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TRP-related gene signatures
predict survival and the immune
microenvironment in rectal
cancer: a comprehensive
bioinformatics study
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Qinping Guo5* and Ganggang Wang3*
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Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China,
2Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University
and Shandong Academy of Medical Sciences, Jinan, China, 3Cancer Center, Shanxi Bethune Hospital,
Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi
Hospital, Taiyuan, China, 4Department of Clinical Laboratory Medicine, Shanxi Bethune Hospital,
Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi
Hospital, Taiyuan, China, 5General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of
Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
Purpose: The pathogenesis of rectal cancer (RC) involves a variety of biological

mechanisms; however, the prognostic significance of temperature-sensitive

receptor (TRP) channels in RC patients remains unclear. This study aimed to

explore the role of TRP-related genes in RC prognosis and their potential

clinical implications.

Patients and methods: RNA-seq data for RC patients were obtained from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

TRP scores were calculated for TCGA samples, and modular genes were identified

via weighted gene co-expression network analysis (WGCNA). Differentially

expressed genes (DEGs) between RC and normal samples were identified via the

“limma” software package. TRP-related genes (DETRPs) were identified by

intersecting DEGs with modular genes. Biomarkers were identified through

univariate and multivariate Cox analyses, as well as least absolute shrinkage and

selective operator (LASSO) regression. Prognostic models and nomograms have

been developed on the basis of these biomarkers. Additionally, enrichment

analysis, immune cell infiltration assessment, and targeted drug prediction were

performed. Biomarker expression was further validated experimentally.

Results: A total of 246 DETRPs were identified by overlapping 1,989 DEGs and

265 modular genes, which were significantly associated with metabolic

pathways. Five biomarkers (BMP5, DHRS11, GLTP, NFE2L3, and TMCC3) were

selected to construct a prognostic model and a nomogram based on risk score

and age. The risk model demonstrated significant correlations with clinical

characteristics. Immune cell infiltration analysis revealed distinct immune cell

ratios between high- and low-risk patients, with TMCC3 showing a positive

correlation with central memory CD8 T cells and DHRS11 exhibiting a negative

correlation with type 2 T helper cells. Furthermore, several targeted drugs,
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including MK-2206, pazopanib, JNK inhibitor VIII, PLX4720, and NU-7441, were

associated with risk scores.

Conclusion: This study identified five TRP-related biomarkers associated with RC

prognosis, providing novel insights into the role of TRP channels in RC

development. These findings may contribute to a deeper understanding of RC

pathogenesis and offer potential targets for personalized therapy.
KEYWORDS

rectal cancer, TRP channels, prognostic biomarkers, immune cell infiltration, the cancer
genome atlas (TCGA)
Introduction

Rectal cancer (RC) is a malignant tumor originating in the

rectum and represents a significant global health burden. As the

eighth most common malignancy worldwide, RC accounts for

approximately 340,000 deaths annually (1). The etiology of RC

remains unclear but is thought to involve environmental factors,

dietary habits, and genetic predispositions (2). Despite

advancements in chemoradiotherapy and immunotherapy, the

prognosis for RC patients has not significantly improved (3).

Extensive research has identified various biomarkers associated

with RC survival and prognosis. Notably, the advent of high-

throughput sequencing has deepened our understanding of

genetic alterations in RC, enabling the development of multigene

predictive models using clinical and genetic data from public

databases (4–8). Consequently, constructing an effective

prognostic model on the basis of gene signatures is crucial for

advancing personalized therapy and improving patient outcomes.

Temperature-sensitive receptor (TRP) channels are

nonselective cation channels that respond to temperature changes

and play key roles in thermoregulation, inflammation, pain

modulation, and osmoregulation. Dysregulation of TRP channels

has been linked to various diseases (9, 10). For instance, Zhao et al.

classified esophageal squamous cell carcinoma patients into high-

and low-risk groups on the basis of TRP-related prognostic gene

scores, revealing elevated immune checkpoint expression in high-

risk patients (11). These findings suggest that such patients may

benefit more from immunotherapy. However, the prognostic

significance of TRP channels in RC remains unexplored.
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Investigating their role could improve patient prognosis and

increase survival rates.

In this study, we analyzed transcriptome data and clinical

information from public databases to investigate RC. Using

bioinformatics approaches, we identified five TRP-related genes

and developed a predictive model, which was validated with

external data from the Gene Expression Omnibus (GEO)

database. Additionally, we explored the mechanistic differences

between risk groups and examined the relevance of these key

genes within the tumor immune microenvironment. Our findings

provide valuable insights into the molecular mechanisms of RC and

lay a theoretical foundation for future research.
Materials and methods

Data collection

The RNA-seq data, survival information and clinical data of

RCs were acquired from the The Cancer Genome Atlas (TCGA,

https://xenabrowser.net) and GEO (https://www.ncbi.nlm.nih.gov/)

databases. The TCGA-RC dataset included 163 RC cases and 10

normal samples, with 154 of these RC samples containing survival

and clinical information. The GSE39582 dataset contains 566 RC

samples and 19 normal samples, of which 562 RC samples had

survival information. A total of 107 genes associated with the TRP

pathway were subsequently obtained by overlapping the Reactome

TRP channel gene set from the Molecular Signatures Database

(MSigDB) database (http://www.gsea-msigdb.org) and the

inflammatory mediator regulation of TRP channel pathway gene

set from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (https://www.kegg.jp/entry/ko04750) (11).
Weighted gene coexpression network
analysis

