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Objective: This study aims to uncover the molecular biology and immune 
microenvironment of gynecological mesonephric-like adenocarcinoma (MLA). 

Methods: To determine the comprehensive characteristics of MLA, 17 patients 
with MLA were retrospectively enrolled in this study. Whole-exome sequencing 
and mRNA sequencing were performed to explore the molecular features. The 
biological differences between MLAs and epithelial-initiated gynecologic tumors 
reported in The Cancer Genome Atlas database were also analyzed. 

Results: KRAS mutations (82.4%) were considered the driving mechanism and 
were co-mutated with PIK3CA (47.1%) and SPOP (23.5%), but their functions were 
mutually exclusive. In addition, pathways and genes associated with kidney 
development were upregulated in MLA patients. Compared with adjacent 
tissues and common gynecological tumors in The Cancer Genome Atlas, Th2 
signature and resting mast cells account for the majority in MLAs, rendering an 
immunosuppressive TME. Particularly, the expression levels of IFNG, IFN6, and 
IFN1 KRAS_SPOP group, significantly lower than the rates found in KRAS_PIK3CA 
group. KRAS_SPOP mutant MLAs, exhibited reduced immune infiltration in their 
tumor microenvironment. 
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Conclusion: This is the first study to demonstrate the comprehensive molecular 
characteristics of MLA and detect biologically distinct subtypes of KRASmut/ 
SPOPmut and KRASmut/PIK3CAmut MLAs. 
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Introduction 

Mesonephric adenocarcinoma (MA) is a rare malignant tumor of 
the female reproductive tract (1). It typically occurs in the cervix, 
originating from the remnants of the mesonephric duct, and is often 
associated with mesonephric duct hyperplasia (2). Mesonephric-like 
adenocarcinoma (MLA) arises in atypical mesonephric duct remnants, 
is not linked to mesonephric duct hyperplasia, and histologically 
resembles MA (3). MLA was first reported by McFarland et al. in 
2016 as a rare gynecological tumor; moreover, it is included in the 
WHO Classification of Tumours Editorial Board (88) classification of 
tumors of the female reproductive system (4, 5). MLA most commonly 
occurs in the uterus, followed by the ovaries, and is rarely found in the 
fallopian tubes, mesocolon, or urinary tract (6, 7). The majority of 
adenocarcinomas with mesonephroid features occur in the uterus 
(74.7%, 115/154), with a smaller number of cases reported in the 
ovary (25.3%, 39/154) (8). Owing to its high invasiveness, MLA is often 
diagnosed at International Federation of Gynecology and Obstetrics 
(FIGO) stage II–IV and is prone to early recurrence and distant 
metastasis (9, 10). Compared with endometrioid adenocarcinoma, 
patients with uterine MLA have a lower progression-free survival 
(PFS) (11). Moreover, they have a poor prognosis, with 60%–80% of 
them experiencing recurrence or death. The most common site of 
distant metastasis is the lung, followed by the liver. Patients with 
ovarian MLA have a tumor-free survival of 24.5 months, PFS of 68%, 
and overall survival (OS) of 71% (12). 

MLA exhibits morphological features similar to MA, with various 
growth patterns, including tubular, glandular, papillary, reticular, 
glomerular, and solid patterns, with lumens containing colloid-like 
eosinophilic material (13, 14). Histopathologically, MLA tissues 
exhibit mixed morphological features following hematoxylin and 
eosin staining. The MLA tissues are negative or show limited 
positivity for estrogen receptor staining; positive for TTF-1, CD10, 
and GATA-3 staining in most cases; and positive for calretinin 
staining in some cases (15, 16). Recurrent KRAS mutations, 
microsatellite stability, and frequent gains of chromosome 1q are 
observed in MLA (17, 18). Recent studies have shown that KRAS 
mutation is a unique molecular feature of uterine and ovarian MLAs, 
suggesting that this mutation is involved in the occurrence and 
development of MLA (13, 19). KRAS activating mutations are the 
most common molecular alterations in middle renal cell carcinoma, 
02 
leading to sustained activation of mitogen-activated protein kinase 
and subsequent activation of multiple downstream targets (20). Most 
MLAs lack TP53 mutations and POLE exonuclease domain hotspot 
mutations and are negative for mismatch repair genes (21). Patients 
with MLA often have gene mutations associated with endometrioid 
tumors, such as KRAS(90%), PIK3CA(28%), PTEN (23.1%) and 
CTNNB1(14%) mutations, along with some copy number 
variations (18, 22). The PTEN-PI3K-AKT pathway is frequently 
altered in gynecological tumors, especially in endometrial cancer, 
where nearly half of the patients have PIK3CA mutations (23). 
Multiple studies have detected SPOP mutations in the MLA (24, 
25). The mutation frequencies of SPOP in ovarian and endometrial 
mesonephric-like tumors are 27% and 8% respectively (18). The gene 
encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is 
frequently mutated in endometrial cancer (EC), and it is also one of 
the factors driving the progression of EC (26). Both MLA and MA 
exhibit moderate levels of genomic instability, defined as copy 
number variations of whole chromosomes or long/short arms of 
chromosomes (18). Among these, 1q, Chr10, and Chr12 are the most 
frequently amplified segments, and 1p is the most frequently lost 
segment (18). Gene mutation is an important topic of research in life 
sciences, and detection methods have been rapidly developed. 
Detecting gene mutations aids in the early diagnosis and treatment 
of diseases (27). In addition, tumor immune microenvironment 
(TIME) has been reported to be associated with tumor prognosis 
and immunotherapy benefits in many cancers (28). However, the 
molecular pathology and tumor immune microenvironment research 
of MLA is still in its infancy. Exploring the molecular and TME 
characteristics of MLA will help develop more treatment options. 

