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Purpose: The pathogenesis of rectal cancer (RC) involves a variety of biological
mechanisms; however, the prognostic significance of temperature-sensitive
receptor (TRP) channels in RC patients remains unclear. This study aimed to
explore the role of TRP-related genes in RC prognosis and their potential
clinical implications.

Patients and methods: RNA-seq data for RC patients were obtained from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
TRP scores were calculated for TCGA samples, and modular genes were identified
via weighted gene co-expression network analysis (WGCNA). Differentially
expressed genes (DEGs) between RC and normal samples were identified via the
“limma” software package. TRP-related genes (DETRPs) were identified by
intersecting DEGs with modular genes. Biomarkers were identified through
univariate and multivariate Cox analyses, as well as least absolute shrinkage and
selective operator (LASSO) regression. Prognostic models and homograms have
been developed on the basis of these biomarkers. Additionally, enrichment
analysis, immune cell infiltration assessment, and targeted drug prediction were
performed. Biomarker expression was further validated experimentally.

Results: A total of 246 DETRPs were identified by overlapping 1,989 DEGs and
265 modular genes, which were significantly associated with metabolic
pathways. Five biomarkers (BMP5, DHRS11, GLTP, NFE2L3, and TMCC3) were
selected to construct a prognostic model and a nomogram based on risk score
and age. The risk model demonstrated significant correlations with clinical
characteristics. Immune cell infiltration analysis revealed distinct immune cell
ratios between high- and low-risk patients, with TMCC3 showing a positive
correlation with central memory CD8 T cells and DHRS11 exhibiting a negative
correlation with type 2 T helper cells. Furthermore, several targeted drugs,
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including MK-2206, pazopanib, JNK inhibitor VIII, PLX4720, and NU-7441, were
associated with risk scores.

Conclusion: This study identified five TRP-related biomarkers associated with RC
prognosis, providing novel insights into the role of TRP channels in RC
development. These findings may contribute to a deeper understanding of RC
pathogenesis and offer potential targets for personalized therapy.

rectal cancer, TRP channels, prognostic biomarkers, immune cell infiltration, the cancer
genome atlas (TCGA)

Introduction

Rectal cancer (RC) is a malignant tumor originating in the
rectum and represents a significant global health burden. As the
eighth most common malignancy worldwide, RC accounts for
approximately 340,000 deaths annually (1). The etiology of RC
remains unclear but is thought to involve environmental factors,
dietary habits, and genetic predispositions (2). Despite
advancements in chemoradiotherapy and immunotherapy, the
prognosis for RC patients has not significantly improved (3).
Extensive research has identified various biomarkers associated
with RC survival and prognosis. Notably, the advent of high-
throughput sequencing has deepened our understanding of
genetic alterations in RC, enabling the development of multigene
predictive models using clinical and genetic data from public
databases (4-8). Consequently, constructing an effective
prognostic model on the basis of gene signatures is crucial for
advancing personalized therapy and improving patient outcomes.

Temperature-sensitive receptor (TRP) channels are
nonselective cation channels that respond to temperature changes
and play key roles in thermoregulation, inflammation, pain
modulation, and osmoregulation. Dysregulation of TRP channels
has been linked to various diseases (9, 10). For instance, Zhao et al.
classified esophageal squamous cell carcinoma patients into high-
and low-risk groups on the basis of TRP-related prognostic gene
scores, revealing elevated immune checkpoint expression in high-
risk patients (11). These findings suggest that such patients may
benefit more from immunotherapy. However, the prognostic
significance of TRP channels in RC remains unexplored.

Abbreviations: RC, Rectal cancer; TRP, Temperature-sensitive receptors; TCGA,
Cancer Genome Atla; GEO’Gene Expression Omnibus; WGCNA, Weighted gene
co-expression network analysis;DEG, Differentially expressed genes; LASSO’
Least absolute shrinkage and selector operation; KEGG, Kyoto Encyclopedia of
Genes and Genomes; ssGSEA’ Single-sample Gene Set Enrichment Analysis;
MSigDB’ Molecular Signatures Database; GO’ Gene Ontology; BP, Biological
process; CC, Cellular components; MF, Molecular functions; DCA, Decision
curve; TIICs’ tumor-infiltrating immune cells; GDSC, Drug Sensitibity in Cancer;
OS, Overall Survival; ROC, Receiver Operating Characteristic; KM,
Kaplan-Meier.
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Investigating their role could improve patient prognosis and
increase survival rates.

In this study, we analyzed transcriptome data and clinical
information from public databases to investigate RC. Using
bioinformatics approaches, we identified five TRP-related genes
and developed a predictive model, which was validated with
external data from the Gene Expression Omnibus (GEO)
database. Additionally, we explored the mechanistic differences
between risk groups and examined the relevance of these key
genes within the tumor immune microenvironment. Our findings
provide valuable insights into the molecular mechanisms of RC and
lay a theoretical foundation for future research.