The TRP scores of all samples were calculated via the single-

sample gene set enrichment analysis (ssGSEA) algorithm, which is
frontiersin.org
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based on TRP pathway-related genes. The differences in TRP scores

between the RC and normal groups were analyzed via the Wilcoxon

test, and a violin plot was drawn via the “ggplot2” R package

(version 3.3.5) (12). Subsequently, we constructed a co-expression

network in the TCGA dataset using the “WGCNA” R package

(version 1.70–3) (13). To ensure that the connectivity of most genes

in the network conformed to the power-law distribution

characteristics, we set the target that the square value (R2) of the

scale-free topology model fit index (ScaleFreeTopologyModelFit)

was ≥ 0.85. Meanwhile, to avoid the network being too sparse or

dense and ensure the balance between the sample size and the

number of genes, we restricted the mean connectivity to< 200.

When screening relevant module genes, we used the TRP score as

the trait to ensure the selection of gene subsets with close

interconnections and similar expression patterns in the network.

This process was based on the Pearson correlation coefficient, and

the topological overlap matrix (TOM) was calculated to eliminate

noise and reflect the indirect connections between genes. We

screened genes with a variance greater than 25%, performed

sample clustering, and checked whether outlier samples needed

to be deleted to ensure the accuracy of subsequent analyses. We

constructed a sample dendrogram and a trait heatmap, determined

the soft threshold, calculated the adjacency and similarity between

genes, and finally obtained a clustering dendrogram. The modules

were segmented by the dynamic tree-cutting algorithm with the

minimum module size set to 70. Finally, we evaluated the

correlation between each module and the TRP score group, and

ultimately identified the module genes with the highest correlation

with the TRP score.
Identification of differentially expressed
TRP-related genes

The differentially expressed genes (DEG1) between 163 RC

samples and 10 normal control samples were screened in the TCGA

dataset via the “limma” R package (version 3.42.2) (|log2FC (fold

change)| > 1, P< 0.05) (14). Furthermore, DETRPs were retrieved

by intersecting DEG1 with the module genes. Gene Ontology (GO)

enrichment analyses, including biological process (BP), cellular

component (CC) and molecular function (MF) enrichment

analyses, along with KEGG pathway enrichment analysis, were

conducted via the “DAVID” tool. The enrichment results were

drawn via the “ggplot2” R package.
Construction of the prognostic model

To identify potential biomarkers, univariate Cox regression

analysis was implemented in the TCGA dataset. The least

absolute shrinkage and selector operation (LASSO) algorithm was

implemented in “glmnet” R package (version 4.0-2) (15). The

biomarkers were further screened via multivariate Cox analysis.

Moreover, the expression levels and trends of biomarkers in the

validation dataset were detected via the “ggplot2” R package.
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Moreover, the survival risk model was assessed via the TCGA

dataset, and the GSE39582 dataset was used as the external

validation set to verify the model’s applicability. The risk value

was calculated via the following algorithm, and participants were

categorized into high- and low-risk groups on the basis of the

median risk value.

Riskscoresample =on
n=1(Coef i*xi)

Kaplan–Meier (KM) survival analysis was performed to

compare the two groups. Receiver Operating Characteristic

(ROC) curves and risk curves were used to predict the accuracy

of the prognostic model. The “pheatmap” R package was used to

visualize the expression levels of the biomarkers in the high- and

low-risk groups.
Independent prognostic analysis and
clinical correlation analysis

To investigate the prognostic value of clinicopathological

characteristics and the risk model, the clinicopathological factors (age,

sex, pathologic T, N, M, risk score) of 154 RC samples in the TCGA

dataset were analyzed via Cox regression to identify independent

prognostic factors, and the significant clinicopathological factors were

used to construct a nomogram via the “RMS” R package (version 6.2-0)

(16). The calibration curve of the nomogram and the decision curve

(DCA) of 1-, 3- and 5-year survival were drawn on the basis of the

above prediction model to verify the validity of the nomogram.

Moreover, ROC curves for the nomogram model at 1, 3 and 5 years

were plotted to evaluate its predictive performance. In addition, the

differences in the risk score among various clinicopathological

characteristics were explored, and survival analysis for biomarkers

and risk scores in relation to clinical characteristics was conducted.
Functional enrichment analysis of
differentially expressed genes (DEG2s)
between the high- and low-risk score
groups

The DEGs (DEG2) between high- and low-risk score samples in

the TCGA dataset were screened via the “limma” R package. The

DEG2s are shown through volcano plots and heatmaps. GO

function and KEGG pathway enrichment analyses of the DEGs

were also conducted.
Analysis of the immune microenvironment
and correlation analysis of prognostic
genes

The tumor microenvironment is composed of tumor cells,

immune-infiltrating cells, fibroblasts, cytokines, and catalytic

factors. The immune response plays an important role in tumor

growth, invasion, and metastasis; therefore, tumor-infiltrating
frontiersin.org
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immune cells (TIICs) are a target for chemotherapy and

radiotherapy (17). In this study, the proportions of 22 immune

cell types in the high- and low-risk groups were calculated via the

“ssGSEA” algorithm to study immune cell infiltration. Furthermore,

the correlation between the risk score and differential immune cells

was calculated via the Spearman correlation coefficient.