Next-generation sequencing (NGS) can effectively capture 
extensive genomic information on tumorigenesis, progression, 
and biological behavior (29). In the new era of precision 
medicine, NGS has become a valuable tool for tumor diagnosis 
and treatment. It provides personalized treatment for patients 
through in-depth analysis of the genetic characteristics of tumors 
(30). Owing to the low incidence of MLAs, research on this type of 
tumor is still lacking, especially with regard to molecular biology 
and the immune microenvironment. In this study, integrated DNA-
and RNA-level analysis of MLA was performed to explore the 
molecular features, immune microenvironment, and differences 
between MLAs and other gynecologic tumors. 
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Materials and methods 

Enrolled samples and detection methods 

This study retrospectively analyzed the medical records of patients 
with MLA admitted to the West China Second University Hospital 
between January 1, 2010 and December 30, 2022. A total of 18 cases of 
gynecological MLAs (from 3 different sites) were included. Total DNA 
and RNA were extracted from formalin-fixed and paraffin-embedded 
(FFPE) tumor and peritumoral specimens. The AmoyDx Panoramic 
View® Tumor Gene Detection Kit (AmoyDx, xiamen, China) and 
AmoyDx® Human Transcriptional Gene Detection Kit (AmoyDx, 
xiamen, China) were used for WES and RNA sequencing to analyze 
gene  mutations and  molecular features of the  tumors. This study  was  
approved by the Ethics Committee of the West China Second 
University Hospital. 
WES and RNA sequencing 

To perform NGS, DNA and RNA were extracted from FFPE 
samples using AmoyDx®MagPure FFPE DNA LQ Kit and 
AmoyDx® FFPE RNA Extraction Kit, respectively, following the 
manufacturer’s instructions.  xGen® Exome Research Panel v1 
(IDT:1056115) was used to construct DNA libraries. The collected 
products were amplified and quantified using KAPA Hotstart Ready 
Mix and Qubit. The size of the library was determined using an 
Agilent 2100 bioanalyzer. After pooling, libraries were sequenced at 2 
× 150 bp for end reads using Novaseq6000. The sequencing data were 
analyzed and annotated using ANDAS. Sequencing data were cleaned 
by removing adapters and low-quality reads (quality <15) or poly N 
and then aligned to the human reference genome version 19 (hg19). 
PCR repeats were tagged and eliminated. The final VCF files were 
generated by comparing indels and nucleotide polymorphisms. The 
single nucleotide variants and indels were further filtered using the 
following criteria: (i) at least ≥5 readings supporting the variant and 
≥5% variant allele frequencies supporting the variant; (ii) population 
frequency of >2% in 1000g, ExAC, or GnomAD database; (iii) if the 
variant is not located in the CDS region; and (iv) if variants are not 
annotated as (likely/predicted) carcinogenic in the OncoKB database. 
These filtered variations were functional and available for further data 
analysis. RNA sequencing was performed using Novaseq6000. 
Genome mapping of each sample’s reads was performed using a 
transcriptome constructed from GRCh37/hg19 using STAR 2.7, and 
transcript abundances were measured in transcripts per million using 
RSD v1.3.3. 
CNV analysis 

The Genomic Identification of Significant Targets in Cancer 
(GISTIC2.0, version 2.0.23) algorithm was employed to investigate 
the prominent regions of somatic copy number alterations (31). 
GISTIC2.0 was used with specific parameters, including -ta 0.8, -td 
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0.8, -genegistic 1, -smallmem 1, -broad 0, -brlen 0.98, -conf 
0.99, -armpeel 1, -savegene 1, and -gcm mean. 
Mutation signatures 

The deconstructSigs (version 1.8.0) R package was used to calculate 
the mutational signatures of gene mutations obtained from WES data 
(32). Signatures 1 to 30 from the COSMIC database were obtained for 
this analysis (https://cancer.sanger.ac.uk/signatures/signatures_v2/). 
Somatic single nucleotide variants and small insertions and 
deletions were considered. 
Differential gene expression and functional 
enrichment analysis 

The transcripts per million matrix was subjected to a log2 
transformation and was then quantile-normalized using the 
preprocess Core R package (version 1.56.0). The limma R package 
(version 3.50.0) was utilized to identify DEGs with the set criteria of 
a p-value of <0.05 and an absolute log2 fold-change of >1. 
Subsequently, DEG enrichment and GSEA were performed using 
the clusterProfiler R package (version 4.2.2) with an adjusted p-
value threshold of 0.05. The gene sets for the enrichment analyses 
were derived from the Gene Ontology, Kyoto Encyclopedia of 
Genes and Genomes, HALLMARK, and Reactome databases 
within the Molecular Signatures Database (33, 34). 
Published dataset 

