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Background: Sanguisorba officinalis L. (S.L.), a traditional Chinese medicine from

the Rosaceae family, is recognized for its rich content of triterpenoids, which are

known for their antioxidant, anti-inflammatory, and anti-tumor properties.

Although its traditional uses and biological activities are well known, its role in

preventing colon cancer and the underlying mechanisms remain unclear. This

study aims to elucidate the preventive mechanisms of triterpenoids in both raw

(TR) and processed (TP) forms of S.L. against colon cancer.

Methods: The AOM/DSS-induced mouse model of colon cancer was employed

to elucidate the mechanism underlying the preventive effects of Sanguisorba

officinalis L. triterpenoids (ST) against colon cancer. A comprehensive suite of

techniques, including hematoxylin-eosin staining (H&E), immunohistochemistry

(IHC), TUNEL staining, Western blotting (WB), and DNA methylation analysis, was

utilized to investigate the preventive effects of ST on colon cancer. The main

active compounds were identified using UPLC-Q-TOF-MS, and potential active

compounds were screened through network pharmacology and molecular

docking. The stability of the protein-ligand complexes was further assessed

using molecular dynamics simulations.

Results: In vivo experiments, treatment with ST significantly improved the clinical

manifestations, Disease Activity Index (DAI) scores, and pathological lesions

associated with colon cancer, with all drug administration groups

outperforming the model group. Additionally, ST markedly enhanced gut

barrier function by downregulating the levels of TNF-a, p65, COX-2, and iNOS.
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Furthermore, ST dramatically ameliorated the colonic immune-inflammatory

state, which was associated with decreased expression of proliferative proteins

and increased expression of apoptotic proteins. Among the identified

triterpenoids, compound 27 May be the main active compound. Notably,

compound 27 can form a stable complex with TNF-a.

Conclusion: These results suggest that TP has a more pronounced colon cancer

prevention effect than TR. TP play a role in preventing colon cancer by down-

regulating TNF-a and thereby inhibiting the NF-kB signaling pathway. This

research not only fills the mechanism gap of S.L. in the field of colon cancer

prevention, but also provides methodological support and theoretical foundation

for its transition from traditional Chinese medicine to clinical practice through

the integration of multi-disciplinary technologies and the verification of

precise targets.
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1 Introduction

Sanguisorba officinalis L. (S.L.), is a traditional Chinese medicine

and a member of the Rosaceae family. There are over thirty varieties of

elmworldwide and they are widely distributed, mainly concentrated in

Western Europe and the northern temperate zone of Asia. There are

seven genuine products in China. They are respectively Sanguisorba

officinalis L., S. tenuifolia Fisch., S. filiforms (Hook. f.) Hand. Mazz., S.

Alpine Bge., S. applanata Yu et Li., S. Diandra Wall. ex Hoedb. and S.

Sitchensis Mey. And six variants, they are respectively S. officinalis L.

var. glandulosa (Kom.) Worosch., S. officinalis L. var. carnea (Fisch.)

Regel. ex Maxim., S. officinalis L. var. longifolia (Bert.) Yü et Li, S.

officinalis L. var. longiflila (Kitagawa.) Yu et Li, S. tenuifolia Fisch. var.

alba Trautv. et Mey. and S. applanata var. Applanate Yü et Li.

According to the Chinese pharmacopeia, it plays a major role in the

treatment of hematochezia, bleeding hemorrhoids, bloody flux,

metrorrhagia and metrostaxis, bleeding wounds, burns and scalds,

and swollen carbuncles. Besides, in vivo and in vitro studies have

illustrated that plants from the Sanguisorba officinalis (S. officinalis)

present a wide range of pharmacological properties, including anti-

tumor and immunomodulating activities (1). Simultaneously, it has

been reported that S. officinalis has an obvious anti-tumor effect, which

inhibits the growth of human colon cancer cells HT-29, HCT116,

RKO, SW480, and SW620 cells (2–4). The main chemical constituents

isolated from S. officinalis include triterpenoids, tannins, flavonoids,

etc. Triterpenoids are the main components of S. officinalis, the

pharmacological studies mainly focus on antioxidant, anti-

inflammatory, and anti-tumor activities in nearly a decade (5).

The World Health Organization’s 2024 Epidemiological Report

shows that both the incidence and mortality of colorectum cancer

are increasing year by year. The risk of this type of cancer has been

associated with complex interactions among inherited
02
susceptibility, increasing age, and environmental factors,

including lifestyle factors such as diet and physical activity.