Materials and methods
Data collection

The RNA-seq data, survival information and clinical data of
RCs were acquired from the The Cancer Genome Atlas (TCGA,
https://xenabrowser.net) and GEO (https://www.ncbi.nlm.nih.gov/)
databases. The TCGA-RC dataset included 163 RC cases and 10
normal samples, with 154 of these RC samples containing survival
and clinical information. The GSE39582 dataset contains 566 RC
samples and 19 normal samples, of which 562 RC samples had
survival information. A total of 107 genes associated with the TRP
pathway were subsequently obtained by overlapping the Reactome
TRP channel gene set from the Molecular Signatures Database
(MSigDB) database (http://www.gsea-msigdb.org) and the
inflammatory mediator regulation of TRP channel pathway gene
set from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (https://www.kegg.jp/entry/ko04750) (11).

Weighted gene coexpression network
analysis

The TRP scores of all samples were calculated via the single-
sample gene set enrichment analysis (ssGSEA) algorithm, which is
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based on TRP pathway-related genes. The differences in TRP scores
between the RC and normal groups were analyzed via the Wilcoxon
test, and a violin plot was drawn via the “ggplot2” R package
(version 3.3.5) (12). Subsequently, we constructed a co-expression
network in the TCGA dataset using the “WGCNA” R package
(version 1.70-3) (13). To ensure that the connectivity of most genes
in the network conformed to the power-law distribution
characteristics, we set the target that the square value (R?) of the
scale-free topology model fit index (ScaleFreeTopologyModelFit)
was > 0.85. Meanwhile, to avoid the network being too sparse or
dense and ensure the balance between the sample size and the
number of genes, we restricted the mean connectivity to< 200.
When screening relevant module genes, we used the TRP score as
the trait to ensure the selection of gene subsets with close
interconnections and similar expression patterns in the network.
This process was based on the Pearson correlation coefficient, and
the topological overlap matrix (TOM) was calculated to eliminate
noise and reflect the indirect connections between genes. We
screened genes with a variance greater than 25%, performed
sample clustering, and checked whether outlier samples needed
to be deleted to ensure the accuracy of subsequent analyses. We
constructed a sample dendrogram and a trait heatmap, determined
the soft threshold, calculated the adjacency and similarity between
genes, and finally obtained a clustering dendrogram. The modules
were segmented by the dynamic tree-cutting algorithm with the
minimum module size set to 70. Finally, we evaluated the
correlation between each module and the TRP score group, and
ultimately identified the module genes with the highest correlation
with the TRP score.

Identification of differentially expressed
TRP-related genes

The differentially expressed genes (DEG1) between 163 RC
samples and 10 normal control samples were screened in the TCGA
dataset via the “limma” R package (version 3.42.2) (|log,FC (fold
change)| > 1, P< 0.05) (14). Furthermore, DETRPs were retrieved
by intersecting DEG1 with the module genes. Gene Ontology (GO)
enrichment analyses, including biological process (BP), cellular
component (CC) and molecular function (MF) enrichment
analyses, along with KEGG pathway enrichment analysis, were
conducted via the “DAVID” tool. The enrichment results were
drawn via the “ggplot2” R package.

Construction of the prognostic model

To identify potential biomarkers, univariate Cox regression
analysis was implemented in the TCGA dataset. The least
absolute shrinkage and selector operation (LASSO) algorithm was
(15). The
biomarkers were further screened via multivariate Cox analysis.

implemented in “glmnet” R package (version 4.0-2)

Moreover, the expression levels and trends of biomarkers in the
validation dataset were detected via the “ggplot2” R package.

Frontiers in Immunology

10.3389/fimmu.2025.1605124

Moreover, the survival risk model was assessed via the TCGA
dataset, and the GSE39582 dataset was used as the external
validation set to verify the model’s applicability. The risk value
was calculated via the following algorithm, and participants were
categorized into high- and low-risk groups on the basis of the
median risk value.

Riskscoregmpie = -, (Coefxx;)

Kaplan-Meier (KM) survival analysis was performed to
compare the two groups. Receiver Operating Characteristic
(ROC) curves and risk curves were used to predict the accuracy
of the prognostic model. The “pheatmap” R package was used to
visualize the expression levels of the biomarkers in the high- and
low-risk groups.

Independent prognostic analysis and
clinical correlation analysis

To investigate the prognostic value of clinicopathological
characteristics and the risk model, the clinicopathological factors (age,
sex, pathologic T, N, M, risk score) of 154 RC samples in the TCGA
dataset were analyzed via Cox regression to identify independent
prognostic factors, and the significant clinicopathological factors were
used to construct a nomogram via the “RMS” R package (version 6.2-0)
(16). The calibration curve of the nomogram and the decision curve
(DCA) of 1-, 3- and 5-year survival were drawn on the basis of the
above prediction model to verify the validity of the nomogram.
Moreover, ROC curves for the nomogram model at 1, 3 and 5 years
were plotted to evaluate its predictive performance. In addition, the
differences in the risk score among various clinicopathological
characteristics were explored, and survival analysis for biomarkers
and risk scores in relation to clinical characteristics was conducted.