In this study, the gene expression matrices for tumor samples from 
TCGA for TCGA–ovarian cancer (n = 210), TCGA–uterine corpus 
endometrial carcinoma (n = 549), and the “Adenocarcinoma” subtype 
within TCGA–cervical squamous cell carcinoma and endocervical 
adenocarcinoma (n = 48) were obtained. These matrices were also 
subjected to log2 transformation and quantile normalization. 
Signature analysis of the TME and markers 
related to cell proliferation 

The TME was evaluated by calculating various TME-related 
signatures using the single-sample GSEA method via the GSVA R 
package (version 1.42.0). The signatures included the Functional 
Gene Expression signature, a collection of 28 immune gene sets, and 
Danaher signature (28, 35, 36). Additionally, CIBERSORT was 
utilized to assess immune cell infiltrations using the leukocyte 
gene signature matrix LM22, and 1,000 permutations were 
performed to estimate the relative abundance of immune cells 
(37). For proliferation assessment, multiple signatures were 
employed via single-sample GSEA: CINSARC (38), Core ESC-like 
Module (39), Sixteen_Kinase (40), and GGI (41). 
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Quantification and statistical analysis 

The Mann–Whitney U test was used to compare continuous 
variables, whereas the Fisher’s exact test was used to compare 
discrete categorical variables. Survival curves were constructed using 
the Kaplan–Meier estimator and then compared using the log-rank 
test. To evaluate the predictive performance of PFS, time-dependent 
receiver operating characteristic curve analyses were performed. 
Additionally, Cox proportional hazards regression analysis was used 
to determine hazard ratios along with their 95% CIs. All statistical 
analyses were conducted using R version 4.1.2 and its 
associated packages. 
Results 

Baseline characteristics of the enrolled 
patients 

The clinicopathological features of 18 patients with gynecological 
MLA are shown in Supplementary Table 1. A representative 
pathological diagnosis based on immunohistochemistry is depicted in 
Supplementary Figure 1. The median patient age was 56 (45–70) years. 
The initial stage at diagnosis ranged from IA to IVB. Surgical 
procedures included bilateral salpingo-oophorectomy, omentectomy, 
and appendicectomy. Pelvic lymph node dissection and para-aortic 
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lymph node dissection were performed if necessary. Postoperative 
therapy included chemotherapy (14/18), radiation therapy (8/18), 
targeted therapy (3/18), and immunotherapy (1/18). The median 
follow-up time was 18.5 (95% confidence interval [CI], 8.26–28.74) 
months. This study performed whole-exome sequencing (WES) and 
mRNA sequencing in patients with MLA at three sites (cervix, n = 2; 
ovary, n = 5; uterus, n = 10) (Figures 1a, b). The median PFS and OS 
were 14.5 (95% CI, 8.08–20.9) and 18.5 (95% CI, 8.3–28.7) months, 
respectively (Figures 1c, d). 
Mutation landscape of MLA 

WES was performed in 18 patients, and only 17 patients whose 
sequencing data passed quality control were subsequently analyzed 
(Figure 2a). A total of 575 somatic nonsynonymous alterations were 
identified. WES of patients’ samples revealed low tumor mutation 
burden and homologous recombination deficiency scores. KRAS 
mutations were detected most frequently (82.4%, 14/17), followed 
by PIK3CA (47.1%) and SPOP (23.5%) mutations, which were 
mutually exclusive to each other. The median tumor mutation 
burden was 1.03 mut/Mb (0.26–1.94). The median homologous 
recombination deficiency score was 21 (4–83). The median 
microsatellite instability (MSI) score was 1.36% (0%–22.22%). 
COSMIC signature analysis identified an age-related signature 1 
as a universal feature of MLA. The mutation sites for KRAS, 
FIGURE 1


Baseline characteristics of the patients. (a) The study flow chart. (b) Patient clinical data. (c, d) Progression-free survival (PFS) and overall survival (OS)

of the recruited patients.
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PIK3CA, and SPOP are shown in Figures 2b–d. KRAS mutation sites 
involved the G12 region, including G12C, G12V, and G12D. The 
main PIK3CA mutation site was E545A, followed by C420R, E542A, 
H1047R, and M1004I. SPOP mutation sites included E47K, M117T, 
and D140G. CNV analysis revealed amplifications at chromosomes 
10q11.12, 4q11, 2q11, and 18q11.1, and no common tumor-

associated driver or suppressor genes were observed (Figures 2a, e). 
The correlation of patients’ clinical characteristics and gene 

expression with PFS and OS was analyzed. Patients’ age, MSI status, 
homologous recombination deficiency score, tumor mutation 
burden, and clinical stage were not associated with PFS and OS 
(Supplementary Figures 2a, b). The correlation between COSMIC 
signatures and PFS revealed that patients with high signature 15 
scores had shorter PFS (Figure 2f). 
Significantly upregulated genes and 
pathway analysis in MLA 