Long-standing UC and Crohn’s colitis (except limited proctitis)

increased patients’ risk of colon cancer by 2–3 times (6). Although

there are advances in surgery, radiation therapy, and chemotherapy

to treat colorectal cancer, new treatment alternatives related to

chemoprevention are necessary. Several studies have focused on

evaluating the control of carcinogenesis and identifying naturally

occurring dietary agents with the capacity for inhibiting, retarding,

or reversing the preneoplastic lesions, rather than curing the end-

stage disease (7). In vitro and in vivo studies have reported that

dietary bioactive compounds have preventive effects against the

pathogenesis of colon cancer by suppressing inflammation and cell

proliferation (8). Natural products have been shown to inhibit the

NF-kB signaling pathway by down-regulating TNF-a (9). In

addition, NF-kB plays a critical role in regulating the immune

response, deregulated NF-kB activation could facilitate the

pathogenic processes of inflammatory diseases such as colitis-

associated colorectal cancer through transcription of mainly

proinflammatory and anti-apoptotic target genes (10). The use of

azoxymethane (AOM) and dextran sodium sulfate (DSS) in mice

has become an exceptional model for the study of colon

carcinogenesis in vivo due to its high reproducibility, as well as its

affordable and straightforward administration (11). S.L. has

received considerable attention for modulating inflammation and

protecting against cancer development (3, 12).

Epidemiological studies have suggested that the intake of

rosaceae natural medicine decreases the risk of developing

colorectal cancer (13). Among Rosaceae, S. officinalis has been

recognized as a natural medicine with health benefits (14).

However, the chemopreventive effect of S. officinalis on the gene

expression and regulation of inflammatory markers in colon cancer
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in vivo has not yet been explored. The objective of this study was to

evaluate the effects of different doses of TR and TP in colon cancer

models, in addition to identifying main active compounds. The

flowchart of this study is shown in Figure 1.

Current studies have shown that the water extract of S.L. can

activate the reactive oxygen-mediated mitochondrial-Caspase-

dependent apoptotic pathway and trigger apoptosis (15). In

addition, S.L. can also induce cell death through autophagy and

inhibit the proliferation of colon cancer cells through G0-G1 phase

cell cycle arrest mediated by theWnt signaling pathway (16). In vivo

experiments, the water extract of S.L. also demonstrated a good
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anti-tumor effect and was able to inhibit the migration and invasion

of colon cancer cells by suppressing the Wnt/b-catenin signaling

pathway (17). In our previous research, it has been found that

processed S.L. can induce apoptosis in colon cancer cells (4). This

study systematically revealed for the first time that ST and its

processed products exert chemopprophytic effects on colon cancer

by inhibiting the TNF-a/NF-kB signaling pathway. It not only

clarified the key chemical components by which processing

enhances the efficacy of drugs, but also established a direct

connection between traditional applications and modern

mechanism research, filling the research gap in this field.
FIGURE 1

The flowchart of this study. (Model vs Control: ##P<0.01, ###P<0.001; Positive, TRL, TRH, TPL, TPH vs Model: *P<0.05, **P<0.01, ***P<0.001).
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2 Materials and methods

2.1 Materials and reagents

S.L. was purchased from Harbin, Heilongjiang Province. DSS

(MW: 36,000-50,000) and AOM was acquired from MP

Biomedicals (Santa Ana, CA, USA). RIPA, Pmsf, and Removal

solution of Western primary and secondary antibodies were

acquired from Thermo Fisher Scientific. Formalin was purchased

by Sigma-Aldrich. Hematoxylin and eosin were purchased from

Hangzhou Hua ‘an Biotechnology Co., LTD. 4’, 6-diamidino-2-

phenylindole was purchased from Meilen Bio. TNF-a, COX-2, NF-
kB p65, and iNOS were obtained from ABclonal. The specific

antibodies applied for immunohistochemistry were from Affinity

Biosciences (Cincinnati, OH, USA).
2.2 Samples and processing

S.L. processed according to the Chinese Pharmacopoeia 2020

edition. The processed and raw are crushed with a high speed grinder,

then passed through an 80–100 mesh sieve, sealed and stored.
2.3 Extraction technique and enrichment
of TR and TP

The raw and processed S.L. were extracted by heating reflux

extraction method (1 hour, 3 times), the extraction solution was

70% ethanol solution, the liquid-solid ratio was 8:1, and the extract

was concentrated into extractum under vacuum reduction.

According to previous reports (18), the contents of TR and TP

were determined by perchloric acid colorimetry. The standard curve

is plotted as follows: y=0.06921x-0.0059 (R=0.9995) (where x is the

mass concentration (mg/mL) value and y is the absorbance value).

TP and TR are dissolved by water. Dissolved TR and TP were

extracted three times with n-hexane and then three times with

saturated n-butanol. The obtained n-butanol layer was

concentrated to obtain enriched TR and TP. Triterpenoids in TR

and TP were 62.5% and 73.9%, respectively.
2.4 Animals administration of TR and TP

C57BL/6 male mice (n=84, 6 weeks old) were obtained from

“Liaoning Changsheng Biotechnology Co., LTD.”. After a 1-week

period of acclimatization (12-h dark/light cycle at 25 °C), mice were

randomly distributed into seven groups (n=12, each mouse used an

individual cage system). Qualification certificate number: SCXK

(Liao) 2023-0001. The model building scenario is shown in

Figure 2A. Based on conversion and extraction rate calculation,

the doses of TR and TP are as follows: the low dose is 15mg/kg and

the high dose is 30mg/kg. All the mice were anesthetized and

sacrificed after anesthetizing.
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2.5 Disease activity index evaluation

The DAI score is calculated according to the previous

criteria (19).
2.6 Histopathology analysis

Hematoxylin and eosin (H&E) staining sections were performed

according to previous reports (20). Immunohistochemical staining of

sections was performed according to manufacturer’s instructions.