Functional enrichment analysis of
differentially expressed genes (DEG2s)
between the high- and low-risk score
groups

The DEGs (DEG2) between high- and low-risk score samples in
the TCGA dataset were screened via the “limma” R package. The
DEG2s are shown through volcano plots and heatmaps. GO
function and KEGG pathway enrichment analyses of the DEGs
were also conducted.

Analysis of the immune microenvironment
and correlation analysis of prognostic
genes

The tumor microenvironment is composed of tumor cells,
immune-infiltrating cells, fibroblasts, cytokines, and catalytic
factors. The immune response plays an important role in tumor
growth, invasion, and metastasis; therefore, tumor-infiltrating
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immune cells (TIICs) are a target for chemotherapy and
radiotherapy (17). In this study, the proportions of 22 immune
cell types in the high- and low-risk groups were calculated via the
“ssGSEA” algorithm to study immune cell infiltration. Furthermore,
the correlation between the risk score and differential immune cells
was calculated via the Spearman correlation coefficient.

RAS and RAF-related genes were common characteristic genes in
rectal cancer (18). To investigate the relationship between these
common characteristic genes and the prognostic genes identified in
this study, we analyzed the correlation between the key genes and
RAS/RAF-related genes (RAF1, NRAS, KRAS, HRAS). In the
training set, the “psych” package was used to perform Spearman
correlation analysis on the differential RAS/RAF-related genes and
the prognostic genes, with the threshold set as |cor| > 0.3 and p< 0.05.

Drug prediction

Drug sensitivity analysis between the high- and low-risk groups
was performed via the Genomics of Drug Sensitivity in Cancer
(GDSC) database via the “pRRophetic” package. Targeted drugs
were selected on the basis of the Wilcoxon test, and 138 commonly
used chemotherapy and radiotherapy agents were analyzed.

Validation of the expression of biomarkers

Quantitative real-time polymerase chain reaction (QRT-PCR)
was performed to validate the expression of biomarkers in 6 RC and
6 HC tissue samples. Total RNA was extracted via TRIzol (Thermo
Fisher, Shanghai, CN), mRNA was reverse transcribed into cDNA,
and the qPCRs were performed via the SureScript-First-strand-
cDNA-synthesis-kit (Servicebio, WuHan, CN). This study received
approval from the ethical review committee of Shanxi Bethune
Hospital (SBQLL-2022-046). The qRT-PCR sequences of primers
used are listed in Supplementary Table S1.

This study mainly collected 12 pairs of samples for research,
with specific exclusion and inclusion criteria as follows:

1. Tissue source: primary rectal adenocarcinoma tissue
confirmed by pathology, taken from fresh frozen
samples after surgical resection;normal rectal mucosal
tissue adjacent to the cancer (> 5cm away from the tumor
edge), confirmed by pathology to have no cancer infiltration.

2. Patient characteristics: Age range: > 18 years old, no history
of other malignant tumors or hereditary colorectal cancer
syndrome (such as Lynch syndrome).

3. Sample processing: Within 30 minutes after tissue isolation,
freeze in liquid nitrogen and store at -80 °C; RNA integrity
index (RIN) > 7.0, OD260/280 ratio 1.8-2.0.

Exclusion criteria:

1. Exclusion of clinical factors: comorbidities with severe
systemic diseases (such as advanced liver and kidney failure,
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active infections), and prior anti-tumor treatment (to avoid
interference with gene expression during treatment);
Transferable samples (only including primary lesion tissue).

2. Sample quality exclusion: Tissue preservation time>3 years
(to avoid the impact of RNA degradation), RNA quality
inspection failure (RIN<7.0 or significant degradation).

3. Pathological feature exclusion: Non adenocarcinoma
pathological types (such as neuroendocrine carcinoma
and stromal tumors), HC group pathology suggests
inflammation, dysplasia, or tumor infiltration.

Results
Screening of key modules via WGCNA

The TRP scores of all the samples were calculated, revealing a
statistically significant difference between the RC and normal
groups (Figure 1A). WGCNA was used to identify the module
genes significantly associated with TRP scores. A total of 13,671
genes exhibiting a variance greater than 25% were selected for
analysis. Sample clustering analysis was performed, and the results
revealed that there were no outlier samples (Figures 1B, C). The
optimal soft threshold was determined to be 13javascript:;. When
the ordinate scale-free fit index, signed R2, approached the
threshold value of 0.85 (red line), the network was close to a
scale-free distribution, and the mean connectivity was close to 0
(Figure 1D). Sixteen modules were subsequently obtained. The
MEDissThres was set to 0.3 to merge similar modules via the
dynamic tree cut algorithm, and 9 modules were obtained
(Figure 1E). The correlations between the modules and TRP
scores were subsequently evaluated, which revealed that the
MEmagenta module was significantly correlated with the TRP
scores (|Cor| = 0.6 and P< 0.05) (Figure 1F). Finally, 265 genes
with this key module were screened for subsequent analyses.

