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Comprehensive analysis of abT-
cell receptor repertoires reveals
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Physics and Technology, Dolgoprudny, Russia, 4Department of Information Technologies and
Programming, Saint-Petersburg, Russia, 5Center of Molecular Medicine, Central European Institute of
Technology (CEITEC), Masaryk University, Brno, Czechia, 6Department of Genomics of Adaptive
Immunity Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia,
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Dhabi, United Arab Emirates
Thymic selection is crucial for forming a pool of T-cells that can efficiently

discriminate self from non-self using their T-cell receptors (TCRs) to develop

adaptive immunity. In the present study we analyzed how a diverse set of

physicochemical and sequence features of a TCR can affect the chances of

successfully passing the selection. On a global scale we identified differences in

selection probabilities based on CDR3 loop length, hydrophobicity, and residue

sizes depending on variable genes and TCR chain context. We also observed a

substantial decrease in N-glycosylation sites and other short sequence motifs for

both alpha and beta chains. At the local scale we used dedicated statistical and

machine learning methods coupled with a probabilistic model of the V(D)J

rearrangement process to infer patterns in the CDR3 region that are either

enriched or depleted during the course of selection. While the abundance of

patterns containing poly-Glycines can improve CDR3 flexibility in selected TCRs,

the “holes” in the TCR repertoire induced by negative selection can be related to

Arginines in the (N)-Diversity (D)-N-region (NDN) region. Corresponding

patterns were stored by us in a database available online. We demonstrated

how TCR sequence composition affects lineage commitment during thymic

selection. Structural modeling reveals that TCRs with “flat” and “bulged” CDR3

loops are more likely to commit T-cells to the CD4+ and CD8+ lineage

respectively. Finally, we highlighted the effect of an individual MHC haplotype

on the selection process, suggesting that those “holes” can be donor-specific.

Our results can be further applied to identify potentially self-reactive TCRs in

donor repertoires and aid in TCR selection for immunotherapies.
KEYWORDS

thymic selection, immune repertoire sequencing, immune repertoire analysis, T-cell
immunity, T-cell receptor repertoire, HLA alleles
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GRAPHICAL ABSTRACT

Study overview. (A) Datasets used in the study and the way TCR sequences were analyzed. (B) Main directions in which thymic selection shapes TCR
repertoire. Selection results in TCR-CDR3 losing positively charged and large amino-acids while increasing its flexibility. Unlike CDR3 of the TCRa
chain, CDR3b hydrophobicity is also increased by selection. CDR3s carrying Cysteines and glycosylation sites are unlikely to pass the selection. In
contrast, CDR3s carrying poly-Glycine regions are more likely to be selected for both chains. T-cells committed to CD8+ lineage were more likely
to feature bulged CDR3s compared to CD4 +. (C) CDR3s enriched after thymic selection guide lineage commitment according to single-cell RNA
sequencing data analysis, e.g. the MAIT cells and CD8+ phenotypes. (D) Enrichment and depletion of certain TCR motifs pinpoint the fine structure
of post-selection repertoires, as inferred by sequence neighborhood analysis. (E) Comparative analysis of enriched and depleted TCR clusters after
thymic selection in monozygotic twins revealed that the selection process is shaped by HLA haplotype.
Introduction

Lymphoid progenitors migrate from the bone marrow to the

thymus where they develop T-cell receptors (TCR, a heterodimer of

a and b chains) via a process called Variable-(Diversity)-Joining

gene rearrangement, which undergo selection in order to become

mature T-cells (1).
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The process of V(D)J gene rearrangement involves two main

steps: 1) three (V, D, and J for TCR b chain) or two (V and J for

TCR a chain) gene alleles from corresponding loci are selected and

recombined together; and 2) bases are randomly deleted at gene

ends and non-template (N) nucleotides are added to the junction

sites between genes to increase sequence diversity. These processes

result in a great variety of possible TCRs, estimated to be ~1019 (2),
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which is orders of magnitude greater than the total number of T-

cells in the human body (~1011 (3),).

Before release into the bloodstream, a T-cell must undergo

thymic selection to ensure functionality in antigen recognition

(positive selection) and tolerance to healthy cells, avoiding

reactivity to self (negative selection) (1). This is a multi-staged

process (4) that begins with CD4-CD8- double-negative (DN) T-

cells rearranging their TCR b chain and validating their

functionality with pre-TCRa. Next, they rearrange the a chain,

forming a mature TCR, and transition to a CD4+CD8+ double-

positive (DP) phenotype, undergoing positive and negative

selection. Finally, DP T-cells differentiate into CD4+ or CD8+

single-positive (SP) T-cells and emigrate from the thymus.

The complementarity-determining region 3 (CDR3) of the T-

cell receptor (TCR), encoded by the V(D)J junction and directly

interacting with the peptide presented by MHC, is highly diverse

and often serves as a proxy for TCR sequences in studies (5). This

study focuses on CDR3 sequences to explore the thymic selection

process within the TCR repertoire.

Modern TCR repertoire studies use high-throughput

sequencing (Rep-Seq (6) or AIRR-seq (7) to analyze millions of

TCR sequences from various biological samples. Given the limited

published data on human pre-selection thymocyte repertoires, we

and others have utilized a theoretical model of V(D)J

rearrangement to model such repertoires (8). We also rely on the

hypothesis that “singleton” T-cell clonotypes supported by a single

mRNA molecule primarily represent naive T-cells to model the

post-selection naive TCR repertoire (9).