Apoptosis detection kits were used for TUNEL staining.
2.7 Western blot analysis

Experiments were conducted according to literature reports

(20). Image J software is used for quantitative analysis.
2.8 DNA methylation analysis

Bisulfite sequencing PCR was used for DNA extraction and

detection of colon cancer-related genes. Firstly, 1 mg of genomic

DNA was converted to bisulfite, purified, and recovered, and

relevant primers were designed. Subsequently, we purified mouse

colon tissue using the DNA extraction kit, bisulfite treatment kit,

etc. The purified products were amplified by PCR, and all the

amplified PCR products were loaded into the agarose gel wells for

electrophoresis. Generay’s pTG19-T was used as the vector,

following the product instructions in the kit, and positive

plasmids were sequenced. The sequencing result analysis software

used in this study includes the sequencing instrument ABI3730XL,

sequencing reagent BigDye V3.1, and sequencing analysis software

Sequence Analysis V5.02.
2.9 UPLC-Q-TOF-MS analysis of the
chemical composition of TP

The accurate TP weighing of 2.1 mg obtained in 2.3 was contained

in a 10 ml volumetric bottle. The TP solution was filtered through 0.22

mmmembrane and stored in refrigerator at 4°C. The chromatography

was performed on Waters ACQUITY UPLC BEH C18 column (2.1

mm×100 mm, 1.7 mm, American Waters Company). The liquid phase

conditions were column temperature 40°C, sample chamber

temperature 4°C, sample 3 ml, flow rate 0.3 mL·min-1. The mobile

phases were distilled water with 0.1% formic acid (A) and acetonitrile

(B). The program was applied to gradient elution: 0–2 min, 95%-95%

(A); 2–25 min, 95%-50% (A); 25–42 min, 50%-5% (A). Electrospray

ion sources (ESI) are used. High-purity N2 is used as atomizing gas and

cone-hole gas. The mass spectrum parameters were as follows:

atomized gas pressure, 650 kPa; scanning range, 50~1500 Da;

temperature, 550°C; positive ion spary voltage, 5500 V; negative ion
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spary voltage, -4500 V; curtain gas, 35 psi; ion source gas 1, 50 psi; and

ion source gas 2, 50 psi; declustering potential, ± 80eV; collision energy,

± 35 eV.
2.10 Network pharmacology analysis

Drug targets from SwissTargetPredict ion (https ://

www.swisstargetprediction.ch/) in the database access

(probability>0). colon cancer targets were collected from

GeneCards (https://www.genecards.org/) and OMIM databases

(https://www.omim.org/). Subsequently, potential active

ingredient targets and colon cancer targets were imported into

the bio informat ics to make Venn diagram (ht tps : / /

bioinformatics.psb.ugent.be/webtools/Venn/) to collect common

targets. The common targets were then imported into STRING

database (https://cn.string-db.org) to obtain protein-protein

interaction (PPI) and visualize by Cytoscape 3.10.2. DAVID

(https://david.ncifcrf.gov/home.jsp) was employed to perform

Gene ontology (GO) enrichment and Kyoto Encyclopedia of

genes and Genomes (KEGG) pathway analysis. Finally,
Frontiers in Immunology 05
“component-target-pathway” network of network pharmacology

was constructed using Cytoscape 3.10.2.
2.11 Molecular docking

The crystal structure of the core targets were obtained from the

protein database (pdb) (https://www.rcsb.org/). The small molecule

structure is converted into pdb format by Chem3D software. The

ligands will be dehydrated and hydrotreated. The ligands and

receptors were converted to pdbqt format using Autodock 1.5.7.

Molecular docking Performed by Autodock Vina to obtain the

Active ingredients and the key targets. Finally, PyMOL 4.6.0 and

Discovery Apply Studio 4.5 to visualize the results.
2.12 Molecular dynamics simulation

Compound 27 and TNF-a were simulated by molecular

dynamics according to the previously reported method (21).

Finally, we analyzed the root mean square deviation (RMSD),
FIGURE 2

General status of mice in each group. (A) AOM/DSS induced colon cancer model. (B) Disease Activity Index, DAI score. (C) The trend of weight
change in each group of mice. (D) The trend of water intake in each group of mice. (E) Trends of food intake in each group of mice.
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root mean square fluctuation (RMSF), radius of gyration (Rg), the

number of hydrogen bonds between protein and ligand, relative free

energy distribution and 0,25,50,75,100 ns in the molecular

dynamics simulation trajectory of the TNF-a - compound 27

complex. In addition, we used the MM/GBSA method to calculate

the average binding free energy between protein and ligand.
2.13 Data analysis

Data were presented as mean ± standard deviation (SD).