The functions of 246 DETRPs are
associated with metabolic pathways

A total of 1,989 DEGIs were identified from 163 RC samples
compared with 10 normal control samples, comprising 821
upregulated genes and 1,168 downregulated genes (Figures 2A,
B). Then, 246 DETRPs were obtained by overlapping the 1,989
DEGI and 265 module genes (Figure 2C). GO function enrichment
and KEGG pathway analyses were performed to assess the functions
of 246 DETRPs. The DETRPs were enriched in 56 GO-BPs, 15 GO-
CCs, 232 GO-MFs, and 17 KEGG pathways, including steroid
metabolic process, cellular response to copper ion, oligosaccharide
biosynthetic process, integral component of membrane,
extracellular exosome, UDP-glycosyltransferase activity, chloride
channel activity, metabolic pathways, pancreatic secretion, and
pentose and glucuronate interconversions (Figures 2D, E,
Supplementary Table S2).
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FIGURE 1

Key module screening for weighted gene co-expression network analysis (WGCNA). (A) Violin plot of temperature-sensitive receptors (TRP) score
differences between rectal cancer and normal groups. Red color represented the rectal cancer group, and blue color represented the normal group;
(B) Dataset sample clustering situation. Branches represented samples, and vertical coordinates represented the height situation of hierarchical
clustering; (C) Data sample clustering and phenotype information. The top half showed the clustering situation, and the bottom half displayed the
phenotype; (D) Scale-free soft threshold distribution. The horizontal axes of the graphs represented the weight parameter power values, the vertical
axis of the left graph was ScaleFreeTopologyModelFit, and the higher the square of the correlation coefficient, the closer the network was to a
scale-free distribution. The vertical axis of the right graph represented the mean value of the neighbor joining function of all the genes in the
corresponding gene module; (E) Clustering dendrogram of the modules. Different colors represented different modules; (F) Heat map of module
correlation with clinical traits. Vertical coordinates were different modules, and horizontal coordinates were different traits. Red represented a
positive correlation, and blue represented a negative correlation.
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Analysis of differential TRP-related genes. (A) Volcano plot of differential genes (DEG1) between rectal cancer and normal sample groups. Red dots
indicated up-regulated genes, blue dots indicated down-regulated genes, and gray dots indicated genes with no significant differences; (B) Heat map of
DEGI between rectal cancer and normal sample groups. Red color represented high expression, and blue color represented low expression; (C) Venn
plot of DEG1 and modular genes, illustrating the overlap between modular genes and DEGL1; (D) Intersecting genes Gene Ontology (GO) (KEGG) TOP10
TOP10 enrichment analysis result plot; (E) Intersecting genes Kyoto Encyclopedia of Genes and Genomes enrichment analysis result plot.

Construction and evaluation of the RC risk
model

As shown in Table 1, a total of 17 genes were screened via
univariate Cox analysis, and the results revealed that only GLTP was a
negative factor (hazard ratio > 1) (Figure 3A). The lasso model was
subsequently constructed with lambdamin = 0.01812975, and 10
feature genes were identified, including ARL14, BMP5, CHP2,
DHRS11, GLTP, KIAA1211, NFE2L3, SLC9A2, ST6GALNACI,
and TMCC3 (Figure 3B). Five biomarkers, namely, BMP5,
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DHRS11, GLTP, NFE2L3 and TMCC3, were obtained after
multivariate Cox analysis; among them, GLTP was a negative
factor, whereas the other biomarkers were positive factors (Table 2,
Figure 3C). In addition, GSE39582 was used as the external validation
dataset to verify the expression of these 5 genes. The results indicated
that 5 biomarkers were differentially expressed in the validation
dataset, and the expression trend was consistent with that in the
training dataset (Figure 3D).

The multifactorial coefficient (coef) for these 5 biomarkers was
calculated to construct a survival risk model, stratifying the 154
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TABLE 1 Univariate COX analysis of rectal cancer risk models.

Gene HR Lower.95 Upper.95 P.val

AKRIBI0 070754131 | 0521234538 0.960440395 | 0.026497774
ARL14 0.679553497 | 0.437956908 = 1.054425553 | 0.084793295
BMP2 0593128623 | 0373113011  0.942882056 = 0.027198985
BMP5 0223729256 | 0.057663059  0.86805628 | 0.030424956
CHP2 0778631734 | 0.600171879  1.010156255 | 0.059580765
CNNM4 0.602078411 | 0355827739 1.018746921 = 0.058657891
DHRS11 0500339838 = 0.278188936  0.899891841 | 0.020768504
F2RL1 0.605760762 | 0338692244  1.083420441 | 0.091055326
GLTP 2.604981021 | 0.887064716  7.649865901 | 0.081520204
KIAA1211 0.578550784 0.302448449 1.106704333 0.09820929
MOB3B 046352848 | 0.238801418  0.899737757 | 0.023075527
MOGAT2 0.698559665 = 0.485322324  1.005487656 @ 0.053543285
NFE2L3 0577265591 | 0.330467563 1.00837601 | 0.053525716
SIAE 0587690102 | 0321300934  1.074941339 | 0.084456645
SLC9A2 0651516475 | 0.419480797  1.011902621 | 0.056482869
ST6GALNACL | 0795084266 | 0.648770805  0.97439494 | 0.027108849
TMCC3 0612227315 | 0358377862  1.045885713 | 0.07253216