Differentially expressed genes (DEGs) between MLA and paired 
normal samples were analyzed to explore pathways associated with 
MLA. The volcano plot demonstrated significant DEGs between 
MLA samples (uterus, cervix, and ovary) and adjacent tissues 
(Figures 3a–c) (Supplementary Table 2). Principal component 
analysis demonstrated that mesonephroid carcinomas of different 
origins did not cluster in terms of either mRNA expression 
(Supplementary Figure 3a) or single-sample gene set enrichment 
analysis (GSEA) (Functional Gene Expression and HALLMARK 
pathway analysis) (Supplementary Figures 3b, c) of related genes. 
These results suggested that mesonephroid carcinomas from the 
three sites have similar expression profiles and signaling pathways, 
which can be combined and analyzed as a whole. This study 
intersected the upregulated genes of MLAs at the three sites and 
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found 373 upregulated genes (Figure 3d). These genes were 
subjected to Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes pathway enrichment analyses. Kyoto Encyclopedia of 
Genes and Genome analysis revealed that these genes were mainly 
enriched in G2M checkpoint, E2F target, and KRAS signaling up 
(Figure 3e). Gene Ontology analysis showed that the upregulated 
genes were mainly related to biological processes associated with 
kidney development, including mesonephros development, 
metanephros development, kidney morphogenesis, renal tubule 
development, and mesonephric tubule morphogenesis (Figure 3f). 
Sixteen genes (BMP7, FMN1, FRAS1, HOXA11, HOXB7, KIF26B, 
LHX1, PAX2, PAX8, SIX1, SIX4, SOX9, EPCAM, SIM1, POU3F3, 
LGR5) were involved in these biological processes, and the 
expression levels of these genes were significantly upregulated in 
MLAs (Figures 3g, h). These results suggest that the upregulated 
genes in MLAs are mainly involved in cell cycle regulation and 
kidney development processes. 
Comparison of immune microenvironment 
characteristics of MLAs and normal tissues 

The immune-related signatures and proportions of immune-

infiltrating cells were compared between MLAs and adjacent tissues 
to evaluate the immune microenvironment characteristics of MLAs. 
Angiogenesis ,  fibrosis,  and  antitumor  immunity  were  
downregulated, whereas tumor proliferation was upregulated in 
MLAs (Figure 4a). We also analyzed the differences in the 
expression of fibroblast markers FAP and MFAP5 in MLA and 
normal tissues. The fibroblast marker FAP and MFAP5 were 
significantly upregulated in MLA compared to normal tissues 
(Supplementary Figure 4). GSEA revealed that various immune-

related signatures, such as CD8 T cells, MHC, natural killer cells, 
FIGURE 2 

Mesonephric-like adenocarcinoma (MLA) mutations and molecular factors associated with survival. (a) Mutation profiles of MLA samples. (b–d) Proportion 
and schematic of mutation sites in KRAS, PIK3CA, and  SPOP. (e) Schematic of chromosomal copy number variations. (f) Correlation analysis between 
Signature 15 and progression-free survival (PFS). 
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and effector cells, were significantly downregulated in MLAs 
(Figures 4b, c). The proportion of immune-infiltrating cells in 
MLAs differed from that in normal tissues (Figure 4d). 
CIBERSORT analysis showed that the proportion of resting mast 
cells increased, whereas the proportions of plasma cells and CD8 T 
cells decreased in MLAs compared with those in normal tissues 
(Figure 4e). The differences in the expression levels of immune 
checkpoint–related genes between MLAs and normal tissues were 
analyzed. The research results showed that in the MLAs group, the 
expression of BTLA significantly increased, while the expressions of 
LAG3, PDCD1LG2 and VSIR decreased significantly. (Figure 4f). 
The differential expression of these immune checkpoints in MLAs 
and three types of gynecologic tumors (ovarian cancer, cervical 
Frontiers in Immunology 06
squamous cell carcinoma and endocervical adenocarcinoma, and 
uterine corpus endometrial carcinoma) in the TCGA database was 
also analyzed (Supplementary Figure 5). These findings revealed 
that MLAs had immunosuppressive characteristics. 

We also analyzed the differences in immune characteristics 
between KRAS mutant MLA and KRAS mutant endometrial 
cancer in TCGA. KRAS mutant MLA exhibits a more suppressive 
TME than that of KRAS mutant UCEC. CD4+ cells, CD8+ T cells, 
NK cells, and M1 macrophages, dendritic cells, are significantly 
underexpressed in MLA tumors (P < 0.05), indicating lower 
immune activation. Conversely, M2 macrophages, fibroblasts, and 
regulatory T cells (Tregs), Th2/17 cells which related to immune 
suppression, are highly expressed in MLA tumors (P < 0.05), 
FIGURE 3 

Genes and pathways significantly upregulated in mesonephric-like adenocarcinoma (MLA). (a–c) Comparison of upregulated and downregulated 
genes in uterine, cervical, and ovarian MLA samples compared with normal samples (red dots indicate upregulated genes, whereas blue dots denote 
downregulated genes). (d) Intersection of upregulated genes in MLA at three different sites. (e) Kyoto Encyclopedia of Genes and Genome (KEGG) 
enrichment analysis of upregulated genes. (f) Gene Ontology (GO) enrichment analysis of upregulated genes. (g, h) Genes in pathways related to 
kidney development based on GO enrichment analysis. ***: P ≤ 0.001. 
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reflecting a strong immunosuppressive tumor microenvironment 
(Supplementary Figure 6). 
 