Student’s t-test and one-way ANOVA were used for comparisons

between and among different groups, respectively. P ≤ 0.05 was

considered statistically significant. Histograms were plotted using

Graph Pad Prism (version 6.0; GraphPad Software Inc., CA, USA).
3 Results

3.1 Evaluation of the preventive effects of
TR and TP on colon cancer in mice

To investigate the potential therapeutic effects of TR and TP on

colon cancer, a model was established by administering 2% DSS

over three cycles to induce colon cancer. The symptoms associated

with chronic colitis, including weight loss, diarrhea, and

hematochezia, were recorded for 100 days to calculate the DAI.

ST treatment significantly reduced the DAI compared to the

untreated model group (Figure 2B), indicating a mitigation of

colitis severity. Furthermore, ST administration attenuated body

weight loss and even promoted weight recovery in treated mice,
Frontiers in Immunology 06
suggesting a protective role against colitis-associated colon cancer

progression (Figure 2C). Additionally, as illustrated in Figures 2D,

E, the control group maintained stable food and water intake

throughout the study. In contrast, compared with the treatment

group, the food consumption and water intake of the model group

were significantly reduced. These findings further support the

conclusion that ST ameliorates DSS-induced colon cancer by

improving metabolic and clinical parameters.
3.2 Effect of TR and TP on colon length
and tumorcondition in mice

At the termination of the experiment, mice were euthanized,

and colon tissues were collected for macroscopic and morphometric

analysis. The control group exhibited normal colonic morphology,

characterized by a smooth, intact surface and typical coloration. In

contrast, the model group displayed pronounced pathological

alterations, including reddish-brown discoloration, disorganized

architecture, severe congestion, and significant colon shortening

(Figure 3A). Quantitative assessment revealed that the mean colon

length in the control group was 9.10 ± 0.15 cm, whereas the model

group demonstrated a marked reduction (5.50 ± 0.56 cm, P<0.01).

Treatment with TR and TP significantly attenuated this shortening

(P<0.05), indicating a protective effect against DSS-induced

structural damage (Figure 3C). Tumor incidence and morphology

were further evaluated (Figure 3B). The number of tumors in the

model group was 9.00 ± 0.89, the number of tumors in the positive

group was 1.16 ± 0.51, the number of tumors in the TRL group was

5.00 ± 0.63, the number of tumors in the TRH group was 3.00 ±

1.09, and the number of tumors in the TPL group was 2.00 ± 0.63.
FIGURE 3

Observation and statistical results of colonic tissue appearance in each group of mice. (A) Colon length appearance. (B) Appearance of colon tissue.
(C) Colon length statistics. (D) Tumor number statistics. (E) Tumor size statistics. (Model vs Control: ##P<0.01; Positive, TRL, TRH, TPL, TPH vs Model:
*P<0.05, **P<0.01; n=6).
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The number of tumors in the TPH group was 1.33 ± 0.40,

significantly different from that in the model group (P<0.05), and

the statistical results are shown in Figure 3D. Notably, tumors in

treated mice were predominantly solitary and smaller in diameter

(<2 mm), with a minority measuring 2–4 mm and rare instances

exceeding 4 mm (Figure 3E). These findings suggest that both TR

and TP exert dose-dependent chemopreventive effects against colon

cancer, albeit with varying efficacy.
3.3 Histopathological effects of TR and TP
on mice with colon cancer

In the model group, the glandular structures exhibited back-to-

back and cribriform patterns, with severe inflammatory infiltration,

crypt loss, and near-total depletion of the epithelial mucus layer.

Goblet cells were absent, nuclei were enlarged and hyperchromatic,

the nucleus-to-cytoplasm ratio was increased, nuclear polarity was

lost, and multinucleation occurred. Mucosal folds were disrupted,

and the colon contour became irregular. TR and TP can protect the

integrity of the colonic mucosal structure. Due to the differences in

the dosage and composition of the drug, the degree of damage to the

colonic mucosa varies slightly, and the results are shown in

Figure 4A. Histological scoring revealed significant differences

between the model group and the control group (P<0.005), as

well as between the model group and the drug administration

groups (P<0.05). The statistical results are presented in Figure 4D.