RAS and RAF-related genes were common characteristic genes in

rectal cancer (18). To investigate the relationship between these

common characteristic genes and the prognostic genes identified in

this study, we analyzed the correlation between the key genes and

RAS/RAF-related genes (RAF1, NRAS, KRAS, HRAS). In the

training set, the “psych” package was used to perform Spearman

correlation analysis on the differential RAS/RAF-related genes and

the prognostic genes, with the threshold set as |cor| > 0.3 and p< 0.05.
Drug prediction

Drug sensitivity analysis between the high- and low-risk groups

was performed via the Genomics of Drug Sensitivity in Cancer

(GDSC) database via the “pRRophetic” package. Targeted drugs

were selected on the basis of the Wilcoxon test, and 138 commonly

used chemotherapy and radiotherapy agents were analyzed.
Validation of the expression of biomarkers

Quantitative real-time polymerase chain reaction (qRT–PCR)

was performed to validate the expression of biomarkers in 6 RC and

6 HC tissue samples. Total RNA was extracted via TRIzol (Thermo

Fisher, Shanghai, CN), mRNA was reverse transcribed into cDNA,

and the qPCRs were performed via the SureScript-First-strand-

cDNA-synthesis-kit (Servicebio, WuHan, CN). This study received

approval from the ethical review committee of Shanxi Bethune

Hospital (SBQLL-2022-046). The qRT–PCR sequences of primers

used are listed in Supplementary Table S1.

This study mainly collected 12 pairs of samples for research,

with specific exclusion and inclusion criteria as follows:
Fron
1. Tissue source: primary rectal adenocarcinoma tissue

confirmed by pathology, taken from fresh frozen

samples after surgical resection;normal rectal mucosal

tissue adjacent to the cancer (≥ 5cm away from the tumor

edge), confirmed by pathology to have no cancer infiltration.

2. Patient characteristics: Age range: ≥ 18 years old, no history

of other malignant tumors or hereditary colorectal cancer

syndrome (such as Lynch syndrome).

3. Sample processing: Within 30 minutes after tissue isolation,

freeze in liquid nitrogen and store at -80 °C; RNA integrity

index (RIN) ≥ 7.0, OD260/280 ratio 1.8-2.0.
Exclusion criteria:
1. Exclusion of clinical factors: comorbidities with severe

systemic diseases (such as advanced liver and kidney failure,
tiers in Immunology 04
active infections), and prior anti-tumor treatment (to avoid

interference with gene expression during treatment);

Transferable samples (only including primary lesion tissue).

2. Sample quality exclusion: Tissue preservation time>3 years

(to avoid the impact of RNA degradation), RNA quality

inspection failure (RIN<7.0 or significant degradation).

3. Pathological feature exclusion: Non adenocarcinoma

pathological types (such as neuroendocrine carcinoma

and stromal tumors), HC group pathology suggests

inflammation, dysplasia, or tumor infiltration.
Results

Screening of key modules via WGCNA

The TRP scores of all the samples were calculated, revealing a

statistically significant difference between the RC and normal

groups (Figure 1A). WGCNA was used to identify the module

genes significantly associated with TRP scores. A total of 13,671

genes exhibiting a variance greater than 25% were selected for

analysis. Sample clustering analysis was performed, and the results

revealed that there were no outlier samples (Figures 1B, C). The

optimal soft threshold was determined to be 13javascript:;. When

the ordinate scale-free fit index, signed R2, approached the

threshold value of 0.85 (red line), the network was close to a

scale-free distribution, and the mean connectivity was close to 0

(Figure 1D). Sixteen modules were subsequently obtained. The

MEDissThres was set to 0.3 to merge similar modules via the

dynamic tree cut algorithm, and 9 modules were obtained

(Figure 1E). The correlations between the modules and TRP

scores were subsequently evaluated, which revealed that the

MEmagenta module was significantly correlated with the TRP

scores (|Cor| = 0.6 and P< 0.05) (Figure 1F). Finally, 265 genes

with this key module were screened for subsequent analyses.
The functions of 246 DETRPs are
associated with metabolic pathways

A total of 1,989 DEG1s were identified from 163 RC samples

compared with 10 normal control samples, comprising 821

upregulated genes and 1,168 downregulated genes (Figures 2A,

B). Then, 246 DETRPs were obtained by overlapping the 1,989

DEG1 and 265 module genes (Figure 2C). GO function enrichment

and KEGG pathway analyses were performed to assess the functions

of 246 DETRPs. The DETRPs were enriched in 56 GO-BPs, 15 GO-

CCs, 232 GO-MFs, and 17 KEGG pathways, including steroid

metabolic process, cellular response to copper ion, oligosaccharide

biosynthetic process, integral component of membrane,

extracellular exosome, UDP-glycosyltransferase activity, chloride

channel activity, metabolic pathways, pancreatic secretion, and

pentose and glucuronate interconversions (Figures 2D, E,

Supplementary Table S2).
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FIGURE 1