Our general approach in the present study was to compare TCR

repertoires before and after selection using model data and

conventional peripheral blood mononuclear cell (PBMC) AIRR-

seq data and to validate our findings using sorted DP and SP

thymocytes (10). We explored both local and global repertoire

structures of pre- and post-selection TCRs by analyzing sequence

features that can influence the selection process on various levels: V/

J gene usage, amino acid composition and physicochemical

properties of primary CDR3 sequences, CDR3 k-mer profiles of

repertoires, and prominent sequence motifs. In order to refine

comparative analysis and remove noise originating from the

intrinsic randomness of the V(D)J rearrangement, we utilized a

TCR sequence cluster enrichment strategy based on the TCRNET

method, allowing us to detect selection motifs in whole-body TCR

repertoires with intrinsically complex structures (11).

Previous studies have examined TCR features in thymic

selection. Lu et al. (12) reported shifts in amino acid usage, with

reduced frequencies of hydrophobic and positively charged amino

acids and cysteines. Stadinski et al. (13) found that TCRs with

hydrophobic residues in specific positions are prone to cross-

reactivity, reducing their survival chances. Other studies showed

repertoire differences across the thymus, lymph nodes, and spleen

(14, 15). These features were also revisited in Isacchini et al. (16)

using repertoire modeling, yet the study arrives at the conclusion

that selection features resemble themselves on local and global

scales, claiming that there are no forbidden TCR sequences and
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selection motifs. We review the aforementioned features using our

framework and arrive at similar conclusions, yet we extend

previously published findings by showing locally enriched and

depleted TCR patterns after selection that can be both public and

donor/HLA-specific.

Linkage between lineage commitment and TCR was extensively

studied, revealing distinct CDR3 features between CD4+ and CD8+

(17), CXCR3+ and CXCR3- naive CD8+ (18), and helper T cell

subsets (19). Here we explore it in more detail via single-cell data,

showing that selection motifs are linked to certain phenotypes.

Moreover, we show that the structure of the CDR3 loop is different

for CD4- and CD8-related TCR motifs.

We also considered the role of donor HLA haplotype in

selection and demonstrated how allele-specific differences

contribute to local repertoire characteristics. Such effects were

previously reported for mice CD4+ repertoires (20). It was also

shown that MHC context generally shapes the T-cell repertoire

(21). An approach, similar to ours, involving twins’ TCR

repertoires, was used by Tanno et al. to reveal the impact of

genetic factors, in particular MHC alleles, on TCR repertoires (22).
Materials and methods

Post-selection T-cell repertoires

We used previously published (PBMC) TCR repertoire sequencing

data for both TCRa (23) and TCRb (24) chains. For TCRb, a sample of

10 CMV donor repertoires selected ad hoc were chosen from the HIP

cohort of the Emerson et al. (24) dataset for TCRb analysis (sample IDs

in dataset from 1 to 10). For TCRa we used all bulk TCRa PBMC data

(10 samples) available in Heikkilä et al. (23). Only clonotypes that are

supported by a single read (singletons) were used in subsequent analysis

(9). The TCRb sample consisted of 1,147,250 TCR sequences and the

TCRa sample of 1,582,774 (Supplementary Table 1). Note that

generation biases were not controlled, as the datasets comprised

sequences from multiple individuals, which masked the effects of

individual generation biases. Additionally, generation biases are

imprinted in the selection process [see reference (16)].
Sorted repertoires

Repertoires of sorted CD4+ and CD8+ naive (post-selection) T-

cell sequencing were taken from Qi et al. (25); this data is available

for TCRb chain sequencing only. TCR repertoire DP and CD8+

(SP) thymocytes (pre-selection) were taken from a recent Quiniou

et al. (10) study. Naive repertoires of all nine donors in this dataset

were combined together, resulting in 1,346,776 clones for CD8+

naive cells and 1,599,217 clones for CD4+ naive cells

(Supplementary Table 1). Note that for these datasets no read

count information was used (i.e. all clonotypes were assumed to

be singletons) in order to avoid potential amplification biases and to

make it compatible with other datasets.
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HLA matched and mismatched repertoires
(twin studies)

A dataset containing PBMC TCRb repertoire sequencing for

three pairs of monozygotic twins was taken from “Precise tracking

of vaccine-responding T cell clones reveals convergent and

personalized response in identical twins” by Pogorelyy et al. (26).

Pre-vaccination and day 0 repertoires sampled prior to treatment

were used as biological replicates for each twin, and only singletons

were included in the analysis. HLA alleles for donors are listed in

Supplementary Table 2. An additional dataset containing PBMC

TCRa and b repertoires from three pairs of monozygotic twins was

taken from “Distinctive properties of identical twins’ TCR

repertoires revealed by high-throughput sequencing” by Zvyagin

et al. (27). Sorted naive CD4+ T-cells TCRb repertoires from two

pairs of monozygotic twins were also obtained from “Functionally

specialized human CD4+ T-cell subsets express physicochemically

distinct TCRs” by Kasatskaya et al. (19). Summary statistics for

datasets are reported in Supplementary Tables 1, 3, and 4.
Simulating pre-selection V(D)J
rearrangements

Pre-selection TCRa and b repertoires were simulated based on

a theoretical probabilistic model of the V(D)J rearrangement

process using OLGA software (v1.2.4) as described previously (8).

The software was executed with default runtime parameters and

model probabilities, random seed was set to 100, and a sample of

107 random rearrangements was generated for each TCR chain.
Single-cell data analysis

Single-cell datasets with assigned cell types totaling 178307 cells

from PBMC samples of 88 healthy patients were taken from

Lindeboom et al. (28). Cell type annotation was performed using

CellTypist, as specified in the original study (29). Cluster abundance

on a particular cell type was tested using the Fisher exact test.
TCR amino acid sequence feature and
motif analysis

Basic features of the TCR sequence such as V/J gene usage,

single amino acid frequencies, k-mer (k=3) frequencies, and

physicochemical properties of CDR3 regions were carried out

using in-house scripts as described previously (30). The set of k-

mers was not filtered based on their relative position in CDR3.