In the model group, the expression of Ki67 in colon tissues was

significantly elevated, with a positive cell index of 58.50 ± 0.60%

(Figure 4B). In contrast, the number of Ki67-positive cells decreased

in a dose-dependent manner in the TRL, TRH, TPL, TPH, and

positive control groups, with positive cell indices of 37.70 ± 1.20%,

28.30 ± 0.40%, 21.20 ± 0.95%, 13.50 ± 0.35%, and 12.02 ± 0.25%,

respectively. Semi-quantitative analysis of Ki67 protein expression

(Figure 4E) revealed that, compared to the model group, Ki67

expression was significantly reduced in the TRL, TRH, TPL, and

TPH groups (P<0.01). Notably, the efficacy of TPH in reducing

Ki67 expression was comparable to that of the positive control

group. Similarly, the expression of PCNA was significantly higher in

the model group compared to the control group, with a positive cell

index of 49.50 ± 0.40% (Figure 4C). The expression of PCNA was

also reduced in a dose-dependent manner in the TRL, TRH, TPL,

TPH, and positive control groups, with positive cell indices of 29.00

± 1.45%, 21.50 ± 1.30%, 16.40 ± 0.75%, 12.20 ± 0.88%, and 10.01 ±

0.25%, respectively (Figure 4F). The reduction in PCNA expression

was statistically significant (P<0.01). TUNEL staining was used to

assess apoptosis in colon tissues. As shown in Figures 5A, B, the

apoptotic fluorescence intensity was significantly higher in the TRL,

TRH, TPL, TPH, and positive control groups compared to the

model group (3.50 ± 0.40%). The fluorescence intensities in these

groups were 61.60 ± 0.80%, 71.50 ± 1.30%, 80.40 ± 0.26%, 85.50 ±

0.35%, and 89.90 ± 0.40%, respectively (P<0.01). In the control and

model groups, few green fluorescent cells were observed, indicating
Frontiers in Immunology 07
minimal apoptosis. In contrast, a significant increase in apoptotic

cells was observed in the colon tissues of mice treated with TR and

TP. These findings demonstrated that both TR and TP could inhibit

the proliferation of colon tumor cells in a dose-dependent manner,

with TP exhibiting a more pronounced effect than TR.
3.4 Effects of TR and TP on the expression
of key proteins in NF-kB signaling pathway

The underlying inhibitory mechanisms of TR and TP on colon

cancer cells were further elucidated through Western blot analysis

(Figure 6). Compared with the control group, the model group

exhibited a significant upregulation in the protein levels of TNF-a,
NF-kB p65, COX-2, and iNOS (P<0.005). Upon treatment with

TRL, TRH, TPL, TPH, and the positive control, a dose-dependent

decrease in the expression of these proteins was observed.

Specifically, significant reductions were noted when comparing

the treatment groups with the model group (P<0.05). These

findings indicate that the triterpenoid components of both TR

and TP effectively inhibited the expression of TNF-a, NF-kB p65,

COX-2, and iNOS in a dose-dependent manner. Furthermore,

TP demonstrated a more significant inhibitory effect compared to

TR, which might imply that certain specific triterpenoids

compound components in TP have stronger biological activity,

or that the combination of triterpenoids compound components

in TP has a synergistic effect in inhibiting inflammatory

signaling pathways.
3.5 DNA methylation analysis of TNF-a and
NF-kB p65 genes

As shown in Figure 7A, a total of 7 CPG sites within the TNF-a
gene were methylated. The methylation rates were 40.0% in the

control group, 17.1% in the model group, 31.4% in the positive

group, and 30.0% in the TPH administration group. According to

Figure 7C, the methylation rates in the positive group and the TPH

group were significantly higher than that of the model group

(P<0.05) and comparable to the control group. At this

methylation level, the protein cannot bind to DNA, thereby

silencing transcription and preventing tumor gene expression,

which contributes to the therapeutic efficacy of the drug.

As shown in Figure 7B, a total of 29 CPG sites within the p65

gene were methylated. The methylation rates were 40.9% in the

control group, 14.7% in the model group, 31.5% in the positive

group, and 27.6% in the TPH administration group. After drug

administration, the methylation status of the genes was altered. As

shown in Figure 7D, the methylation rates in the positive group and

the TPH group were significantly higher than that of the model

group (P<0.05). This hypermethylation of the CPG islands inhibits

the expression of tumor-related genes, thereby reducing

tumor development.
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3.6 Qualitative analysis of triterpenoids in
TP

To identify the main triterpenoid components in TP, qualitative

analysis was performed using UPLC-Q-TOF-MS. The base peak

chromatograms (BPC) in both positive and negative ion modes are

shown in Figure 8. Through comparison and analysis, a total of 26
Frontiers in Immunology 08
triterpenoids were identified (Table 1), predominantly pentacyclic

triterpenoids. These include 23 ursane-type triterpenoids, 2

oleanane-type triterpenoids, and 1 lupane-type triterpenoid. Most of

these compounds have been previously reported in S. L. Notably,

compounds 14 and 15 share the same retention time as compounds 25

and 26, respectively, indicating that they are identical compounds. The

chemical structures of these compounds are illustrated in Figure 9.
FIGURE 4

HE staining results of colon tissue of mice and the detection of colon cancer proliferation index. (A) The results of HE staining pathology. (B) The
results of immunohistochemistry (IHC) stains for Ki67. (C) The results of immunohistochemistry (IHC) stains for PCNA. (D) Histological score. (E) Ki67
labeling index of mice in each group. (F) PCNA labeling index of mice in each group. (Model vs Control: ###P<0.001; Positive, TRL, TRH, TPL, TPH vs
Model: *P<0.05, **P<0.01, ***P<0.001; n=3).
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3.7 Network pharmacological analysis of
TP