Key module screening for weighted gene co-expression network analysis (WGCNA). (A) Violin plot of temperature-sensitive receptors (TRP) score
differences between rectal cancer and normal groups. Red color represented the rectal cancer group, and blue color represented the normal group;
(B) Dataset sample clustering situation. Branches represented samples, and vertical coordinates represented the height situation of hierarchical
clustering; (C) Data sample clustering and phenotype information. The top half showed the clustering situation, and the bottom half displayed the
phenotype; (D) Scale-free soft threshold distribution. The horizontal axes of the graphs represented the weight parameter power values, the vertical
axis of the left graph was ScaleFreeTopologyModelFit, and the higher the square of the correlation coefficient, the closer the network was to a
scale-free distribution. The vertical axis of the right graph represented the mean value of the neighbor joining function of all the genes in the
corresponding gene module; (E) Clustering dendrogram of the modules. Different colors represented different modules; (F) Heat map of module
correlation with clinical traits. Vertical coordinates were different modules, and horizontal coordinates were different traits. Red represented a
positive correlation, and blue represented a negative correlation.
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Construction and evaluation of the RC risk
model

As shown in Table 1, a total of 17 genes were screened via

univariate Cox analysis, and the results revealed that only GLTP was a

negative factor (hazard ratio > 1) (Figure 3A). The lasso model was

subsequently constructed with lambdamin = 0.01812975, and 10

feature genes were identified, including ARL14, BMP5, CHP2,

DHRS11, GLTP, KIAA1211, NFE2L3, SLC9A2, ST6GALNAC1,

and TMCC3 (Figure 3B). Five biomarkers, namely, BMP5,
Frontiers in Immunology 06
DHRS11, GLTP, NFE2L3 and TMCC3, were obtained after

multivariate Cox analysis; among them, GLTP was a negative

factor, whereas the other biomarkers were positive factors (Table 2,

Figure 3C). In addition, GSE39582 was used as the external validation

dataset to verify the expression of these 5 genes. The results indicated

that 5 biomarkers were differentially expressed in the validation

dataset, and the expression trend was consistent with that in the

training dataset (Figure 3D).

The multifactorial coefficient (coef) for these 5 biomarkers was

calculated to construct a survival risk model, stratifying the 154
FIGURE 2

Analysis of differential TRP-related genes. (A) Volcano plot of differential genes (DEG1) between rectal cancer and normal sample groups. Red dots
indicated up-regulated genes, blue dots indicated down-regulated genes, and gray dots indicated genes with no significant differences; (B) Heat map of
DEG1 between rectal cancer and normal sample groups. Red color represented high expression, and blue color represented low expression; (C) Venn
plot of DEG1 and modular genes, illustrating the overlap between modular genes and DEG1; (D) Intersecting genes Gene Ontology (GO) (KEGG) TOP10
TOP10 enrichment analysis result plot; (E) Intersecting genes Kyoto Encyclopedia of Genes and Genomes enrichment analysis result plot.
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patients into high- and low-risk groups on the basis of the median

risk score (0.578551228). Survival analysis revealed a significant

difference in survival between the high- and low-risk groups (P<

0.0001) (Figure 3E). ROC curves and risk curves were used to

predict the accuracy of the survival risk model. The area under the

curve (AUC) values at 1, 3, and 5 years were 0.715, 0.818, and 0.803,

respectively, which indicated that the survival risk model could be

used as a prognostic model (Figure 3F). In addition, the risk curve of

the survival risk model also revealed the model’s value, and the

heatmap analysis demonstrated that GLTP was highly expressed in

the high-risk group, whereas the other genes were highly expressed

in the low-risk group (Figure 3G). In addition, GSE39582 was used

as the external validation dataset to verify the applicability of this

model. The results of the KM curve, ROC curve and risk curve

analyses were consistent with those of the training datasets

(Supplementary Figure S1).
Independent prognostic and clinical
correlation analysis of the survival risk
model

Univariate Cox analysis revealed that 6 clinical factors,

including age; pathological T, N, and M stages; sex; and the risk

score, were associated with prognosis. Among these factors, age,

pathology N, M and the risk score were significantly associated with

patient survival (Table 3, Figure 4A). Multivariate Cox analysis
Frontiers in Immunology 07
further revealed that only age and the risk score were significantly

associated with patient survival (Table 4, Figure 4B). A nomogram

was constructed to estimate the 1-, 3-, and 5-year survival rates on

the basis of these 2 clinical factors. The calibration curve indicated

that the slopes for 1, 3 and 5 years were closest to 1, suggesting that

the prediction model was effective (Figures 4C, D). In addition, the

DCA curves revealed that the nomogram provided greater net

benefit than did age or the risk score alone (Figure 4E).

Furthermore, the area under the curve (AUC) values of 1, 3, and

5 years were 0.79, 0.841, and 0.906, respectively, which indicated

that the prognostic nomogram model has an accurate predictive

ability for RC (Figure 4F).