 

Renal development–related pathways and 
genes were significantly upregulated in 
MLAs 

The differential expression of kidney/mesonephric development 
pathways  and  genes  between  our  MLA  samples  and  
nonmesonephric-like gynecologic tumors in TCGA database was 
analyzed. The results showed that pathways related to kidney/ 
mesonephric development were significantly upregulated in 
MLAs compared with those in nonmesonephric-like gynecologic 
tumors (Figure 5a) (Supplementary Table 3). Similarly, genes 
related to kidney/mesonephric development (SIM1, PAX2, PAX8, 
FMN1) were  significantly upregulated in MLAs (p < 0.05)

(Figure 5b). Gene Ontology enrichment analysis revealed key 
genes involved in mesonephric tubule morphogenesis in MLAs 
(Supplementary Figures 7a–c). PAX2, PAX8, and  LHX1 were 
enriched in MLAs obtained from the cervix, ovary, and uterus, 
consistent with the classic pathological immunohistochemistry 
results of MLA. Differences in signaling pathways and immune 
microenvironment factors between our MLA samples and 
nonmesonephric-like gynecologic tumors were analyzed.

Significantly upregulated pathways in MLAs included TGF-b 
signaling, myogenesis, mitotic spindle, and mesenchymal 
transition (Figure 5c) (Supplementary Table 4). Immune 
microenvironment analysis showed higher immune scores in 
nonmesonephric-like gynecologic tumors in the cervix, ovary, and 
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uterus (Figure 5d). Differences in immune-related signatures 
between MLAs and gynecologic tumors (uterine corpus 
endometrial carcinoma, cervical squamous cell carcinoma and 
endocervical adenocarcinoma, and ovarian cancer) were analyzed 
(Supplementary Figure 8). MLAs showed lower scores for effector 
cell traffic, M1 signature, MHCI, MHCII, and T cells and higher 
scores for Th1 and Th2 signatures compared with conventional 
gynecological tumors, indicating a lack of antitumor immune 
environment in MLAs. The expression levels of IFN18 pathway 
genes, which are positively correlated with immunity in MLAs, were 
also analyzed. The results showed that most of these genes were not 
significantly expressed in MLAs (Figure 5e). These findings imply 
that kidney/mesonephric development pathways and genes are 
upregulated in MLAs, and the tumor microenvironment (TME) 
is immunosuppressed. 
Differences in pathways, immune 
characteristics and prognosis between 
KRAS_SPOP and KRAS_PIK3CA mutation 
groups in patients with MLAs 

As commutations of KRAS/SPOP and KRAS/PIK3CA were 
observed in most patients and were mutually exclusive to each 
other, subgroup analyses were performed among KRAS_SPOP, 
KRAS_PIK3CA, and other groups (no commutations between 
KRAS, PIK3CA, and  SPOP). Enrichment analyses (Figure 6a) 
showed that genes in the KRAS_PIK3CA group were mainly 
enriched in focal adhesion, B cell receptor, and chemokine 
signaling pathways. Genes in the KRAS_SPOP group were 
FIGURE 4 

Immune microenvironment in mesonephric-like adenocarcinoma (MLA). (a) Differential expression of related factors in pathways closely related to 
tumorigenesis or immune activation. (b-d) Comparison of immune-infiltrating cells in MLA vs. normal tissues. (e) Differential expression of immune-
related cells between MLAs from three sites and adjacent tissues. (f) Comparison of the expression of immune checkpoint–related genes between 
MLAs at three sites and normal tissues. ns: not significant (P > 0.05); *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001. 
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enriched in olfactory transduction and nitrogen metabolism. 
Differences in immune signatures among the three groups were 
analyzed. The results indicated that the KRAS_PIK3CA group had a 
more active immune status than the KRAS_SPOP group 
(Supplementary Figure 9a). The expression levels of IFNG, IFN6, 
and IFN18 were higher in the KRAS_PIK3CA group than in the 
KRAS_SPOP group (Figure 6b) (Supplementary Figure 9b). The 
interferon-g pathway was enriched in the PIK3CA-comutated 
group, and the E2F target pathway was enriched in the SPOP-
commutated group (Figures 6c, d). The expression levels of markers 
related to cell proliferation (Complexity Index in Sarcomas 
[CINSARC], Core ESC-like Module, genomic grade index [GGI], 
and Sixteen_kinase [kinase score of 16 genes encoding serine/ 
threonine kinases involved in mitosis]) in KRAS_SPOP and 
KRAS_PIK3CA groups were analyzed. GSEA revealed that the 
expression levels of CINSARC, GGI, and other markers related to 
cell proliferation were higher in the KRAS_SPOP group (Figure 6e), 
indicating that the KRAS_SPOP group had higher cell proliferation 
and malignancy than the KRAS_PIK3CA group. The expression 
levels of CINSARC and Sixteen_kinase in the KRAS_SPOP group 
were  higher  than  those  in  the  KRAS_PIK3CA  group  
(Supplementary Figure 9c). These results revealed that SPOP and 
PIK3CA mutations involve different pathways and immune 
microenvironments in patients with KRAS-mutated MLA. In 
Frontiers in Immunology 08
patients with MLA, PIK3CA mutation promotes immune 
regulation, whereas SPOP mutation promotes cell proliferation. 