To elucidate the mechanism of action and identify the potential

active compounds of TP, we conducted network pharmacological

analysis following the characterization of triterpenoids. According

to the SwissTargetPrediction database, 24 of the 26 identified

triterpenoids in TP were predicted to have potential therapeutic

effects. After removing duplicate targets, a total of 279 target genes

were obtained. Additionally, using “colon cancer” as the keyword,

we screened 1475 targets from the OMIM and GeneCards

databases. By intersecting the drug targets and disease targets, we

identified 85 genes as potential cross-targets for TP against colon

cancer (Figure 10A). Figure 10B visually illustrates the PPI network

among these targets. The size of each node represents the

importance of its core target. The results showed that TP53,

EGFR, CASP3, IL-6, TNF, and STAT3 were centrally located in
Frontiers in Immunology 09
the PPI network, indicating their involvement in the anti-colon

cancer process of TP. GO enrichment analysis revealed that TP is

associated with molecular functions such as protein binding and

ATP binding, as well as biological processes like chromatin

remodeling and positive regulation of transcription by RNA

polymerase II (Figure 10C). KEGG pathway analysis further

identified the key pathways through which TP compounds exert

their anti-colon cancer effects, with the top 20 pathways including

the PI3K-AKT signaling pathway and TNF signaling pathway

(Figure 10D). Based on these findings, we constructed a

“component-target-pathway” network (Figure 10E). This network

illustrates that the core components of TP (compounds 1, 8, 13, 15,

16, 18, 19, 22, 27, and 28) act against colon cancer by targeting

TP53, EGFR, CASP3, IL-6, TNF, STAT3, and key signaling

pathways such as PI3K-AKT and TNF signaling. Given the

results of network pharmacology and protein-level analysis, TNF-

a was selected as the focus for further study.
FIGURE 5

Expression of TUNEL immunofluorescent in tumor tissue of colon cancer mice. (A)TUNEL histochemical images of colon cancer mice. (B) Results of
semi-quantitative analysis. (Scale bar=100 mm. Positive, TRL, TRH, TPL, TPH vs Model: **P<0.01, ***P<0.001; n=3).
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3.8 Molecular docking analysis of key
active compounds in TP

To identify the main active compounds in TP, molecular

docking analysis was performed based on the results of the PPI

and “component-target-pathway” network. Figure 11A presents the

heat map and binding energy values of the compounds. The results

indicated that 10 compounds exhibited binding energies lower than

-5 kcal/mol, with most having binding energies below -7 kcal/mol.

Notably, compound 27 had the highest average binding energy,

particularly with TNF-a, reaching -10.2 kcal/mol. The interaction

forces were further characterized using PyMOL and Discovery

Studio, and the molecular model with the lowest binding energy

was visualized. As shown in Figure 11B, the binding energy between

TNF-a and compound 27 was -10.2 kcal/mol, indicating a strong

docking affinity. The interactions between TNF-a and compound

27 were primarily mediated by hydrogen bonds and hydrophobic

interactions. Specifically, LYS112 (F chain), GLU110 (F chain),

LYS98 (D chain), and GLU116 (D chain) on TNF-a formed

hydrogen bonds with compound 27. Additionally, PRO106 (F

chain) on TNF-a formed unconventional hydrogen bonds with

compound 27, while ARG103 on the TNF-a (F) chain formed a

hydrophobic bond with compound 27. In summary, the molecular

docking results reveal that compound 27 is a key active component

in TP’s prevention of colon cancer, with TNF-a likely playing a

crucial role in this process.
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3.9 Molecular dynamics simulations of
protein-ligand complexes

To investigate the stability and dynamic interactions of protein-

ligand complexes, molecular dynamics simulations were performed to

validate the docking results. The stability analysis is shown in

Figure 11C. The RMSD and RMSF curves of the complex fluctuated

within a range of 1 nm, indicating stable conformational dynamics. The

Rg curve fluctuated within a range of 2.15 nm and remained stable

throughout the simulation. To further explore the hydrogen bond

properties of the complex binding sites, the number of main hydrogen

bonds stabilizing the ligand-protein interactions was calculated. The

number of hydrogen bonds between TNF-a and compound 27

stabilized at 3–5 within 0–50 ns and 3–6 within 50–100 ns, with the

hydrogen bond curve fluctuating steadily. The SASA curve of the TNF-

a - compound 27 complex remained stable throughout the simulation,

with no significant fluctuations and a variation range of 200 nm².