The results of the correlation analysis between the high- and

low-risk groups and clinical characteristics (including age, sex,

pathological T stage, N stage, M stage, and overall survival (OS))

are shown in Supplementary Figure S2. The results suggested that

bath OS and pathologic N stage were significantly associated with

risk group. The risk scores for different clinical characteristics were

as follows: risk score ≥60 years of age; sex; and pathological M0, T1

and T2; T3 and T4; and N0, N1 and N2 stages (Supplementary

Figure S3). In addition, the KM curve also revealed that BMP5,

DHRS11, NFE2L3, and TMCC3 were significantly associated with

patient survival (Figure 5).
A total of 110 DEG2s were related to
cytokine–cytokine receptor interactions

In total, 110 DEG2s were retrieved between 77 high- and 77

low-risk samples, 31 of which were upregulated genes and 79 of

which were downregulated genes (Figures 6A, B). The DEG2s were

enriched in 45 GO-BP terms, 16 GO-CCs, 10 GO-MFs, and 5

KEGG pathways, including fat digestion and absorption, viral

protein interaction with cytokines and cytokine receptors, protein

digestion and absorption, cytokine–cytokine receptor interaction,

and fructose and mannose metabolism (Figures 6C, D).
Results of microenvironment analysis and
correlation analysis

A total of 5 immune cell types, including central memory CD8

T cells, immature dendritic cells, macrophages, plasmacytoid

dendritic cells and type 2 T helper cells, were significantly

different between the high- and low-risk groups (Figure 7A). The

correlation coefficient results revealed that the strongest significant

positive correlation was between TMCC3 and central memory CD8

T cells, whereas the strongest significant negative correlation was

between DHRS11 and type 2 T helper cells (Figure 7B). The results

of the prognostic gene association analysis showed that the positive

correlation between TMCC3 and KRAS was the highest (cor =0.50,

p = 1.73e-12), and the negative correlation between GLTP and

HRAS was the highest (cor =-0.35, p = 1.73e-06) (Supplementary

Figure S3).
TABLE 1 Univariate COX analysis of rectal cancer risk models.

Gene HR Lower.95 Upper.95 P.val

AKR1B10 0.70754131 0.521234538 0.960440395 0.026497774

ARL14 0.679553497 0.437956908 1.054425553 0.084793295

BMP2 0.593128623 0.373113011 0.942882056 0.027198985

BMP5 0.223729256 0.057663059 0.86805628 0.030424956

CHP2 0.778631734 0.600171879 1.010156255 0.059580765

CNNM4 0.602078411 0.355827739 1.018746921 0.058657891

DHRS11 0.500339838 0.278188936 0.899891841 0.020768504

F2RL1 0.605760762 0.338692244 1.083420441 0.091055326

GLTP 2.604981021 0.887064716 7.649865901 0.081520204

KIAA1211 0.578550784 0.302448449 1.106704333 0.09820929

MOB3B 0.46352848 0.238801418 0.899737757 0.023075527

MOGAT2 0.698559665 0.485322324 1.005487656 0.053543285

NFE2L3 0.577265591 0.330467563 1.00837601 0.053525716

SIAE 0.587690102 0.321300934 1.074941339 0.084456645

SLC9A2 0.651516475 0.419480797 1.011902621 0.056482869

ST6GALNAC1 0.795084266 0.648770805 0.97439494 0.027108849

TMCC3 0.612227315 0.358377862 1.045885713 0.07253216
HR, Hazard Ratio; p.val, p-value.
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FIGURE 3

Construction and evaluation of rectal cancer risk model. (A) Forest plot of Univariate Cox results. Red squares on the right indicated HR values greater
than 1, and green squares indicated HR values less than 1; (B) l selection plot in the LASSO model. The two dashed lines indicated two particular l
values, lambda.min on the left and lambda.1se on the right; (C) Forest plot of multivariate COX results. HR>1 was a risk factor, and HR<1 was a safety
factor; (D) Expression validation of biomarkers; (E) K-M survival curves of the training set RiskScore. The vertical coordinate of the graph indicated the
survival rate, the horizontal coordinate indicated the overall survival time (OS), the red curve indicated the high-risk group, and the blue curve indicated
the low-risk group; (F) Construction of the ROC curve of the training set risk model; (G) Construction of the training set risk curve. The upper figure
showed the risk curves for the high and low risk groups, and the lower figure showed the heatmap for the high and low risk groups.
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Drug prediction

The targeted drugs were predicted in the GDSC, and the results

revealed that 138 targeted drugs were associated with RC; among

them, 36 drugs exhibited significant differences between the high-

and low-risk groups (Supplementary Table S3). In addition, the top

5 drugs included MK.2206, pazopanib, and JNK. VIII, PLX4720 and

NU.7441, which demonstrated sensitivity in the high-risk group,

are shown in Figure 8.
Expression verification

The results of qRT–PCR revealed that DHRS11 and GLTP were

significantly expressed at low levels, whereas NFE2L3 was

significantly highly expressed in the RC samples (P< 0.05) (Figure 9).
Discussion

Rectal cancer (RC) is frequently diagnosed at advanced stages

because of the lack of distinctive early symptoms, which contributes

to delayed detection and unfavorable clinical outcomes (19). This

diagnostic challenge underscores the critical need for the discovery

of novel biomarkers to enable risk stratification and personalized

therapeutic interventions. While temperature-sensitive receptor

(TRP) channels have been extensively implicated in diverse

pathological processes, including tumorigenesis and immune

modulation (9, 10), their prognostic relevance in RC remains

largely uncharted. To bridge this knowledge gap, we
Frontiers in Immunology 09
systematically integrated multiomics data and bioinformatics

approaches, revealing five TRP-related biomarkers (BMP5,

DHRS11, GLTP, NFE2L3, and TMCC3) with potential diagnostic

and therapeutic implications for RC. Importantly, these biomarkers

not only align with known oncogenic pathways but also exhibit

novel associations with RC-specific immune microenvironment

alterations, suggesting new perspectives for the diagnosis and

treatment of RC.