We also analyzed the differences in PFS and OS between the 
KRASmut/PIK3CAmut group and the KRASmut/SPOPmut group. The 
results showed that there were no significant differences in PFS 
(P=0.781)  and  OS  (P=0.154)  between  the  two  groups  
(Supplementary Figure 10). 
Discussion 

MLAs are rare tumors with limited treatment options (21). To 
develop potential therapeutic strategies of MLAs, further exploration of 
its pathogenesis is warranted. Complex cellular interactions within the 
TME play a central role in cancer progression, affecting tumor 
initiation, growth, invasion, therapeutic response, and drug resistance 
(42). A deeper understanding of tumor molecular features and the 
TME will lead to the development of innovative therapeutic strategies 
(43).Through integrated WES and transcriptomic profiling, we 
comprehensively characterized the distinct molecular profiles and 
TME of MLAs, aiming to establish a molecular foundation for 
improved diagnostic strategies and targeted therapeutic interventions. 

According to a previous study, targeted sequencing based on 
NGS revealed systemic mutations in MLAs (18). However, this study 
FIGURE 5 

Expression of pathways and genes related to kidney development in mesonephric-like adenocarcinomas (MLA) vs. nonmesonephric-like gynecologic 
tumors. (a) Pathways related to kidney/mesonephric development in MLAs. (b) Genes associated with kidney/mesonephric development in MLAs. 
(c) Pathways significantly upregulated in MLA vs. nonmesonephric-like gynecologic tumors. (d) Differences in immune microenvironment–related 
factors between MLA and nonmesonephric-like gynecologic tumors (the abscissa denotes the difference between the MLA score and TCGA score; 
if > 0, the MLA score is higher, and if < 0, the TCGA score is higher). (e) Expression of IFN18 pathway genes in MLA, with green indicating significant 
results and red representing insignificant results). 
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provided more comprehensive information on molecular mutations 
for MLA detection based on WES. Our results showed that KRAS 
mutations were detected most frequently (82.4%), followed by SPOP 
and PIK3CA mutations, consistent with previous research (7, 16, 21). 
The KRAS signaling pathway was enriched in DEGs between MLAs 
and normal tissues. These findings suggest that KRAS mutation is a 
dominant driver of MLAs. In the current study, KRAS mutation sites 
included G12C, G12V, and G12D. The Food and Drug 
Administration has approved two KRAS G12C inhibitors-sotorasib 
and adagrasib—as treatment options for KRAS G12C-mutated 
nonsmall-cell lung cancer (44–46). Recently, the Food and Drug 
Administration approved adagrasib plus cetuximab for previously 
treated patients with KRAS G12C-mutated colorectal cancer (47). 
Adagrasib showed encouraging clinical activity and was well tolerated 
among patients with KRAS G12C-mutated solid tumors (48). KRAS 
G12D is a promising therapeutic target, but no approved inhibitors 
are currently available. The KRAS G12D inhibitors MRTX1133 and 
HRS-4642 have shown antitumor activity in preclinical and early 
clinical studies (49, 50). Research on pan-KRAS inhibitors is still in its 
early stages. Several pan-KRAS inhibitors (e.g., RMC-6236 and BI­
2865) are being investigated at preclinical or early clinical stages 
worldwide (51, 52). Recently, PIK3CA mutation-targeting drugs have 
become a new focus in the treatment of lung, breast, and other 
cancers. Alpelisib has been approved by the Food and Drug 
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Administration for treating hormone receptor–positive, HER2­

negative, PIK3CA-comutated advanced or metastatic breast cancer 
(53, 54). These studies also provide direction for targeted therapy in 
patients with KRAS-mutated MLAs. 

The mitogen-activated protein kinase signaling pathway 
mutations are highly prevalent in MA/MLA (21). Our study 
identified additional pathways that may be involved in MLA 
progression. This study showed that upregulated genes in MLA 
were mainly enriched in G2M_checkpoint, E2F_Target, and KRAS 
signaling pathways. The G2M checkpoint pathway is a key 
mechanism regulating cell cycle progression, especially the 
transition from G2 to mitosis phase (M phase) (55). Mutations in 
genes involved in the G2M checkpoint pathway can disrupt its 
function (56), leading to uncontrolled cell cycle progression and 
allowing cells with damaged DNA to proliferate. E2F plays a key 
role in determining the timing of cell division. The expression levels 
of E2F target genes gradually increase during G1 phase and reach 
critical levels to allow cells to pass through the restriction point and 
enter S phase (57). Interestingly, 16 genes (BMP7, FMN1, FRAS1, 
HOXA11, HOXB7, KIF26B, LHX1, PAX2, PAX8, SIX1, SIX4, SOX9, 
EPCAM, SIM1, POU3F3, LGR5) were associated with kidney 
development. HOXA11 and HOXB7 are typically highly expressed 
during the segmentation formation and organ differentiation stages 
of the embryo from the 3rd to the 5th week (58). PAX2 and PAX8 
FIGURE 6 