Collectively, these results indicate that the TNF-a - compound 27

complex exhibits high stability. Figure 11D shows the free energy

distribution of the TNF-a - compound 27 complex, revealing a single

minimum energy cluster with a concentrated energy distribution. This

suggests that the complex formed between TNF-a and compound 27 is

highly stable. The binding stability of the complex was further

examined by comparing the conformations at five time points (0, 25,

50, 75, and 100 ns). As shown in Figure 11E, TNF-a and compound 27

remained bound to the same position at all five time points without
FIGURE 6

Effect of TR and TP on expression of key proteins in NF-kB signaling pathway. (A) Western-blot results. (B) Results of iNOS statistical analysis. (C)
Results of COX-2 statistical analysis. (D) Results of p65 statistical analysis. (E) Results of TNF-a statistical analysis. (Model vs Control: ##P<0.01;
Positive, TRL, TRH, TPL, TPH vs Model: *P<0.05, **P<0.01; n=3).
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significant changes, indicating excellent binding stability. After the

complex system reached equilibrium, the average binding free energy

of TNF-a - compound 27 was calculated using the MM/GBSA

method. Figure 11F shows that the average binding free energy of

TNF-a - compound 27 is -54.4 kcal/mol, indicating a strong binding

affinity. As depicted in Figure 11G, compound 27 formed favorable

interactions with specific amino acid residues in the TNF protein,

including GLN102 in the E chain (-2.49 kcal/mol), GLU116 in the F

chain (-2.30 kcal/mol), and ARG103 in the F chain (-2.37 kcal/mol).
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These residues play a crucial role in stabilizing the TNF-a - compound

27 complex. Overall, the results demonstrate that TNF-a and

compound 27 exhibit a stable binding interaction.
4 Discussion

This experiment successfully established a mouse model of

colon cancer, in the process of modeling through the analysis of
FIGURE 7

The results of TNF-a and p65 DNA methylation. (A) TNF-a DNA methylation results. (B) p65 DNA methylation results. (C) Results of TNF-a DNA methylation
statistical analysis. (D) Results of p65 DNA methylation statistical analysis. (Model vs Control: ###P<0.001; Positive, TPH vs Model: *P<0.05, **P<0.01; n=3).
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several indicators of colon cancer, the mice showed weight loss,

diarrhea, occult blood in stool, blood in stool, and other symptoms.

In addition, the general morphological observation of colonic tissue,

intestinal mass index, and HE histopathological changes were used

to measure the degree of colonic mucosal injury in mice, to evaluate
Frontiers in Immunology 12
the therapeutic effect of drugs on colonic tissue injury in mice.

Compared with the control group, the colon length of mice in the

model group was significantly shortened, the intestinal mass was

significantly reduced, and there was obvious tumor formation. The

tumor size was also about 4 mm. The size and number of tumors on
FIGURE 8

Determination of triterpenoids in TP by ultrasonic-assisted method. Chromatogram (BPC) in positive (A) and negative (B) ion modes of triterpenoids in TP.
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the colon in the TR group and the TP group were significantly

reduced compared with the model group in a dose-dependent

manner. HE staining showed that the intestinal mucosal adenoma

became smaller and the inflammation was reduced to different

degrees. The tumor inhibition effect of the TP group was

significantly better than that of the TR group. These results

indicate that the triterpenoids before and after processing have a
Frontiers in Immunology 13
certain preventive effect on colon cancer in mice, but the degree of

inhibition is different. Due to the invasiveness of the colon cancer

model, some mice died during the experiment, resulting in a small

sample size and limitations.

Studies have shown that abnormal proliferation of colon cells is

closely related to the occurrence and development of tumors, and

tumor proliferation markers can reflect the occurrence and
TABLE 1 Characterization of triterpenoids compounds from TP by UPLC-Q-TOF-MS.

Compound tR
(min) Chemical name Formula Molecular

weight

[M-H]-

or
[M-H]-

Major
fragment

ion
References

1 8.357 1b-hydroxyrosic acid C30H48O6 504.3 505.3 476.3 (4)

2 9.386
3b-[(a-l-arabinopyranosyl)oxy]-19a-hydroxyolean-

12-en-28-oic acid
C33H52O9 592.4 593.4 564.4; 484.3 (22)

3 10.808 Sauvissimoside R1 C36H56O12 680.4 681.5 340.3 (23)

4 12.172
2a,3b-dihydroxy-28-norurs-12,17,19 (20),21-

tetraen-23-oic acid
C29H40O4 452.6 453.8 153.1 (22)

5 12.654 Sanguisorbins E C45H72O12 804.5 805.4 689.4; 631.4 –

6 16.207 Euscaphic acid C30H48O5 488.4 489.4 471.4; 455.4 (4)

7 17.047 Ziyuglycoside II C35H56O8 604.8 605.4 473.4; 455.4 (4)

8 17.798 3b,19a- dihydroxyurs-12-en-28-oic acid C30H48O4 472.4 473.4 456.4; 438.3 –

9 21.008 Ziyuglycoside I C41H66O13 766.5 765.5 652.4; 437.3 (24)

10 22.872 Rosamutin C36H58O10 650.4 651.4 471.3; 453.3 (25)

11 23.818 3b-hydroxyurs-11,13 (18)-dien-28-oic acid C30H46O3 454.3 455.3 437.4 (4)

12 27.853 Sanguisorbins B C35H56O7 588.4 589.4 437.3; 409.3 –

13 28.441 1b,2a,3a,19a-tetrahydroxyurs-12-en-28-oic acid C31H52O6 520.4 521.3 455.4; 437.3 (24)