The five identified biomarkers play multifaceted roles in tumor

biology, with both conserved and context-dependent functions

across malignancies. BMP5, a member of the TGF-b superfamily,

has tumor-suppressive effects on colorectal carcinogenesis. Our

findings corroborate prior reports that BMP5 deficiency occurs in

7.7% of sporadic CRC cases and selectively predicts prognosis in

this subtype (20).Mechanistically, the BMP5-mediated suppression

of EPSTI1 via Jak-Stat signaling may represent CRC-specific

vulnerability, potentially explaining its limited prognostic

relevance in other tumors. DHRS11 has emerged as a pleiotropic

regulator, with our data reinforcing its dual role in hormone-

dependent cancers: while it sustains androgen receptor signaling

in prostate cancer (21), its prognostic association in breast cancer

(22) suggests tissue-specific modulation of steroid hormone

pathways—Given that research has shown that female steroid

hormones can reduce the risk of colorectal cancer (CRC) (23), we

speculate that DHRS11 may affect CRC by regulating the steroid

hormone pathway. However, there is currently a lack of sufficient

evidence regarding the direct effect of DHRS11 on CRC, and this

study is also the first attempt to link DHRS11 with CRC. In this

case, our hypothesis still needs further in-depth research to support

it. GLTP downregulation in CRC aligns with its tumor-suppressive

function as a MIR196B target (24), indicating that lipid metabolism

perturbations mediated by GLTP loss may drive RC progression.

There are also studies indicating that overexpression of LTP can

inhibit the growth of human colon cancer cells (HT-29; HCT-116),

mainly by interfering with cell cycle progression and inducing cell

necrosis (25). Our research findings indicate that GLTP expression

is downregulated in the CRC group, further indirectly supporting its

potential protective effect on CRC patients. Notably, NFE2L3 has

paradoxical roles depending on the cellular context: although

murine models suggest its anti-inflammatory and tumor-

restraining effects in colon cancer (26), human studies indicate its

pro-oncogenic functions in other malignancies. This dichotomy

underscores the importance of microenvironmental influences on

NFE2L3 activity. Meanwhile, studies have shown that NFE2L3 can
TABLE 2 Multivariate COX analysis of rectal cancer risk models.

Gene Coef HR HR.95L HR.95H Pvalue

BMP5 -1.32405 0.266055274160793 0.0645532997368526 1.09654206984502 0.0668893011331106

DHRS11 -0.49538 0.609340318846557 0.33784027536156 1.09902711799136 0.0997264718749909

GLTP 1.55197563348981 4.72078752166268 1.37810271257749 16.1713888386479 0.0134933836955643

NFE2L3 -0.39464 0.6739215932676 0.402171297674768 1.12929569190595 0.134051679719384

TMCC3 -0.56046 0.570944781991296 0.35562550995461 0.916632623246556 0.0203219426067807
HR, Hazard Ratio; L, Lower, H,High.
TABLE 3 Univariate COX analysis for independent prognosis.

Variable HR Lower.95 Upper.95 P.val

age 5.942499 1.400512 25.21457 0.01566

pathologic_M 3.29402 1.434885 7.561982 0.00493

pathologic_N 3.119946 1.305826 7.454335 0.010454

pathologic_T 1.390489 0.475594 4.065354 0.547013

gender 0.827469 0.38748 1.767073 0.624677

RiskScore 2.718282 1.800958 4.102849 1.93E-06
HR, Hazard Ratio; p.val, p-value.
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regulate inflammation and oxidative stress-related genes in the

colon, thereby keeping the microenvironment in a pro-

inflammatory state (27). The occurrence of inflammation and

oxidative stress often promote the occurrence and development of

CRC (28). Our study also confirmed the upregulation trend of
Frontiers in Immunology 10
NFE2L3 in CRC patients, suggesting that inhibiting oxidative stress

and inflammatory response may help alleviate the impact of

NFE2L3 on CRC.TMCC3, previously characterized as a breast

cancer stemness maintainer through AKT activation (29), has

emerged as a potential RC progression driver, with our survival
FIGURE 4

Independent prognostic analysis of the risk model. (A) Forest plot of independent prognostic-Univariate Cox results. Red squares indicated HR values
greater than 1, and gray squares indicated p-values greater than 0.05, indicating that the characteristics were not significant; (B) Forest plot of
independent prognostic-multivariate COX results. Red squares indicated HR values greater than 1, and gray squares indicated p-values greater than
0.05, indicating non-significant features; (C) nomogram predicted 1-, 3-, and 5-year survival of patients; (D) Calibration curves for nomogram; (E)
DCA graphs for nomogram; (F) ROC graphs for nomogram.
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analysis linking its expression to adverse outcomes. The conserved

tumor-promoting role of TMCC3 across malignancies suggests

broad therapeutic targeting potential.

Through qRT-PCR experiments, we found that DHRS11,

GLTP, and NFE2L3 have dysregulated expression in rectal cancer

tissues. Survival analysis further established the status of BMP5,

DHRS11, NFE2L3, and TMCC3 as independent prognostic

indicators. It is worth noting that we found differences in the

expression patterns of BMP5 and TMCC3 in RNA-seq and qRT-

PCR validation, which may be attributed to the small sample size

and heterogeneity between samples. However, it cannot be ignored
Frontiers in Immunology 11
that the results of qRT-PCR experiments and bioinformatics

analysis jointly locate TRP-related biomarkers at the intersection

of oncogenic signaling and metabolic reprogramming. In the future,

we plan to expand the sample size and conduct larger-scale,

multicenter studies, including clinical samples from different races

and regions, to comprehensively study the changes of these

biomarkers in vivo and provide more systematic insights for their

application in clinical monitoring.