Kidera factors (key amino acid features that describe most variance

in polypeptide physicochemical properties) (31), charge, and

hydrophobicity were calculated using the “peptides” python

package (v0.3.2). The most informative Kidera factors, Kideras 2,

4, 6, and 8, correspond to Side-chain size, Hydrophobicity, Partial

specific volume, and Occurrence in the alpha region respectively.
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Kidera factor values were compared using T-test; Cohen’s d was

used as an effect size estimate.

Kidera factors were not z-score normalized because the datasets

compared with OLGA-generated data were obtained using the same

protocol as the data used to train the OLGA model (Supplementary

Table 1) and all samples in the thymocytes dataset were obtained in

a single batch. Detection of TCR CDR3 sequence motifs was

performed using the TCRNET algorithm implemented in

VDJtools (v1.2.1) as described previously (11). This method

defines TCR sequences of interest as those that are placed in the

more dense regions of a CDR3 sequence similarity graph compared

to a control (typically produced assuming V(D)J rearrangement

model with no selection pressure) dataset: the number of 1-

hamming distance neighbors is compared to the expected number

of neighbors adjusted for sample and control sizes to produce an

enrichment score and a P-value based on Binomial approximation.

Note that in order to infer TCR sequence clusters that were

depleted by negative thymic selection, we simply swapped

“background” (control) and “foreground” (our sample of

interest), i.e. we searched for TCRs enriched in pre-selection data

compared to post-selection.

In order to produce a representative set of TCR clusters, we

selected the top 10,000 neighbor-enriched CDR3 sequences based

on enrichment P-value. Selected sequences were clustered by

choosing connected components of the graph with edges

connecting sequences that differ by a single amino acid

substitution. Motifs for selected clusters were visualized using

logomaker package (v0.8). The top five largest clusters were

subsequently analyzed and numbered according to their cluster

size rank. The number of clusters was selected ad-hoc.

The SoNNia (v0.2.3) model was additionally used to assess

differences in amino acids’ occurrence probabilities, in particular

their position in post- vs pre- selection repertoires (32). For

calculating marginal probabilities of sequence features, we trained

the SoNNia model using pairs of post-selection and pre-selection

datasets (e.g. post-selection TCRb and OLGA generated TCRb
data). Post-selection datasets were used as data for model

inference and pre-selection datasets were used as data sampled

from generative distribution. Each dataset was processed with

methods from the “Processing” class and then passed to the

SoNNia model with appropriate “pgen_model” parameters. Each

model was trained for 50 epochs, with a batch size equal to 104.

Models were assessed with built-in plotting functions, as shown in

the SoNNia tutorial (https://sonnia.readthedocs. io/en/

latest/sonnia_tutorial.html).
Comparative analysis of twins dataset

In order to identify positively and negatively selected CDR3

clusters in the twins dataset, we subsampled each twin sample to

306,553 CDR3s (size of the smallest repertoire) and pooled all the

samples together. We used ad hoc thresholds to select significantly

enriched (log2 fold change > 2 and -log10 p > 12 for sample pool

compared to simulated sequences as control) and depleted (log2
frontiersin.org
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fold change > 1 and -log10 p > 12 for simulated sequences

compared to sample pool as control) clusters after thymic

selection clusters. Clusters containing more than 10 sequences

were used for further analysis. Next, similarity between positively

and negatively selected clusters was estimated by computing the

Jensen-Shannon divergence between cluster frequencies defined as

the number of clonotypes from a given cluster present in a

given sample.
Structure analysis

CDR3 loop structures for TCRs of interest were modeled using

the TCRmodel web tool (33) and processed with Pymol (version

2.3.0). Our in-house “mir” software package was used to annotate

the resulting PDB files (see (34)). As CDR3a is not known in most

of our datasets, we used a generic CAGGSSNTGKLIF (TRAV27,

TRAJ37) sequence that was the most commonly observed variant in

the dataset from Heikkila et al. (23) as a dummy TCRa sequence.

The TCR CDR3 backbone was visualized by applying PCA to Ca
atom coordinates.

Experimental structures of TCR:pMHC complexes were

obtained from VDJdb (35). We selected only records with

available PDB IDs of human TCRs. The structures were required

to harbor both TCRa and TCRb along with a pMHC complex.

Additionally, at least one CDR3b residue had to be within 5 Å of the

peptide in a pMHC complex to ensure direct contact between the

TCR b chain and the pMHC complex. A total of 154 structures in

total were analyzed. Dihedral angles in these structures were

calculated with Biopython (v. 1.85) Python package (36).
Code availability

All code used in this study is available at https://github.com/

LuppovDaniil/Thymic_selection_notebooks (Python version

3.11.5., R version 4.1.2).
Results

Comparing pre- and post-selection TCR
amino acid sequences

AIRR-seq data for DP T-cells sorted from the thymus can be

used to explore the initial space of rearranged TCRa and b
sequences existing prior to positive and negative selection, similar

to the work of Quiniou et al. (10). Recent studies demonstrate that a

probabilistic model can accurately replicate the structure of V(D)J

rearrangement space, generating TCR sequences with amino acid

composition and frequencies resembling those produced in vivo (8).

Here we use both Quiniou et al. and model datasets as a pre-

selection repertoire.