Differences in immunological characteristics among the KRAS_PIK3CA, KRAS_SPOP, and other groups in patients with mesonephric-like 
adenocarcinomas (MLA). (a) Pathways enriched by mutated genes in KRAS_PIK3CA, KRAS_SPOP, and other groups. (b) Differences in the immune 
microenvironment between KRAS_SPOP and KRAS_PIK3CA groups. (c, d) Major pathways enriched in KRAS_SPOP and KRAS_PIK3CA groups. 
(e) Differential expression of markers related to cell proliferation (Complexity Index in Sarcomas [CINSARC], Core ESC-like Module, genomic grade 
index [GGI], and Sixteen_kinase) in KRAS_SPOP and KRAS_PIK3CA groups. Sixteen_kinase refers to the kinase score of 16 genes encoding serine/ 
threonine kinases involved in mitosis. 
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play a crucial role in the embryonic development from the 4th to the 
6th week and in the organogenesis of the eyes, inner ears, kidneys 
and thyroid glands, with higher expression during development 
(59). SIX1 and SIX4 play important roles in the sensory organ and 
muscle development during the 5th to 7th week of the embryo (60). 
SOX9 is highly expressed during the cartilage formation and gonad 
differentiation stages of the embryo from the 6th to the 8th week 
(61). EPCAM is mainly expressed during the epithelial cell 
differentiation process from the 4th to the 6th week of the 
embryo (62). FRAS1 is highly expressed during the formation of 
the basement membrane, skin and kidney development during the 
5th to 7th week of the embryo (63). HOXA11, HOXB7, PAX2/8, 
SIX1, LGR5, EPCAM, and SOX9 are typical oncofetal genes that are 
reactivated in carcinogenesis (64–69). SIM1 is essential for the 
development and function of hypothalamic paraventricular 
neurons and is also expressed in the kidney and muscles (70). 
The molecular mechanism by which SIM1 regulates MLA 
progression requires further exploration. FMN1 variants have 
been linked to the occurrence of colorectal cancer, glioma, and 
pancreatic cancer (71, 72). Mechanistically, FMN1 promotes strong 
mechanical cohesion, leading to highly invasive motility (73). PAX2 
is required for the mesenchymal–epithelial transformation of the 
intermediate mesoderm into kidney and Mullerian duct epithelial 
structures, including the fallopian tubes, uterus, and vagina (74). 
PAX2 is the most sensitive and specific marker that can distinguish 
MAs from ovarian endometrioid carcinoma and can be used as a 
first-line marker with ER/PR and GATA3/TTF1 (75). PAX8 is a 
pair of box genes that are crucial for embryogenesis in the thyroid, 
Mullerian duct, and kidney/upper urinary tract (76), serving as a 
diagnostic marker for renal, Mullerian, and thyroid-origin tumors 
(77). Tahir et al. revealed that immunohistochemistry analysis of 
PAX8 and SOX17 (positive PAX8 and negative SOX17 expression) 
aids in the diagnosis of MLA (78). Our study demonstrated that 
PAX2 and PAX8 were more upregulated in MLAs than in 
conventional gynecologic tumors and were enriched in 
mesonephric tubule morphogenesis. Our findings validated their 
potential as differential diagnostic markers for MLA at the RNA 
level, consistent with previous studies. These pathways and genes 
hold potential as diagnostic and therapeutic markers for MLAs. 