To increase the clinical utility of our prognostic model, we

developed a nomogram that integrates risk scores with age, which

significantly improved the accuracy of risk stratification.

Comparative transcriptomic analysis between the high- and low-

risk groups revealed differentially expressed genes (DEGs)

predominantly enriched in cytokine–cytokine receptor interactions

—pathway hubs governing tumor–stroma crosstalk. This finding

aligns with emerging evidence that cytokine networks reprogram

the tumor microenvironment to foster therapeutic resistance and

metastatic dissemination.

Notably, CCL3 exemplifies the dual role of cytokines in CRC

progression: while it recruits immune cells via chemotaxis, its

overexpression activates the TRAF6/NF-kB axis to promote
TABLE 4 Multivariate COX analysis for independent prognosis.

Variable HR Lower.95 Upper.95 P.value

age 9.16074 1.21371 69.14267 0.031732

pathologic_M 1.485546 0.583881 3.779615 0.406156

pathologic_N 2.154517 0.725202 6.400893 0.167089

RiskScore 2.151531 1.374463 3.367923 0.000805
HR, Hazard Ratio.
FIGURE 5

Biomarker K-M Survival Curves. Red: High Expression; Black: Low Expression.
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tumor cell survival and invasion (30). Similarly, IL-6/IL-11

signaling in cancer-associated fibroblasts (CAFs) induces STAT3

activation, creating a protumorigenic niche that drives CRC growth

and correlates with dismal outcomes (31). Among chemokines,

CXCL8 stands out as a master regulator of autocrine signaling in

CRC. Its upregulation not only enhances tumor cell proliferation

and anoikis resistance (32, 33) but also facilitates VEGF-
Frontiers in Immunology 12
independent angiogenesis and confers chemoresistance through

mechanisms involving PI3K/Akt and MAPK pathway activation

(34, 35). These observations collectively suggest that high-risk RC

patients may exhibit hyperactivated cytokine signaling, rendering

them susceptible to microenvironment-driven progression.

Importantly, our model’s incorporation of cytokine-related DEGs

provides a mechanistic link between TRP-associated genetic
FIGURE 6

Differential analysis between high and low risk groups. (a) Volcano plot of differential genes (DEG2) between high and low risk groups. Red dots
indicated up-regulated genes, blue dots indicated down-regulated genes, and gray dots indicated genes with no significant differences; (b) Heat
map of DEG2 expression. Red represented high expression, blue represented low expression; (c) Gene Ontology (GO) enrichment analysis result
map of DEG2; (d) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis result map of DEG2.
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signatures and immune-metabolic dysregulation, offering actionable

targets for intercepting cytokine-mediated malignant transformation.

Our immune profiling uncovered distinct immune landscapes

between risk groups, characterized by significant differences in five

immune cell subsets. CD8+ T cells, pivotal effectors of antitumor

immunity, mediate tumor cell lysis through granzyme/perforin
Frontiers in Immunology 13
release and interferon-g secretion at immune synapses (36, 37).

Conversely, type 2 T helper (Th2) cells exhibit protumoral

properties: IL-4/STAT6/GATA3 signaling drives Th2 polarization

and subsequent secretion of IL-5/IL-13, which collectively promote

metastatic spread (38, 39). It is worth noting that in this study, TMCC3

was found to be strongly positively correlated with central memory
FIGURE 7

Immune microenvironment analysis. (a) Box line plot of the infiltration abundance of 28 immune cells in the high and low risk groups. *, p<0.05; **,
p<0.01; (b) Lollipop plots of the correlation between the biomarkers and the differential immune cells.
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CD8+T cells, while DHRS11 was strongly negatively correlated with

type2 T helper cells. The identified biomarkers may significantly

influence the immune response of RC, thereby implying their

potential significance in the prevention and treatment of RC at the

cytokine level. In addition, immune checkpoint molecules PD-1

(PDCD1), PD-L1 (CD274), and CTLA4 mediate tumor immune

escape by suppressing the activity of immune cells and are known

potential targets for RC immunotherapy (40). Studies have shown that
Frontiers in Immunology 14
activated CD8+ T cells highly express PD-1 under continuous antigen

stimulation (41). Based on these research findings, we speculate that the

high expression of TMCC3 may indirectly induce the upregulation of

PD-1 by stimulating the high expression of CD8+ T cells, thereby

promoting tumor progression. Therefore, patients with this

characteristic may be more sensitive to PD-1 inhibitors due to the

enrichment of PD-1+ CD8+ T cells. The CTLA-4 axis affects tumors by

altering the Th1/Th2 balance (42). Based on this, we believe that the
FIGURE 8

Top 5 Drugs Box-Line Chart from Chemical Drug Prediction Analysis.
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negative correlation between DHRS11 and Th2 cells may act on the

CTLA4 axis by influencing the Th1/Th2 balance, and its low

expression may relieve the inhibition on Th2 cells, promoting the

increased secretion of Th2-type cytokines, forming an immune escape

microenvironment, and thereby affecting tumors. These mechanisms

still need further verification, but they initially reveal that TRP-related

genes may act through a regulatory network formed by immune cell

infiltration and checkpoint molecules. They also suggest that TMCC3

and DHRS11 may serve as potential markers for predicting the

response to immunotherapy, providing a new basis for precise

stratification in RC immunotherapy.