There are several ways to acquire the TCR repertoires of post-

selection T-cells that have not yet undergone strong antigen
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exposure and obtained memory phenotypes. One can either sort

and sequence naive CD4+ and CD8+ T-cells as performed in Qi

et al. (25) or use SP thymocytes as done in Quiniou et al. (10).

Alternatively, one can select T-cell clonotypes detected only once

(singletons) from unsorted PBMC AIRR-seq data, as they mostly

represent naive T-cells (see Britanova et al. (9)). In the present

study, we used the datasets from Qi et al. and Quiniou et al. and

selected singletons from 10 samples chosen ad hoc from the

Emerson et al. dataset as a TCR repertoire after selection but

prior to any antigen exposure or subsequent expansion. The

detailed description of these datasets and comparison analysis is

given in the Method section.

Analysis of TCRb CDR3 amino acid frequencies revealed a

significant post-selection decrease in specific residues compared to

those expected from a V(D)J rearrangement model (Figure 1A).

Positively charged and physically large amino acids, such as

arginine, histidine, and lysine, were likely reduced due to strong

antigen binding or steric hindrance in antigen recognition (37),

while Proline and Cysteine were negatively selected possibly due to

their effects on TCR structure. These findings were generally

confirmed in thymocyte data (Supplementary Figure 1A).

Analysis of 3-mer frequencies revealed that 3-mers with

cysteine had less chance to survive selection (Figure 1B),

consistent with observations at the single amino acid level

(Figure 1A). 3-mers with the NX[S,T] motif, associated with N-

glycosylation sites (38), are less likely to survive selection, with NPT

and NPS being the least affected, consistent with the absence of

glycosylation at these sites (39) (Figure 1B). We also analyzed

sulfonation site motifs, which were described in Pospelova et al.

work (40) for antibodies, such as DDD, DDY, YYY, and EEE. The

tangible reduction effect was observed only for the DDDmotif. Both

glycosylation sites and Cysteine-linked effects and a lack of effect

from putative sulfation sites were observed in the thymocytes data

(Supplementary Figure 1B). Additionally, we assessed the positions

of the glycosylation sites in the CDR3 sequences and discovered

that, for CDR3b, most (85% and more for different datasets)

glycosylation sites were located in the NDN segment, highlighting

their somatic origin. For CDR3a, however, only 44-53% of these

sites were located in the N segment.

In order to describe changes in physicochemical properties of

TCRb CDR3s, we harnessed Kidera factors (31). These factors

represent the key physical properties of amino acids obtained by

dimensionality reduction. We compared each VJ pair

independently in order to lessen the bias caused by the choice of

the V and J genes (Figure 1C). The Kidera factors negatively affected

by selection were Kidera 2, which determines side chain size, Kidera

4, which is inversely associated with hydrophobicity, and Kidera 6,

which determines partial specific volume. These results suggest that

TCRbs with a physically small hydrophobic CDR3 have a greater

chance of passing selection. The only factor that increased post-

selection was Kidera 8 (occurrence in the a-helix structural region).
Notably, the selection effect within a particular Kidera Factor was

shared across all VJ pairs. Identical analysis of DP and SP

thymocytes mirrored the above results, however, the effect for

Kidera factor 6 was less pronounced (Supplementary Figure 1C).
frontiersin.org

https://github.com/LuppovDaniil/Thymic_selection_notebooks
https://github.com/LuppovDaniil/Thymic_selection_notebooks
https://doi.org/10.3389/fimmu.2025.1605170
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luppov et al. 10.3389/fimmu.2025.1605170
FIGURE 1

Model generated CDR3b and naive CDR3b repertoire (naive sample) comparison. (A) Single nucleotide frequencies before and after selection
comparison. (B) 3-mers frequencies comparison. Glycosylation sites (red) and C-containing 3-mers (blue) are negatively selected. Dashed line
represents the y = x relationship. (C) Volcano plot for Kidera factors affected by selection. Each point represents a VJ pair. Negative shift in Kidera
factors 2, 4, and 6 and positive shift in Kidera factor 8. The ratio of fractions of a particular VJ pair before and after selection were labeled as
“selection force”. (D) Negative shift for charge distribution after selection. (E) “Winsorizing” of CDR3 length values post selection. (F) Positive shift in
hydrophobicity values after selection. (G) Largest enriched and depleted clusters and their logos obtained by sequence neighborhood analysis.
(H) Study nomenclature for the comparison groups. Datasets utilized as repertoires before thymic selection (pre-selection) are shown on the left
side of the figure and the ones after selection (post-selection) on the right. Arrows represent enrichment analysis (TCRNET) application with pre- or
post- selection dataset taken as background and the relative dataset from the opposite group taken as repertoire under examination. Sequences
enriched in post-selection datasets are also referred to as enriched after selection. Sequences enriched in pre-selection datasets - as depleted after
selection.
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The analysis of the physical properties of TCRb CDR3 revealed

a decrease in repertoire charge post-selection (Figure 1D),

consistent with the observed reduction in frequencies of positively

charged amino acids (Figure 1A), the winsorizing (resulting

distribution having thinner tails) of lengths (too short and too

long sequences both have less chance to pass selection), and the

increase in hydrophobicity (Figure 1F). Except for length, which

experienced shortening instead of winsorizing, the same effects were

detected on thymocytes data (Supplementary Figures 1D–F).

Next, we identified functional clusters of TCRb CDR3s enriched
in naive cells compared to the modeled sample and vice versa (30).

