. Generally, 14 patients were reported to be ANA

positive (dilution 1 or higher), but no significant differences were

found across subgroups, and no correlation between cfDNA levels

and ANA titers was observed (Figures 2C, D).

Meanwhile, spearman co-efficiency analysis of erythrocyte

sedimentation rate, ferritin and neutrophil-lymphocyte ratio with

cfDNA levels showed no significant associations. Furthermore, no

correlation was found between cfDNA and creatine kinase, a

marker of muscle damage.
Longer cell-free DNA fragments are
documented in patients with
dermatomyositis

In principle, a cfDNA molecule consists of one or more

nucleosome core (146bp), H1-bound/free linker DNA segments

and unbound linker DNA (10). In order to investigate the overall

characteristics of cfDNA fragments, the profile of cfDNA length

was roughly divided into multiples of 180bp. In healthy individuals,

most cfDNA was within the nucleosome-core category, with a

median length of 167 bp. In contrast, dermatomyositis patients

had a predominance of cfDNA fragments between 180 and 360 bp,

ranging from 15% to 65% (Figure 2E).

Subsequently, we compared cfDNA lengths among three

subgroups using the Kruskal-Wallis-test. Significant differences were

observed at 180–360 bp (P = 0.035), 720–900 bp (P = 0.043) and >5,000

bp (P = 0.027). The proportion of 180–360 bp cfDNA fragments varies

significantly between the TWT and TOT subgroups, which may serve

as an effective indicator of concomitant tumors in dermatomyositis

patients with anti-TIF1g antibodies (Figure 2F).
The end-motif landscape of cell-free DNA
in dermatomyositis

To provide a comprehensive characterization of cfDNA

fragment end profiles, the frequencies of 4-mer end-motif at each

5’ fragment end of cfDNA molecules were calculated. The 4-mer

end-motif was defined as the terminal first 4-nt sequence at each 5’

fragment end of cfDNAmolecules in alphabetical order, resulting in

256 categories. The top 30 4-mer end-motifs were then summarized
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TABLE 1 Demographic, laboratory information of enrolled patients and cfDNA sequencing parameters.

Patient Gender Age Subgroup1 MSAs/ Concomitant Time NLR4 ESR CK Ferritin cfDNA Mapping PCR dupli- Average Coverage Raw_Bases
(G)

Clean_Bases
(G)

Q20
(%)

Q30
(%)

GC
content

(%)

PCR
Dupulication

(%)

95 41.13 40.49 97.807 93.79 46.951 48.68

71 27.412 26.957 97.754 93.655 46.119 33.434

58 26.918 26.439 97.551 93.159 44.782 29.64

72 24.199 23.712 97.528 93.249 45.794 26.566

68 39.578 38.95 97.834 93.92 46.912 39.719

87 39.268 38.592 97.927 94.273 47.559 21.358

68 40.824 40.157 97.841 94.065 47.673 43.971

86 33.223 32.71 97.784 93.928 45.995 42.955

82 36.458 35.946 97.829 93.987 48.578 18.727

85 23.234 22.841 98.051 94.422 48.177 23.034

66 36.711 36.168 97.79 93.793 48.048 14.926

55 37.15 36.637 97.719 93.639 48.43 17.701

.7 22.961 22.455 96.738 91.787 46.045 30.782

.5 32.448 31.998 97.529 93.184 48.016 21.121

92 28.564 28.162 97.394 92.926 47.151 11.979

74 22.99 22.598 98.179 94.882 48.334 17.177

65 28.231 27.696 98.423 95.506 48.351 6.112

67 41.593 40.468 98.24 94.938 47.858 13.602

91 32.918 32.535 98.325 95.14 48.109 9.465

74 42.254 41.474 98.416 95.379 47.947 14.24

73 29.095 28.608 98.49 95.572 46.67 50.76

72 40.728 39.857 98.318 95.137 48.161 11.299

61 40.882 40.008 98.022 94.576 48.083 6.697

68 34.406 33.976 98.555 95.424 47.332 39.889

omyositis while negative values indicate the tumors occur prior to the diagnosis

T
an

g
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

0
5
12

1

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
4

Number MAAs2 tumors interval3 (mm/
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Fraction