HR, Hazard Ratio; p.val, p-value.

patients into high- and low-risk groups on the basis of the median
risk score (0.578551228). Survival analysis revealed a significant
difference in survival between the high- and low-risk groups (P<
0.0001) (Figure 3E). ROC curves and risk curves were used to
predict the accuracy of the survival risk model. The area under the
curve (AUC) values at 1, 3, and 5 years were 0.715, 0.818, and 0.803,
respectively, which indicated that the survival risk model could be
used as a prognostic model (Figure 3F). In addition, the risk curve of
the survival risk model also revealed the model’s value, and the
heatmap analysis demonstrated that GLTP was highly expressed in
the high-risk group, whereas the other genes were highly expressed
in the low-risk group (Figure 3G). In addition, GSE39582 was used
as the external validation dataset to verify the applicability of this
model. The results of the KM curve, ROC curve and risk curve
analyses were consistent with those of the training datasets
(Supplementary Figure S1).

Independent prognostic and clinical
correlation analysis of the survival risk
model

Univariate Cox analysis revealed that 6 clinical factors,
including age; pathological T, N, and M stages; sex; and the risk
score, were associated with prognosis. Among these factors, age,
pathology N, M and the risk score were significantly associated with
patient survival (Table 3, Figure 4A). Multivariate Cox analysis
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further revealed that only age and the risk score were significantly
associated with patient survival (Table 4, Figure 4B). A nomogram
was constructed to estimate the 1-, 3-, and 5-year survival rates on
the basis of these 2 clinical factors. The calibration curve indicated
that the slopes for 1, 3 and 5 years were closest to 1, suggesting that
the prediction model was effective (Figures 4C, D). In addition, the
DCA curves revealed that the nomogram provided greater net
benefit than did age or the risk score alone (Figure 4E).
Furthermore, the area under the curve (AUC) values of 1, 3, and
5 years were 0.79, 0.841, and 0.906, respectively, which indicated
that the prognostic nomogram model has an accurate predictive
ability for RC (Figure 4F).

The results of the correlation analysis between the high- and
low-risk groups and clinical characteristics (including age, sex,
pathological T stage, N stage, M stage, and overall survival (OS))
are shown in Supplementary Figure S2. The results suggested that
bath OS and pathologic N stage were significantly associated with
risk group. The risk scores for different clinical characteristics were
as follows: risk score 260 years of age; sex; and pathological M0, T1
and T2; T3 and T4; and NO, N1 and N2 stages (Supplementary
Figure S3). In addition, the KM curve also revealed that BMP5,
DHRSI11, NFE2L3, and TMCC3 were significantly associated with
patient survival (Figure 5).

A total of 110 DEG2s were related to
cytokine—cytokine receptor interactions

In total, 110 DEG2s were retrieved between 77 high- and 77
low-risk samples, 31 of which were upregulated genes and 79 of
which were downregulated genes (Figures 6A, B). The DEG2s were
enriched in 45 GO-BP terms, 16 GO-CCs, 10 GO-MFs, and 5
KEGG pathways, including fat digestion and absorption, viral
protein interaction with cytokines and cytokine receptors, protein
digestion and absorption, cytokine-cytokine receptor interaction,
and fructose and mannose metabolism (Figures 6C, D).

Results of microenvironment analysis and
correlation analysis

A total of 5 immune cell types, including central memory CD8
T cells, immature dendritic cells, macrophages, plasmacytoid
dendritic cells and type 2 T helper cells, were significantly
different between the high- and low-risk groups (Figure 7A). The
correlation coefficient results revealed that the strongest significant
positive correlation was between TMCC3 and central memory CD8
T cells, whereas the strongest significant negative correlation was
between DHRS11 and type 2 T helper cells (Figure 7B). The results
of the prognostic gene association analysis showed that the positive
correlation between TMCC3 and KRAS was the highest (cor =0.50,
p = 1.73e-12), and the negative correlation between GLTP and
HRAS was the highest (cor =-0.35, p = 1.73e-06) (Supplementary
Figure S3).
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TABLE 2 Multivariate COX analysis of rectal cancer risk models.

10.3389/fimmu.2025.1605124

Gene Coef HR HR.95L HR.95H Pvalue

BMP5 -1.32405 0.266055274160793 0.0645532997368526 1.09654206984502 0.0668893011331106
DHRSI1 = -0.49538 0.609340318846557 0.33784027536156 1.09902711799136 0.0997264718749909
GLTP 1.55197563348981 4.72078752166268 1.37810271257749 16.1713888386479 0.0134933836955643
NFE2L3 | -0.39464 0.6739215932676 0.402171297674768 1.12929569190595 0.134051679719384
TMCC3 = -0.56046 0.570944781991296 0.35562550995461 0.916632623246556 0.0203219426067807

HR, Hazard Ratio; L, Lower, H,High.

TABLE 3 Univariate COX analysis for independent prognosis.