The largest enriched clusters in naive and model-generated samples

are presented in Figure 1G. Model-enriched clusters can be

interpreted as sequences which tend not to pass the selection and

naive sample-enriched clusters are ones which are likely to survive

thymic selection. For convenience, the terminology (enriched and

depleted pre- and post-selection versus positively and negatively

selected) used here and in the Supplementary Materials is explained

in Figure 1H.

The majority of the post-selection enriched clusters contain

poly-Glycine sequences in the middle of a TCRb CDR3 (Figure 1G;

Supplementary Figure 2), which is known to be one of the most

flexible among the polypeptides chains (41). Additionally, k-mers

analysis demonstrated that GGG 3-mer passed through the

selection with unchanged frequency (Figure 1B; Supplementary

Figure 1B), confirming the above finding. CDR3b from pre-

selection enriched clusters frequently contained Arginine and

Proline (residues likely impacting CDR3 loop structure) and

exhibited deviations in the CASS consensus sequence at the

CDR3 start (Figure 1G; Supplementary Figure 2). Results of

enriched cluster analysis for thymocytes data mostly resembled

those obtained in the generated data (Supplementary Figure 3).

In order to obtain pre- and post- selection probabilities of amino

acid occurrence in a particular position in CDR3, we utilized the

SoNNia software (32). Generally, we observed the nearly identical to

enriched clusters analysis trends (Supplementary Figures 4A, С).

Gene usage analysis revealed a vague picture of little or no

preference of selection to more frequent genes (or “rich get richer

effect” (42)) on both generated and experimental data

(Supplementary Figures 5, 6).

Interestingly, while no “rich get richer effect” was observed for

the gene frequencies, it was detected in terms of CDR3b generation

probabilities (pgens) for DP and SP thymocytes calculated via the

OLGA model (p < 10-5, Mann Whitney test, differences of median

log2 Pgen between SP and DP was 2.24, Supplementary Figure 1G).

Analysis of TCRa CDR3s, conducted identically to the one for

TCRb, revealed both common selection effects and notable differences

between the two chains (Supplementary Figures 4, 7–12). For this

analysis, a subsample of CDR3 singletons from PBMC (23) was utilized

alongside a thymocytes CDR3a repertoire (10) and model-

generated data.

Among the observed differences, the following points are

noteworthy: (i) there were no clear trends in the selection preferences

toward individual amino acids (Supplementary Figures 7A, 8A) (ii)

there was no consistent direction of Kidera factor changes for TCRa VJ
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pairs (Supplementary Figures 7C, 8C); (iii) there was an unchanged

post-selection repertoire hydrophobicity (Supplementary Figures 7F,

8F); and (iv) there was a more complex structure of clusters enriched

and depleted after selection, with DS and NY 2-mers prevalent in

thymocyte-enriched clusters but not in naive data (Supplementary

Figure 10) and SS 2-mers being more abundant in clusters enriched

in both model and DP thymocytes (Supplementary Figures 9, 10).

Notably, the common selection effects observed for both a and b chains
were less pronounced in the case of TCRa (Supplementary Figures 7, 8).

Additionally, we stored TCRs and patterns for the largest

clusters enriched and depleted after thymic selection, obtained

above in a database available at https://github.com/LuppovDaniil/

thymic_selection_motifs_database.
Single-cell analysis reveals the CDR3-
dependent differentiation

To trace the signs of TCR driven lineage commitment during

thymic selection, we utilize single-cell sequencing PBMC data

derived from 88 healthy donors, totaling 178307 T-cells of

different lineages (28). We aimed to demonstrate that enriched

and depleted clusters are linked with particular T-cell phenotypes.

We intersected CDR3s from these clusters (Supplementary

Figures 2, 3, 9, 10) with a single-cell TCR repertoire and tested

the linkage of these clusters with each particular cell phenotype.

Generally, the expected results were obtained. TCRs from clusters

depleted after thymic selection were 10- to 20-fold less abundant in

single-cell data than those from enriched clusters (Figures 2C, D, G, H),

supporting our ability to identify TCRs disfavored by selection. Clusters

enriched post-selection were mostly linked with naive phenotypes

(Figures 2A, B, E, F). SP thymocyte clusters were mostly represented

by CD8+ naive cells, which is expected since SP thymocytes in our

research are of CD8+ lineage (Figure 2B).

We also found that the TCRb of CD8+ cells are more prone to

neighborhood enrichment than TCRbs of CD4+ cells (Figure 2A).

The cluster enriched in CD8+ Recent Thymic Emigrants (RTE)

subtype stood out against the other clusters enriched in CD8+ Naive

cells (Figure 2A). Such an observation could be the sign of

peripheral selection effects on the repertoire. Cluster 4 of SP

thymocytes is also of particular interest, since it demonstrated

abundance in both CD8+ RTE and Tregs (Figure 2B).

Moreover, we observed the abundance of TCRa from enriched

SP thymocyte clusters in MAIT cells subtype (Figure 2F cluster 3),

which is again expected since MAIT cells are characterized by their

“semi-invariant” TCRa (43).

Additionally, we assessed our assumption considering mostly naive

origins of singletons in PBMC data. We inferred the phenotype for

singletons from TCRb and TCRa datasets using single-cell data and

found that TCRb singletons were indeed enriched in the naive subset (p
< 10-4, Fisher exact test); however, we were unable to detect the same

enrichment for TCRa. Despite this peculiar inconsistency, we still

believe that our assumption is correct, since the share of memory

cells in the single-cell data was 10 times lower than the share of naive

cells and the majority of T-cells were once naive.
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To consolidate our findings, we analyzed SP thymocyte clusters

utilizing standard 10X Genomics datasets containing both single-

cell gene expression and TCR sequencing data. Generally, similar

results were obtained: (i) cells carrying TCRb from CD8+

thymocyte-enriched clusters were mostly of CD8+ phenotype;
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and (ii) TCRa-enriched clusters were mostly associated with

MAIT cells (Supplementary Note 1).