(%)

cate Frac-

tion(%)

depth

(rmdup)

(>=10x)

(%)

1 female 57 TOT TIF1g 4.01 2 165 43.1 0.48 99.74 75.33 1703.9 99

2 male 75 TWT TIF1g stomach cancer -2 years 6.77 3 100 17.5 0.28 99.68 64.36 1596.1 99

3 female 58 TWT TIF1g cervical cancer 3 months 4.60 17 59 113.9 0.24 99.52 55.81 1192 99

4 female 31 OM MDA5 3.16 15 348 357.1 0.35 99.6 55.45 2038.6 99

5 female 49 OM Mi2 3.00 2 49 68.9 0.35 99.7 67.8 2642.9 99

6 female 67 TWT TIF1g breast cancer -15 years 12.16 16 469 N/A 1.14 99.67 50.73 4474.9 99

7 male 52 TWT TIF1g esophageal
cancer

6
months

8.45 52 56 363.6 0.18 99.67 71.69 1505.7 99

8 male 73 TWT TIF1g gallbladder cancer 6 months 10.51 2 128 393 0.25 99.62 68.18 1433.9 99

9 female 75 OM SAE 3.03 46 68 N/A 1.58 99.7 49.65 4300.1 99

10 female 51 OM Ro52 2.65 7 590 405.8 0.54 99.74 48.9 3061.6 99

11 female 66 OM Mi2 9.96 15 420 173.9 1.56 99.71 46.86 4563.6 99

12 male 56 OM NXP2 18.92 39 577 598.4 0.60 99.71 48.95 4225.4 99

13 male 55 OM PM-
SCL100

2.50 2 210 226.9 0.15 99.67 64.9 1283.1 9

14 female 51 TOT TIF1g 7.27 18 41 62.6 0.41 99.68 52.61 2881.9 9

15 female 58 OM MDA5 2.40 42 99 603.9 2.70 99.69 40.68 3912.7 99

16 female 20 TOT TIF1g 3.34 2 20 N/A 0.31 99.62 50.43 1968.7 99

17 male 60 OM MDA5 4.79 19 796 1783.6 1.25 99.67 36.22 4082.6 99

18 female 45 OM Mi2 8.03 23 4275 N/A 0.32 99.67 60.1 2521.9 99

19 female 65 TOT TIF1g 4.37 2 35 N/A 0.99 99.74 46.87 4133.5 99

20 female 57 OM PM-
SCL100

13.88 29 52 215.5 0.40 99.83 60.84 3957.2 99

21 male 71 OM MDA5 6.05 54 96 1480.6 0.19 99.81 84.48 595.4 99

22 female 52 TOT TIF1g 2.64 4 38 N/A 0.34 99.82 57.5 4359.1 99

23 male 31 OM MDA5 3.22 3 58 505.2 0.52 99.74 53.06 5653.2 99

24 female 50 TWT TIF1g ovarian cancer -31
months

3.01 51 115 454.2 0.36 99.8 77.95 1234.4 99

1TWT, TIF1g positive with tumors subgroup; TOT, TIF1g positive without tumors subgroup; OM, Other myositis-specific antibodies positive subgroup.
2MSAs/MAAs, myositis-specific antibodies/myositis-associated antibodies. If there is no positive result of MSAs for any patient, the result of MAAs will be recorded.
3Time interval, the time interval between the diagnosis of dermatomyositis and concomitant tumors. Positive values indicate the tumors are confirmed after the diagnosis of derma
of dermatomyositis.
4NLR, neutrophil-to-lymphocyte ratio.
5ESR, erythrocyte sedimentation rate.
6CK, creatine kinase.
7cfDNA, cell-free DNA.
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as Figure 3A, with AAAA, TTTT and AAGA occupying the top

three positions.