The TME plays a crucial role in tumor progression and treatment 
(79). The TME of MLA is not yet well understood. Our findings 
showed that CD8 T cells, B cells, natural killer cells, MHCI, and Th1 
signature were downregulated, whereas Th2 signature and resting 
mast cells were upregulated in MLAs. Tumor-infiltrating CD8 (+) T 
cells and natural killer cells act as effector cells against tumor cells and 
are associated with better clinical outcomes (80). Th2 signature and 
resting mast cells contribute to the immunosuppressive state (81). The 
expression of BTLA significantly increased, while the expressions of 
LAG3, PDCD1LG2 and VSIR decreased significantly. BTLA (CD272) 
is one of the key factors regulating stimulatory and inhibitory signals 
in the immune response. It belongs to the CD28 superfamily and is 
mainly expressed in T and B lymphocytes, macrophages, and 
dendritic cells (82). The BTLA signal transduction recruits SHP-1/ 
SHP-2 through the phosphorylation motifs of ITIMs, thereby 
negatively regulating the immune response (83). LAG-3 (also 
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known as CD223) is an immune checkpoint receptor protein, 
which is mainly expressed on activated T cells, NK cells, B cells, 
and plasma cell dendritic cells (84). PDCD1LG2 participates in 
inducing immune tolerance under both physiological and 
pathological conditions (85). In immune cells, VISR is mainly 
expressed by myeloid cells (neutrophils, monocytes, macrophages 
and dendritic cells), and it is an important regulator of immune 
homeostasis and anti-tumor immunity (86). These results indicated 
that the TME of MLA is immunosuppressed. Our study reported 
results similar to those for nonmesonephric-like gynecologic tumors 
in TCGA database. Therefore, MLA lacks an antitumor immune 
environment, making immunotherapy potentially ineffective. The 
molecular grouping of KRAS-mutated MLA is of great interest. 
SPOP and PIK3CA are mutually exclusive and associated with 
different immune microenvironments. PIK3CA mutations were 
more enriched in the upregulated KRAS signaling pathway, 
interferon-g response, and other immune response pathways. The 
E2F target pathway was enriched in the KRAS_SPOP mutation group. 
IFN-g is critical in regulating immune responses, especially in 
malignant tumors (87). In MLAs patients with KRAS_SPOP 
mutations, the expression levels of CINSARC, GGI, and other 
markers related to cell proliferation were higher, indicating higher 
cell proliferation and malignancy in the KRAS_SPOP mutation group 
than in the KRAS_PIK3CA mutation group. A previous study 
revealed that SPOP mutations promote tumor immune escape 
through the IRF1–PD-L1 axis in endometrial cancer (26). 
Therefore, for patients with MLA who have both KRAS and SPOP 
mutations, more attention should be paid to subsequent treatment. 

Owing to the limited sample size, the findings of this study, 
especially novel molecular and TME characteristics, need further 
validation. A larger cohort and wider multi-omics studies, 
encompassing noncoding RNA, protein, and methylation, are 
warranted to address the limitation. 

In conclusion, our study showed that the significantly 
upregulated genes in MLA were mainly enriched in cell cycle and 
kidney development–related pathways. The TME of MLA is 
immunosuppressed, indicating that MLA is a cold tumor. In 
particular, MLA with both KRAS and SPOP mutations had a 
colder immune microenvironment. 
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SUPPLEMENTARY FIGURE 1 

Immunohistochemical staining of differential diagnostic markers in 
mesonephric-like adenocarcinomas (MLAs). 

SUPPLEMENTARY FIGURE 2 

Correlation analysis between baseline characteristics and survival. (a, b) The 
correlations of age, microsatellite instability (MSI), homologous 
recombination deficiency (HRD), tumor mutation burden (TMB), and clinical 
stage with progression-free survival (PFS) and overall survival (OS). 

SUPPLEMENTARY FIGURE 3 

Principal component analysis of mRNA, Functional Gene Expression (FGE), 
and HALLMARK pathways in mesonephric-like adenocarcinomas (MLAs) at 
three sites (cervical, ovary, and uterus). (a) Principal component analysis of 
mRNA expression in MLAs at three sites. (b, c) Single-sample gene set 
enrichment analysis (GSEA) of MLAs at three sites. 

SUPPLEMENTARY FIGURE 4 

the differences in the expression of fibroblast markers FAP and MFAP5 in MLA 
and normal tissues 

SUPPLEMENTARY FIGURE 5 

Differential expression of immune checkpoints in mesonephric-like 
adenocarcinomas (MLAs) and ovarian cancer (OV) (a), cervical squamous 
cell carcinoma and endocervical adenocarcinoma (CESC) (b), uterine corpus 
endometrial carcinoma (UCEC) (c) in The Cancer Genome Atlas 
(TCGA) database. 

SUPPLEMENTARY FIGURE 6 

The differences in immune characteristics between KRAS mutant MLA and 
KRAS mutant endometrial cancer in TCGA. 

SUPPLEMENTARY FIGURE 7 

Key genes enriched in mesonephric-like adenocarcinomas (MLAs) derived 
from the cervix (a), ovary (b), and uterus (c). 

SUPPLEMENTARY FIGURE 8 

Differences in immune characteristics between mesonephric-like 
adenocarcinomas (MLAs) and ovarian cancer (OV) (a), cervical squamous 
cell carcinoma and endocervical adenocarcinoma (CESC) (b), and uterine 
corpus endometrial carcinoma (UCEC) (c) in The Cancer Genome Atlas 
(TCGA) database. 

SUPPLEMENTARY FIGURE 9 

Differences in immune characteristics among KRAS_PIK3CA, KRAS_SPOP, 
and other groups. (a) The differences in immune signatures among the three 
groups were compared via single-sample gene set enrichment analysis 
(GSEA). (b) Expression levels of IFN_10, IFN_18, IFN_6, STAT.signature, 
Teffector, and Teffector_IFN in the three groups. (c) The expression levels 
of proliferation-related markers (Complexity Index in Sarcomas [CINSARC], 
Core ESC-like Module, genomic grade index [GGI], and Sixteen_kinase) in the 
three groups. Sixteen_kinase refers to the kinase score of 16 genes encoding 
serine/threonine kinases involved in mitosis 

SUPPLEMENTARY FIGURE 10 

The differences in PFS and OS between the KRASmut/PIK3CAmut group and 
the KRASmut/SPOPmut group. 
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