These results demonstrate TCR driven lineage commitment

during thymic selection both for a well-characterized case of MAIT

cells as well as a more complex one of CD8+ cells.
FIGURE 2

Abundance of TCR sequence motifs enriched and depleted during thymic selection in T-cell subsets defined by single-cell sequencing data. Odds
ratio of observed to expected number of sequences matching between cell phenotype and selection “motif” (cluster) is shown by color; two-tailed
Fisher exact test P-values for odds scores post multiple testing correction are shown with asterisks (* for p < 0.05 and ** for p < 0.01). Cluster-
phenotype pairs discussed in the main text are highlighted with arrows. Chosen clusters are represented as logos. SP, DP, Naive, and Model datasets
for TCR a and b are shown in panels (A–H) which represent different comparisons as described in the main text: (A, B, E, F) represent enriched after
selection TCRs, while (C, D, G, H) represent depleted after selection ones; (A, C, E, G) are based on model data and naive cells, (B, D, F, H) are based
on real data; (A–D) describe b chain, and (E–H) describe a chain.
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Structural analysis confirms CDR3 features
of CD4+ and CD8+ T-cells

Next, we compared CD4+ and CD8+ naive cell TCR repertoires

taken from the Qi et al. study (25). The most notable result of this

comparison is from clusters enriched in CD4+ or CD8+ CDR3bs.We

employed the TCRmodel2 to analyze the structure of the most

prevalent CDR3 in the largest clusters within each group (33) and

discovered a difference in convexity between enriched CDR3b CD8+

and CDR3b CD4+ structures (Figures 3A, B). It appeared that CD4+

enriched clusters were structurally flat, whereas CD8+ clusters were

more convex. The centers of mass for the contacting region of CD8+

CDR3b (excluding the first four and last five residues) were located

further from the loop center compared to the center of mass of CD4+

CDR3b (Figure 3B). However, in our sample of 18 structures, this

difference was not statistically significant.

This fact may be explained by the conformation of peptides in

MHC class I and MHC class II grooves. MHC class I, which is

recognized by CD8+ cells, tends to present peptides with a middle

bulge, whereas MHC class II, recognized by CD4+ cells, tends to

present flat peptides (44).

We further investigated the structural difference between CD4+

and CD8+ CDR3bs using data stored at VDJdb (35). We took

Human TCRs with available TCR:pMHC complexes harboring

contacts between CDR3b and peptide. In total 154 structures

were analyzed. We visualized all CDR3b dihedral angles in these

structures via a canonical Ramachandran plot and discovered a

distinct region on the plot that was abundantly inhabited by CD8+

CDR3b residues (Figure 3C, green rectangle). The structural

conformation corresponding to this region of the Ramachandran

plot is mostly available for Glycines (45). The majority of structures

with residues in this region were represented in it only by one

residue. CD8+ TCRs harboring such a conformation were 2.83

times more frequent than CD4+ TCRs (p = 0.017, Fisher exact test).

This region at the right bottom of the Ramachandran plot in the

Hollingsworth and Karplus work (45) was referred to as PII’. PII’ is

viewed as a mirror region of PII (more commonly referred to as

Polyproline-II Helix), which is known to maximize polypeptide

chain entropy and expose all hydrogen bond capable backbone

atoms to the water. Additionally, this structural region frequently

forms protein-binding motifs (46), which is relevant for TCR

recognition of antigens. Thus, we would expect this CD8+ specific

conformation to be relatively convex as we described it above.

Moreover, the majority of residues in the discussed region were

Glycines, which were in direct contact with the peptide. The data for

the Ramachandran plot with corresponding PDB ID is available in

Supplementary Table 5.
HLA allele haplotype affects the selection

Next, we considered the HLA allele influence on the thymic

selection. It is still a subject of debate whether HLA alleles affect the

selection or not (16).
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We used CDR3s bulk sequencing data of three pairs of twins

aged 20 to 23 to address this question (26). This data contains TCRb
repertoires for three pairs of twins (assigned as S, P and Q) in two

replicas: day of vaccination before the shot (day 0) and a day prior

to vaccination day (pre-day).

We compared their naive CDR3 clusters to the modeled

background repertoire. On the one hand, we expected their

enriched naive CDR3 clusters to be closely related with each

other since twins from the same pair have the same HLA alleles.

On the other hand, we anticipated twins from different pairs to be

different from each other in context of their naive TCR repertoire.

We extracted the same number of CDR3s from each twin sample

and then clustered the enriched sequences from each sample together.

Having done this, we obtained a number of clusters composed of

sequences from different samples. Supposedly, each cluster contains

CDR3s, which are functionally similar to each other (recognize similar

peptides in the MHC-peptide complex). Thus, we would anticipate

CDR3s derived from the relative pair of twins to fall into the

same clusters.

To verify this hypothesis, we analyzed the proportion of CDR3s

from a particular twin in the clusters obtained. In this representation,

each sample can be viewed as a discrete probability distribution of

appearing in a particular cluster. This allowed us to calculate the Jensen–

Shannon divergence between samples. We discovered that samples

within each twin pair are much closer than samples from different twin

pairs (Figures 4A, B).

Notably, twin pairs with the homozygous HLA-A 02:01 allele (pairs

P and Q, please see Supplementary Table 2) appeared closer to each

other than to the S pair, which had only one copy of HLA-A 02:01 allele.