Variable HR Lower.95 Upper.95 P.val

age 5.942499 1.400512 25.21457 0.01566
pathologic_ M 3.29402 1.434885 7.561982 0.00493
pathologic_ N 3.119946 1.305826 7.454335  0.010454
pathologic_T 1.390489 0.475594 4.065354  0.547013
gender 0.827469 0.38748 1.767073  0.624677
RiskScore 2.718282 1.800958 4.102849  1.93E-06

HR, Hazard Ratio; p.val, p-value.

Drug prediction

The targeted drugs were predicted in the GDSC, and the results
revealed that 138 targeted drugs were associated with RC; among
them, 36 drugs exhibited significant differences between the high-
and low-risk groups (Supplementary Table S3). In addition, the top
5 drugs included MK.2206, pazopanib, and JNK. VIII, PLX4720 and
NU.7441, which demonstrated sensitivity in the high-risk group,
are shown in Figure 8.

Expression verification

The results of QRT-PCR revealed that DHRS11 and GLTP were
significantly expressed at low levels, whereas NFE2L3 was
significantly highly expressed in the RC samples (P< 0.05) (Figure 9).

Discussion

Rectal cancer (RC) is frequently diagnosed at advanced stages
because of the lack of distinctive early symptoms, which contributes
to delayed detection and unfavorable clinical outcomes (19). This
diagnostic challenge underscores the critical need for the discovery
of novel biomarkers to enable risk stratification and personalized
therapeutic interventions. While temperature-sensitive receptor
(TRP) channels have been extensively implicated in diverse
pathological processes, including tumorigenesis and immune
modulation (9, 10), their prognostic relevance in RC remains
largely uncharted. To bridge this knowledge gap, we
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systematically integrated multiomics data and bioinformatics
approaches, revealing five TRP-related biomarkers (BMP5,
DHRSI11, GLTP, NFE2L3, and TMCC3) with potential diagnostic
and therapeutic implications for RC. Importantly, these biomarkers
not only align with known oncogenic pathways but also exhibit
novel associations with RC-specific immune microenvironment
alterations, suggesting new perspectives for the diagnosis and
treatment of RC.

The five identified biomarkers play multifaceted roles in tumor
biology, with both conserved and context-dependent functions
across malignancies. BMP5, a member of the TGF-3 superfamily,
has tumor-suppressive effects on colorectal carcinogenesis. Our
findings corroborate prior reports that BMP5 deficiency occurs in
7.7% of sporadic CRC cases and selectively predicts prognosis in
this subtype (20).Mechanistically, the BMP5-mediated suppression
of EPSTI1 via Jak-Stat signaling may represent CRC-specific
vulnerability, potentially explaining its limited prognostic
relevance in other tumors. DHRS11 has emerged as a pleiotropic
regulator, with our data reinforcing its dual role in hormone-
dependent cancers: while it sustains androgen receptor signaling
in prostate cancer (21), its prognostic association in breast cancer
(22) suggests tissue-specific modulation of steroid hormone
pathways—Given that research has shown that female steroid
hormones can reduce the risk of colorectal cancer (CRC) (23), we
speculate that DHRS11 may affect CRC by regulating the steroid
hormone pathway. However, there is currently a lack of sufficient
evidence regarding the direct effect of DHRS11 on CRC, and this
study is also the first attempt to link DHRS11 with CRC. In this
case, our hypothesis still needs further in-depth research to support
it. GLTP downregulation in CRC aligns with its tumor-suppressive
function as a MIR196B target (24), indicating that lipid metabolism
perturbations mediated by GLTP loss may drive RC progression.
There are also studies indicating that overexpression of LTP can
inhibit the growth of human colon cancer cells (HT-29; HCT-116),
mainly by interfering with cell cycle progression and inducing cell
necrosis (25). Our research findings indicate that GLTP expression
is downregulated in the CRC group, further indirectly supporting its
potential protective effect on CRC patients. Notably, NFE2L3 has
paradoxical roles depending on the cellular context: although
murine models suggest its anti-inflammatory and tumor-
restraining effects in colon cancer (26), human studies indicate its
pro-oncogenic functions in other malignancies. This dichotomy
underscores the importance of microenvironmental influences on
NFE2L3 activity. Meanwhile, studies have shown that NFE2L3 can
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FIGURE 4

Independent prognostic analysis of the risk model. (A) Forest plot of independent prognostic-Univariate Cox results. Red squares indicated HR values
greater than 1, and gray squares indicated p-values greater than 0.05, indicating that the characteristics were not significant; (B) Forest plot of
independent prognostic-multivariate COX results. Red squares indicated HR values greater than 1, and gray squares indicated p-values greater than
0.05, indicating non-significant features; (C) nomogram predicted 1-, 3-, and 5-year survival of patients; (D) Calibration curves for nomogram; (E)
DCA graphs for nomogram; (F) ROC graphs for nomogram.

regulate inflammation and oxidative stress-related genes in the

colon, thereby keeping the microenvironment in a pro-

inflammatory state (27). The occurrence of inflammation and

oxidative stress often promote the occurrence and development of
CRC (28). Our study also confirmed the upregulation trend of
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NFE2L3 in CRC patients, suggesting that inhibiting oxidative stress
and inflammatory response may help alleviate the impact of
NFE2L3 on CRC.TMCCS3, previously characterized as a breast
cancer stemness maintainer through AKT activation (29), has
emerged as a potential RC progression driver, with our survival
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TABLE 4 Multivariate COX analysis for independent prognosis.