To elucidate the intrinsic relationship between the five

biomarkers and the classical RAS/RAF axis in colorectal cancer

(RC), a correlation analysis was conducted. This analysis identified

the strongest positive correlation between TMCC3 and KRAS, while

GLTP and HRAS exhibited a negative correlation. KRAS, recognized

as one of the most frequently mutated genes in colorectal cancer,

significantly influences patient prognosis and survival, and serves as a

potential therapeutic target (43). Concurrently, TMCC3 is known to

sustain cancer stem cell properties by activating the AKT pathway

(29). Considering the frequent crosstalk between the PI3K/AKT and

RAS/RAF/ERK pathways, and given that Akt/Ras/Raf/MEK/ERK are

established therapeutic targets in cancer (44), it is plausible that the

coordination between KRAS and TMCC3, potentially through AKT

activation, may enhance the RAS/RAF axis of cancer signaling,

thereby promoting tumor progression. Furthermore, as HRAS is a

common mutation site in RC (45), the observed negative correlation

between HRAS and GLTP may be associated with the tumor

suppressor mechanism of GLTP. Overexpression of GLTP can

induce cell cycle arrest at the G1/S checkpoint by upregulating p27

and p21 (26), thereby inhibiting Ras and blocking the cell cycle.
Frontiers in Immunology 15
Targeted drugs predictions were performed using the Genomics

of GDSC database, which identified 138 targeted drugs associated

with RC. Among these, 36 drugs have significant differences

between high- and low- risk patient groups. In addition, the top 5

drugs, including MK.2206, Pazopanib, JNK.lnhibitor.VIII, PLX4720

and NU.7441 were shown to be more sensitive in high-risk group.

The utilization of these drugs helps improve the prognosis of

patients in this group (46–52). In conclusion, these findings

provide valuable insights into potential therapeutic targets for

RC treatment.

Our study establishes TRP-related biomarkers as multidimensional

regulators of RC progression, orchestrating oncogenic signaling,

immune evasion, and therapeutic vulnerability. While further

preclinical validation is needed, these findings illuminate a precision

oncology framework where TRP-based stratification guides the

selection of targeted agents (e.g., AKT inhibitors) and

immunomodulators, ultimately bridging genomic insights with

clinical actionability.

Although we have adopted a series of advanced bioinformatics

analysis methods, mainly focusing on the mining of transcriptome

data, single data mining may lead to incomplete understanding of

the results. In the future, we plan to combine proteomics,

metabolomics and other omics data to further explore potential

biomarkers and therapeutic targets of TRP related genes, providing

a more comprehensive basis for accurate diagnosis and treatment of

rectal cancer. In addition, although we have experimentally

validated the expression of some biomarkers through qRT PCR,

these experiments have only been conducted in limited samples and

have not yet undergone further functional validation. Subsequent

research will further explore the specific molecular mechanisms of

these five TRP related genes in rectal cancer, such as studying their
FIGURE 9

The expression of key genes was validated between the normal group and the disease group. *: P < 0.05; **: P < 0.01; ****: P < 0.0001.
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effects on the proliferation, apoptosis, invasion, and metastasis of

rectal cancer cells through in vitro cell experiments and in vivo

animal models, as well as their interactions with immune cells,

cytokines, and other factors in the tumor microenvironment, in

order to gain a more comprehensive understanding of their roles in

the occurrence and development of rectal cancer. Finally, we have

not yet delved into the clinical application potential of these

biomarkers, which limits their widespread use in clinical settings.

In the future, we will conduct relevant clinical trials to explore the

clinical application value of these biomarkers and provide

personalized treatment plans for clinical practice. In summary, in

the future, we will further reveal the role of TRP related genes in

rectal cancer through multi-level research and promote their

practical application in clinical practice.
Conclusion

This study identified a TRP channel-related gene signature

(BMP5, DHRS11, GLTP, NFE2L3, and TMCC3) that predicts

rectal cancer prognosis and modulates tumor–immune crosstalk.

The integrative risk model, validated through multiomics analyses,

enables patient stratification for targeted therapies (e.g., AKT/BRAF

inhibitors) and immunomodulation strategies. These findings

bridge TRP biology with precision oncology, offering a roadmap

for biomarker-driven RC therapeutics.
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SUPPLEMENTARY FIGURE 1

Construction and Evaluation of Rectal Cancer Risk Models in Validation Set. (A)
K-M survival curves for the validation set RiskScore. The vertical coordinate of
the graph indicated the survival rate, and the horizontal coordinate indicated the
Frontiers in Immunology 17
OS. The red curve indicated the high-risk group, and the blue curve indicated
the low-risk group; (B)Construction of the ROC curve for the validation set risk

model; (C) Construction of the validation set risk curve. The upper panel
showed the risk curves for the high and low risk groups, and the lower panel

showed the heatmap for the high and low risk groups.

SUPPLEMENTARY FIGURE 2

Correlation analysis between high and low risk groups and clinical

characteristics (including age, sex, pathologic T, N, M, and OS).

SUPPLEMENTARY FIGURE 3

K-M survival curves of risk scores in stratified clinical characteristics.
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