The analysis of the clusters that were depleted during the

selection showed similar results (Figures 4C, D). Thus, HLA

alleles affect not only which TCRs will be promoted by selection

but also the TCRs which will be eliminated by it, so called “holes” in

the repertoire. Notably, we detected the effect of homo/

heterozygosity of HLA-A gene alleles on the T-cell repertoire

again but this time it was stronger—twin pairs, which were

homozygous by HLA-A (P and Q), were 2–3 times closer to each

other than to HLA-A heterozygous twin pairs (S) (Figure 4D).

We repeated the analysis in the same manner for two other sets

of twins’ TCRs, one of which represented CD4+ naive cells, and

obtained similar results (Supplementary Note 2).

These results suggest that one can observe the imprint of HLA-

based selection on a naive repertoire. Moreover, this imprint was

observed in both enriched and depleted clusters, indicating that

particular HLA alleles can be favorable for one TCR and

unfavorable for another.
Discussion

In this study we sought to identify and investigate factors that

are crucial for passing thymic selection. We considered such factors

as amino acid composition, K-mers composition, Kidera factors,

charge, length, hydrophobicity, and TCR gene usage. We also
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analyzed functional clusters enriched in samples before and after

selection and SoNNia-inferred marginal probabilities of amino

acids to occur in a particular position of CDR3. To gain a deeper

understanding of enriched or depleted clusters after selection,

analysis of physical structures and single-cell data analysis were

carried out. Finally, we considered HLA alleles as a factor that has
Frontiers in Immunology 10
an impact on selection and indeed managed to show a significant

influence from it.

Amino acid usage analysis revealed that having Proline and large

positively charged amino acids in CDR3 reduces the likelihood of

TCRb but not TCRa survival during selection (Figure 1A;

Supplementary Figure 1A). On a 3-mers level we showed that
FIGURE 3

Structural differences between CDR3 of CD8+ and CD4+ T-cells. (A) Modeled 3D structures of CD4- and CD8-enriched CDR3b repertoires. The
most common CDR3bs were taken from the three largest clusters for both CD4+ and CD8+ clones for visualization. CD8-enriched structures tend
to be more loose while CD4-enriched clusters are more assembled. (B) Same as A but 2D PCA projection with two additional TCRs from each
cluster. Centers of mass of the contacting part of CDR3 with error bars representing standard mean errors (SEMs) of PC1 and PC2 are shown with
black crosses. (C) Ramachandran plot for CDR3b loops taken from known TCR:pMHC structures from VDJdb. The green rectangle highlights the
CD8+-specific region of the plot. NCD4/CD8 represents the total number of residues taken from CD8+ or CD4+ TCRs respectively, nCD4/CD8

represents the total number of CD8+ or CD4+ structures respectively. Same but M and m are shown with numbers in the green rectangle.
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Cysteine and N-glycosylation sites negatively affected the chances of

survival (Figure 1B; Supplementary Figures 1B, 7B, 8B). Kidera

factors analysis revealed a difference in selection effects for a and b
CDR3s. For CDR3b, we observed synchronous changes in four

Kidera factors for every VJ pair (Figure 1C). These four Kidera

factors represent physical volume, hydrophobicity, and occurrence in

the alpha region. Thus, small, hydrophobic, and Glycine-reach

CDR3bs have greater chances of surviving selection. Notably, the

preference of the selection toward glycines was previously shown by

Elhanati et al. (42). Unlike CDR3b, we did not observe the common

direction of changes for the CDR3a Kidera Factors for every VJ pair

(Figure 1C; Supplementary Figures 7C, 8C). This may indicate that

the selection of physical properties in the case of CDR3a is specific to

the VJ pair. We observed a reduction in the charge and length of

CDR3a and CDR3b repertoires following selection (Figure 1D;

Supplementary Figures 1E, 7D, 8E), with hydrophobic CDR3b
sequences exhibiting higher survival probability (Figure 1F),

whereas hydrophobicity did not influence CDR3a selection

(Supplementary Figures 7F, 8F), likely due to possible VJ-specific

selection factors. Furthermore, CDR3 carrying flexible poly-Glycine

subsequences tend to survive the selection, while structurally complex
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ones exhibit the opposite (Supplementary Figures 2, 3, 9, 10). Gene

usage analysis demonstrated a vague picture of gene usage changes

through the selection (Supplementary Figures 5, 6, 11, 12).

Previous studies assessing the incidence of glycosylation sites in

antigen receptors were limited to antibodies, highlighting de-novo

acquisition of glycosylation sites as a distinctive property of

follicular lymphoma (47): levels of N-glycosylation acquisition

differ between follicular lymphoma subtypes and may have an

important role in this malignancy (48, 49). Therefore, we might

propose that acquired N-glycosylation may have a diagnostic value

in case of T-cell abnormalities.

Overall, our analysis showed that structurally simple and

flexible CDR3s have a greater chance of passing the selection.

One can hypothesize that such CDR3s are capable of recognizing

a wide variety of peptides within the thymus with a moderate

binding strength, which is the exact requirement for getting through

thymic selections (50) and is in line with the existing model of TCR

recognition of a pMHC complex (51–53). The observed selection

bias toward flexible TCRs aligns with the model where TCR changes

its conformation to “scan” each pMHC complex (51–53). Small and

hydrophobic TCRs may be better at binding and stabilizing pMHC
FIGURE 4

HLA allele affects thymic selection of the TCRb chain. (A) Heatmap representing the Jensen-Shannon divergence between frequencies of
occurrence in enriched functional clusters for each twin sample (S, P, and Q pairs in two replicas). (B) t-SNE plot for occurrence frequencies in
positively selected functional clusters. (C) Heatmap representing the Jensen-Shannon divergence between frequencies of occurrence in modeled
data functional clusters with each twin sample as a background. (D) t-SNE plot for occurrence frequencies in negatively selected functional clusters.
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complexes due to sterical and kinetic reasons: it was shown that

both association and dissociation of the TCR:pMHC complex

requires overcoming high energetic barriers and the above

features may help to overcome such barriers (53).