Variable HR Lower.95 Upper.95 P.value
age 9.16074 1.21371 69.14267 | 0.031732
pathologic_M 1.485546 0583881 3779615 | 0.406156
pathologic_ N 2.154517 0.725202 6.400893 | 0.167089
RiskScore 2.151531 1.374463 3367923 0.000805

HR, Hazard Ratio.

analysis linking its expression to adverse outcomes. The conserved
tumor-promoting role of TMCC3 across malignancies suggests
broad therapeutic targeting potential.

Through qRT-PCR experiments, we found that DHRS11,
GLTP, and NFE2L3 have dysregulated expression in rectal cancer
tissues. Survival analysis further established the status of BMPS5,
DHRS11, NFE2L3, and TMCC3 as independent prognostic
indicators. It is worth noting that we found differences in the
expression patterns of BMP5 and TMCC3 in RNA-seq and qRT-
PCR validation, which may be attributed to the small sample size
and heterogeneity between samples. However, it cannot be ignored
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that the results of qRT-PCR experiments and bioinformatics
analysis jointly locate TRP-related biomarkers at the intersection
of oncogenic signaling and metabolic reprogramming. In the future,
we plan to expand the sample size and conduct larger-scale,
multicenter studies, including clinical samples from different races
and regions, to comprehensively study the changes of these
biomarkers in vivo and provide more systematic insights for their
application in clinical monitoring.

To increase the clinical utility of our prognostic model, we
developed a nomogram that integrates risk scores with age, which
significantly improved the accuracy of risk stratification.
Comparative transcriptomic analysis between the high- and low-
risk groups revealed differentially expressed genes (DEGs)
predominantly enriched in cytokine-cytokine receptor interactions
—pathway hubs governing tumor-stroma crosstalk. This finding
aligns with emerging evidence that cytokine networks reprogram
the tumor microenvironment to foster therapeutic resistance and
metastatic dissemination.

Notably, CCL3 exemplifies the dual role of cytokines in CRC
progression: while it recruits immune cells via chemotaxis, its
overexpression activates the TRAF6/NF-xB axis to promote
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Low Expression.
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tumor cell survival and invasion (30). Similarly, IL-6/IL-11
signaling in cancer-associated fibroblasts (CAFs) induces STAT3
activation, creating a protumorigenic niche that drives CRC growth
and correlates with dismal outcomes (31). Among chemokines,
CXCL8 stands out as a master regulator of autocrine signaling in
CRC. Its upregulation not only enhances tumor cell proliferation
and anoikis resistance (32, 33) but also facilitates VEGF-
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independent angiogenesis and confers chemoresistance through
mechanisms involving PI3K/Akt and MAPK pathway activation
(34, 35). These observations collectively suggest that high-risk RC
patients may exhibit hyperactivated cytokine signaling, rendering
them susceptible to microenvironment-driven progression.
Importantly, our model’s incorporation of cytokine-related DEGs
provides a mechanistic link between TRP-associated genetic
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Immune microenvironment analysis. (a) Box line plot of the infiltration abundance of 28 immune cells in the high and low risk groups. *, p<0.05; **,
p<0.01; (b) Lollipop plots of the correlation between the biomarkers and the differential immune cells.

signatures and immune-metabolic dysregulation, offering actionable
targets for intercepting cytokine-mediated malignant transformation.

Our immune profiling uncovered distinct immune landscapes
between risk groups, characterized by significant differences in five
immune cell subsets. CD8" T cells, pivotal effectors of antitumor
immunity, mediate tumor cell lysis through granzyme/perforin

Frontiers in Immunology

13

release and interferon-y secretion at immune synapses (36, 37).
Conversely, type 2 T helper (Th2) cells exhibit protumoral
properties: IL-4/STAT6/GATA3 signaling drives Th2 polarization
and subsequent secretion of IL-5/IL-13, which collectively promote
metastatic spread (38, 39). It is worth noting that in this study, TMCC3
was found to be strongly positively correlated with central memory
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CD8+T cells, while DHRS11 was strongly negatively correlated with
type2 T helper cells. The identified biomarkers may significantly
influence the immune response of RC, thereby implying their
potential significance in the prevention and treatment of RC at the
cytokine level. In addition, immune checkpoint molecules PD-1
(PDCD1), PD-L1 (CD274), and CTLA4 mediate tumor immune
escape by suppressing the activity of immune cells and are known
potential targets for RC immunotherapy (40). Studies have shown that
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activated CD8" T cells highly express PD-1 under continuous antigen
stimulation (41). Based on these research findings, we speculate that the
high expression of TMCC3 may indirectly induce the upregulation of
PD-1 by stimulating the high expression of CD8" T cells, thereby
promoting tumor progression. Therefore, patients with this
characteristic may be more sensitive to PD-1 inhibitors due to the
enrichment of PD-1" CD8" T cells. The CTLA-4 axis affects tumors by
altering the Th1/Th2 balance (42). Based on this, we believe that the
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The expression of key genes was validated between the normal group and the disease group. *: P < 0.05; **: P < 0.01; ****: P < 0.0001.