To examine broader trends, the frequency of both 1-mer and 2-

mer end motifs was also calculated. The results demonstrate that the

5’ A-end predominates, while the C-end is the least prevalent end-

motif in all patients with dermatomyositis enrolled in the present

study (Figure 3B). Patients in the TWT subgroup showed higher

frequencies of A-end (P = 0.0088) and lower frequencies of C-end

(P = 0.0148) compared to the TOT subgroup, though no differences

were found between the TOT and OM subgroups (Figure 3C).

Regarding 2-mer end-motifs, significant intergroup variances

were observed for AC-, AT-, CA-, CT-, GG-, and TA- end-motifs

frequencies. The TWT subgroup had higher frequencies of AT- and

TA- motifs compared to the TOT and OM subgroups, while

showing lower frequencies of CT- and GG- motifs than the TOT

subgroup. It is noteworthy that the percentage of AC- and CA- end-

motifs was similar between the TWT and TOT subgroups, despite

overall intergroup variances (Figure 3D).
Genetic variance profiles with high
frequencies in patients with
dermatomyositis

The mean sequencing depth exceeded 1000x, ensuring a

minimum data size of 22GB. A comprehensive summary of all
Frontiers in Immunology 05
the sequencing parameters is provided in Table 1 and Figure 4A.

Among the 24 patients enrolled, 17 genes were identified as mutated

in half the patients or more (Figure 4B). PDE4DIP was identified as

the most highly mutated gene (19/24), irrespective of the subgroups,

followed by BRCA2 (15/24). Furthermore, genetic variances of

BCLAF1, KMT2A and KMT2C were detected in 14 patients.

Regarding the absolute variance numbers, KMT2D ranked first

with 66 reported variances, followed by BRCA2 and SPEN. The

majority of genetic variances were multi-hit combinations in

patients, with frame-shift insertion genetic variances ranking

highest in terms of mutation types. These findings suggest that

these genes and their coding proteins may be involved in the

pathogenesis of dermatomyositis.

Subsequently, we investigated differences in genetic mutations

between the TWT and TOT subgroups (Figures 4C, D). No genetic

variance of either SPEN or KDM5A was detected in the TWT

subgroup, and the variance frequencies remained high in the

remaining two subgroups. Furthermore, gene variances in ATRX

were detected in all patients allocated to the TOT subgroup (5/5),

but rarely in the TWT subgroup (1/6). In addition to the above

finding, genetic variance frequencies of BTK, FANCM, and

PIK3C2B differ among subgroups. This finding provides a

foundation for further investigation into the potential roles of

these genes.

We also examined whether there were differences in the total

number of somatic mutations across subgroups. The mean number
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of each subgroup was found to be approximately 1,000, with no

significant differences (P = 0.967, Figure 4E). Variant allele

frequency (VAF) is a widely utilized metric for disease

monitoring and prognosis in cancer. Despite the absence of

intergroup divergence in terms of VAF among each subgroup
Frontiers in Immunology 06
(Figure 4F), a significant positive correlation was observed

between VAF and concentration of cfDNA (Spearman r = 0.5530,

P = 0.0062, Figure 4G). Analysis within subgroups revealed a

significant positive correlation in the OM subgroup (Spearman

r = 0.6272, P = 0.0245).
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Discussion

This study provides a comprehensive overview of cfDNA

characteristics in dermatomyositis patients, irrespective of MSAs.

Furthermore, the study has highlighted patients with positive anti-

TIF1g antibody, with or without concomitant tumors, have distinct

plasma cfDNA fragmentation profiles.

We observed significantly higher cfDNA levels in

dermatomyositis patients compared to healthy individuals, where
Frontiers in Immunology 07
cfDNA levels are typically undetectable or very low (11). Observed

in several autoimmune diseases such as systemic lupus

erythematosus, this phenomenon is possibly attributed to tissue

damage in disease status (12).