Notably, observed differences in selection preferences for

CDR3a and CDR3b remain enigmatic. The most obvious

explanation lies in the fact that b chains contain the diversity

region that typically translates to poly-Glycines, leading to an

inherent bias. The presence of non-conventional T-cells in our

analysis, such as MAIT and iNKT cells, which are selected by

alternative mechanisms mostly driven by a chain (43), may

partially explain this contradiction. Another possible explanation

for these inconsistencies may be in the presence of a rescue

mechanism for the a chain; unlike TCRb, TCRa can undergo

rearrangement multiple times during functional TCR formation (1).

Thus, it may play a compensatory role for suboptimal TCRb chains.

In addition to the above findings, we demonstrated the direct

impact of TCRs on T-cell lineage commitment (Figure 2) using

single-cell datasets with adjusted CDR3 sequencing data. The effect

was especially pronounced for the a chain. TCRa plays a key role in

commitment to non-conventional lineages like MAIT cells, which

were highly enriched in our analysis (Figure 2; Supplementary Note 1)

(43). Moreover, we discovered that flat CDR3s favor CD4 lineage, as

they align with MHC class II peptides, while curved CDR3s are

associated with CD8+ T-cells, resembling MHC class I peptides (44)

(Figure 3). Broader analysis of available TCR:pMHC structures

allowed us to identify CD8+-specific CDR3 conformations on the

Ramachandran plot. Further analysis in this direction may aid in

developing machine learning methods for T-cell fate prediction based

on CDR3 sequences.

Finally, we demonstrated the effect of HLA alleles on thymic

selection using CDR3 repertoires from three pairs of twins.

The presence of a HLA allele-mediated effect on thymic selection

observed in our study contradicts prior findings (16), which suggested

an overall lack of forbidden sequences for the selection, thus neglecting

the HLA-alleles’ impact on the process of thymic selection. We suggest

that this discrepancy can be explained by methodological differences:

Isacchini et al. concentrated their effort around the repertoire as a

whole, averaging local differences across repertoires at different TCR

nearest neighbor graph scales, thus paying little attention to individual

rare clusters specific to each sample from each subject being analyzed.

For example, shortening of CDR3 sequences and removal of rare

lengths will increase the number of nearest neighbors calculated using

Hamming distance, trivially explaining the observation that “local

properties of individual repertoires are well captured by the model

and that the probability landscape of finding receptors sequences is

relatively smooth as a function of sequence distance” reported by the

authors. General trends, e.g. the Matthew effect for generation

probabilities, can be detected by such analysis, exactly as shown in

the paper under discussion. However, as discussed in the ‘HLA Allele

Haplotype Affects the Selection’ section, only upon close examination

of the composition of local patterns does it become clear that HLA-

driven donor-specific negative selection operates in the space of
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functional TCR clusters. One can argue that monozygotic twins may

carry the same initial recombination biases, leading to the proximity of

repertoires. However, the authors of the aforementioned study have

previously shown that the V(D)J rearrangement model depends little

on genetic background; neither does the argument explain the fact that

two pairs of twins with homozygous HLA-A 02:01 alleles were

significantly closer to each other compared to a pair of twins with a

heterozygous HLA-A gene (Figure 4). So, while the impact from VDJ

recombination biases is strong, the overall selection is not driven

exclusively by them. Also, Isacchini et al. analyzed the general

landscape of the selection process by applying dimensionality

reduction to trained selection models. We speculate that these

generalizations in the analysis may lead to the conclusion that there

are no forbidden and favored-by-the-selection motifs: the simplest

example of such forbidden patterns to consider are glycosylation sites

which can occur in TCR sequences with the high probability of

generation but at the same time prevent them from passing the

selection. Interestingly, previous studies in mice also demonstrate

that CD4+ repertoires from animals homozygous by HLA is more

diverse than the repertoire from heterozygous ones (54). Additionally,

in a recent study, which involved a large cohort of 1,521 COVID-19

subjects, the strong HLA-TCR repertoire interplay was

demonstrated (55).

The effect of HLA haplotype on thymic selection described here

adds another level of complexity to the understanding of the

number of autoimmune diseases where HLA risk alleles were

identified (e.g Type I Diabetes (56) or Multiple Sclerosis (57)).

We can suggest that the particular HLA risk alleles not only show

immunogenic peptides to T-cells but also shape the repertoire itself,

allowing autoimmune T-cell clones to survive the selection by

promoting or at least not eliminating them.

Overall, our findings have a number of applications, including the

accession of the likelihood of the particular TCR to pass the selection. It

could be helpful in studying autoimmunity and for the development of

future machine learning models for “in-silico thymic selection”. In

immunotherapy, these results could aid adoptive T-cell transfer (58) by

selecting TCR variants that mimic natural ones, improving antigen

affinity and reducing side effects. Additionally, glycosylation sites

should be avoided in the design of chimeric antigen receptors,

immune checkpoint inhibitors, and any other therapeutic antibodies.

All things considered, our research identified a number of TCR

characteristics that significantly influence thymic selection. These

results offer a quantitative explanation of the entire selection process

and a clearer picture of the range of potential repertoire feature changes

that may take place during thymic selection. It also provides an avenue

for additional study and experimental validation, along with potential

real-world applications.
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