negative correlation between DHRS11 and Th2 cells may act on the
CTLA4 axis by influencing the Th1/Th2 balance, and its low
expression may relieve the inhibition on Th2 cells, promoting the
increased secretion of Th2-type cytokines, forming an immune escape
microenvironment, and thereby affecting tumors. These mechanisms
still need further verification, but they initially reveal that TRP-related
genes may act through a regulatory network formed by immune cell
infiltration and checkpoint molecules. They also suggest that TMCC3
and DHRS11 may serve as potential markers for predicting the
response to immunotherapy, providing a new basis for precise
stratification in RC immunotherapy.

To elucidate the intrinsic relationship between the five
biomarkers and the classical RAS/RAF axis in colorectal cancer
(RC), a correlation analysis was conducted. This analysis identified
the strongest positive correlation between TMCC3 and KRAS, while
GLTP and HRAS exhibited a negative correlation. KRAS, recognized
as one of the most frequently mutated genes in colorectal cancer,
significantly influences patient prognosis and survival, and serves as a
potential therapeutic target (43). Concurrently, TMCC3 is known to
sustain cancer stem cell properties by activating the AKT pathway
(29). Considering the frequent crosstalk between the PI3K/AKT and
RAS/RAF/ERK pathways, and given that Akt/Ras/Raf/MEK/ERK are
established therapeutic targets in cancer (44), it is plausible that the
coordination between KRAS and TMCC3, potentially through AKT
activation, may enhance the RAS/RAF axis of cancer signaling,
thereby promoting tumor progression. Furthermore, as HRAS is a
common mutation site in RC (45), the observed negative correlation
between HRAS and GLTP may be associated with the tumor
suppressor mechanism of GLTP. Overexpression of GLTP can
induce cell cycle arrest at the G1/S checkpoint by upregulating p27
and p21 (26), thereby inhibiting Ras and blocking the cell cycle.
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Targeted drugs predictions were performed using the Genomics
of GDSC database, which identified 138 targeted drugs associated
with RC. Among these, 36 drugs have significant differences
between high- and low- risk patient groups. In addition, the top 5
drugs, including MK.2206, Pazopanib, JNK.Inhibitor.VIII, PLX4720
and NU.7441 were shown to be more sensitive in high-risk group.
The utilization of these drugs helps improve the prognosis of
patients in this group (46-52). In conclusion, these findings
provide valuable insights into potential therapeutic targets for
RC treatment.

Our study establishes TRP-related biomarkers as multidimensional
regulators of RC progression, orchestrating oncogenic signaling,
immune evasion, and therapeutic vulnerability. While further
preclinical validation is needed, these findings illuminate a precision
oncology framework where TRP-based stratification guides the
selection of targeted agents (e.g., AKT inhibitors) and
immunomodulators, ultimately bridging genomic insights with
clinical actionability.

Although we have adopted a series of advanced bioinformatics
analysis methods, mainly focusing on the mining of transcriptome
data, single data mining may lead to incomplete understanding of
the results. In the future, we plan to combine proteomics,
metabolomics and other omics data to further explore potential
biomarkers and therapeutic targets of TRP related genes, providing
a more comprehensive basis for accurate diagnosis and treatment of
rectal cancer. In addition, although we have experimentally
validated the expression of some biomarkers through qRT PCR,
these experiments have only been conducted in limited samples and
have not yet undergone further functional validation. Subsequent
research will further explore the specific molecular mechanisms of
these five TRP related genes in rectal cancer, such as studying their
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effects on the proliferation, apoptosis, invasion, and metastasis of
rectal cancer cells through in vitro cell experiments and in vivo
animal models, as well as their interactions with immune cells,
cytokines, and other factors in the tumor microenvironment, in
order to gain a more comprehensive understanding of their roles in
the occurrence and development of rectal cancer. Finally, we have
not yet delved into the clinical application potential of these
biomarkers, which limits their widespread use in clinical settings.
In the future, we will conduct relevant clinical trials to explore the
clinical application value of these biomarkers and provide
personalized treatment plans for clinical practice. In summary, in
the future, we will further reveal the role of TRP related genes in
rectal cancer through multi-level research and promote their
practical application in clinical practice.

Conclusion

This study identified a TRP channel-related gene signature
(BMP5, DHRS11, GLTP, NFE2L3, and TMCC3) that predicts
rectal cancer prognosis and modulates tumor-immune crosstalk.
The integrative risk model, validated through multiomics analyses,
enables patient stratification for targeted therapies (e.g., AKT/BRAF
inhibitors) and immunomodulation strategies. These findings
bridge TRP biology with precision oncology, offering a roadmap
for biomarker-driven RC therapeutics.
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SUPPLEMENTARY FIGURE 1

Construction and Evaluation of Rectal Cancer Risk Models in Validation Set. (A)
K-M survival curves for the validation set RiskScore. The vertical coordinate of
the graph indicated the survival rate, and the horizontal coordinate indicated the
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