The equilibrium between cfDNA generation and clearance is

crucial in both health and disease (13). Impaired clearance

mechanisms may be responsible for the abnormally accumulated

cfDNA (4). Potential mechanisms of cfDNA clearance in vivo

include direct degradation by nucleases; to date, DNA
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fragmentation factor B (DFFB), DNase-1, and DNase1l3 are the

only three nucleases that have been shown to affect cfDNA levels

and/or cfDNA fragment characteristics (14). In this study, we aimed

to ascertain the involvement of the extracellular nucleases,

specifically DNase1l3 and DNase-1, in the cfDNA profiles of
Frontiers in Immunology 08
dermatomyositis patients. However, due to the variability in the

concentration of cfDNA in the collected peripheral blood samples,

only 27 ELISA assays were conducted on serial plasma samples

from nine patients (one from TWT, four from TOT and four from

the OM subgroup) and 16 assays were conducted on samples from
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eight healthy controls (data not shown). Owing to the very limited

sample size and deteriorated power, we failed to conclude any

concrete roles of DNase1l3 and DNase-1 in cfDNA patterns.

The frequencies of longer cfDNA fragments in dermatomyositis

is higher than normal controls. In health states, the size of cfDNA

fragments differs due to variable length of intranucleosomal linker

DNA (15), with the main peak at around 166 bp (16). In disease

conditions, apoptotic cells produce mononucleosomal fragments,

and necrotic cells generate larger fragments exceeding 10 kb (17).

Besides, DNase1l3 deficiency leads to an increased amount of longer

cfDNA fragments as it targets nucleosomal DNA present in

extracellular space (18). In mice models, DNase1l3 deficient

individuals have higher frequencies of longer sized cfDNA,

indicating the pivotal role of DNase1l3 in digesting cfDNA to

nucleosomal size (19). Owing to limited sample size, whether

DNase1l3 contributes to longer cfDNA fragments and other

underlying mechanisms shall be further investigated.

End-motif analysis, which holds promise for precision medicine

(20), revealed non-random production of cfDNA fragments (21).

The linker region between core nucleosomes, rather than the DNA

wrapping around the nucleosome core, is more likely to be cut (22).

In cont ra s t to our cur rent findings , an ove r - and

underrepresentation of C- and A-end motif fragments was

documented in healthy states, corresponding with the distribution

of nucleosome-occupied and open-chromatin regions (13, 23). This

discrepancy may be attributed to the A-end preference seen in

longer cfDNA fragments (>200 bp) (14), or the loss of typical CC-

end motif preference in DNase1l3-deficient models (14, 19, 24).

Consistent with previous findings from malignant tumor

patients (25), over- and underrepresentation of A- and C-end

motif fragments are observed between the TWT and TOT

subgroups. Nonetheless, contrary to typical short cfDNA

fragments (145bp) predominance found in cancer patients (26,

27), no significant intergroup variance of ~180bp cfDNA fragments

was observed between TOT and TWT. Hypomethylation in tumor

cells is responsible for more alternative cleavage sites and thus

leading to shortened cfDNA fragments (28). Further research on

cfDNA methylation profiles in dermatomyositis is needed.

Our study also highlighted the potential involvement of specific

genes in dermatomyositis. Up to now, scholars only reported

somatic variances of JAK2 and TIF1g (TRIM33) that may possibly

correlate with dermatomyositis, but most of the studies were case

reports or from malignancy-associated dermatomyositis (29, 30).

The limitations of this study include the small sample size and

single ethnicity, necessitating further validation through larger,

international multi-center studies. Meanwhile, the panel-based

cfDNA sequencing may have missed some information compared to

whole-exome sequencing. Additionally, due to the study design and

insufficient follow-up data on patient prognosis, we could not draw

conclusions about the relationship between cfDNA profiles and clinical

outcomes such as concomitant symptoms, survival time, treatment

response or relapse rates. Therefore, further long-term follow-up and

continuous investigation are required to address these issues.

In summary, our study firstly portraits the general landscape of

cfDNA in dermatomyositis, which encompass concentration,
Frontiers in Immunology 09
fragments distribution in length, end motifs and genetic variances

panoramicpicture. Besides, ourfindings stressed the potential utility of

cfDNA fragmentomes in discriminating sub-phenotypes. However,

we still have a long way to go as far more data are needed for a

comprehensive model in early diagnosis, therapeutical surveillance or

even phenotype discrimination. In addition, the underlying

mechanism contributing to such cfDNA profiles including the

patterns of extracellular DNase shall be further unraveled.
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