14* 30.124 Ursolic acid methyl ester C30H46O4 470.3 471.3 435.3; 338.3 (4)

15* 30.367 Pomeranic acid C30H46O4 470.3 471.3 453.3; 301.1 (4)

16 34.033 2-oxopomolic acid C30H46O5 486.3 487.1 463.1; 439.4 (26)

17 35.862 niga-ichigoside F1 C35H56O10 636.4 637.3 455.4; 376.3 (23)

18 39.422
3b-[(a-L-arabinopyranosyl)oxy]-urs-12,19(29)-dien

-28-oic acid
C51H80O4 757.2 758.2 628.2; 371.1 (22)

19 9.062 lup-12-en-15,19-diol-3,11-dioxo-28-oic acid C30H42O6 498.3 497.4 487.3 –

20 11.449
3b-[(a-L-arabinopyranosyl) oxy]urs-12, 18-dien-

28-oic acid
C50H76O4 741.2 740.5 723.5 (22)

21 16.217
3-O-b-D-glucopyranosyl-2a,19a-dihydroxyurs-12-

en-28-oic acid b-D-glucopyranosyl ester
C42H68O15 812.9 811.5 695.4; 577.3 (4)

22 22.847 2a,19a-dihydroxy-3-oxo-12-ursen-28-oic acid C30H46O5 486.7 485.3 449.2; 311.2 (4)

23 25.449
2a,19a-dihydroxy-3-oxo-urs-11,13(18)-dien-28-

oic acid
C30H44O5 484.3 483.3 311.2 (4)

24 28.865
2a,3b,19a-trihydr-oxyurs-12-en-28-oic acid b-D-

galactopyranosyl ester
C36H58O10 650.4 649.4 571.4; 507.3 –

25* 30.198 Ursolic acid methyl ester C30H46O4 470.3 469.3 433.3 (4)

26* 30.431 Pomeranic acid C30H46O4 470.3 469.4 347.2; 293.2 (4)

27 34.134
2a,3a-dihydroxyurs-12,19(29)-dien-28-oic acid b-

D-glucopyranosyl ester
C36H56O9 632.4 631.5 501.4; 455.4 –

28 37.763 3-O-acetylursolic acid C32H50O4 498.7 497.4 255.2 (27)
* is expressed as a repeating compound.
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development of tumors (28). Among them, Ki67 exists in every

cycle of cells, and can be strongly expressed in tumor cells, but can

hardly be detected in normal cells. Its expression level has

important prognostic significance in colon cancer, so it can be

used to evaluate the survival and progression of cancer (29). In

addition, PCNA is a non-histamine nuclear protein whose

expression is related to the degree of malignancy, vascular

invasion, distal metastasis, and survival rate of tumors, and is a

specific marker of cell division (30). PCNA can effectively reflect the

proliferation activity of cells, to objectively evaluate the proliferation

status of tumor cells. In addition, apoptosis also plays a crucial role

in the process of tumorigenesis control and can be used to predict

cancer progression. In this study, through the detection of Ki67 and

PCNA index and TUNEL apoptosis fluorescence intensity in tumor

tissue, it was shown that the expression of Ki67 and PCNA protein

in tumor tissue of mice in the model group was high, while the

TUNEL apoptosis fluorescence intensity was very low, indicating

that tumor cells in tumor tissue had good proliferation ability and

little apoptosis. However, TS and Positive drugs can significantly

reverse the trend of the above indexes, and the low-dose group and
Frontiers in Immunology 14
high-dose group have different degrees of reverse regulation ability,

which is dose-dependent, indicating that tumor cells in tumor tissue

had high proliferation ability and low apoptosis.

The occurrence and progression of colon cancer involve

multiple mechanisms. Research shows that S.L. enhances the 5-

fluorouracil sensitivity and overcomes chemoresistance in 5-

fluorouracil-resistant colorectal cancer cells via Ras/MEK/ERK

and PI3K/Akt pathways (31). The Wnt/b-catenin signaling

pathway also plays an important role in colon cancer. Ursolic

acid may inhibit the malignant phenotype, induce apoptosis, and

arrest the cell cycle of CRC, by attenuating the Wnt/b-catenin
signaling axis (32). p53 is an important tumor suppressor gene, and

the p53 protein encoded by it plays a key role in cell cycle

regulation, DNA repair and apoptosis. Research shows that

maslinic acid induces apoptosis in human HT29 colon-cancer

cells through the JNK-Bid-mediated mitochondrial apoptotic

pathway via the activation of p53 (33). TNF-a and NF-kB play

crucial roles in the development and progression of colitis as well as

the development of colon cancer (34). TNF-a, primarily produced

by immune cells, activates the NF-kB signaling pathway, which in
FIGURE 9

Chemical structure of triterpenoids in TP.
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turn regulates the expression of various inflammation-related genes,

thereby enhancing the immune response (35). Activated NF-kB
responds to danger signals released by inflammatory cytokines,

leading to the production of p65, COX-2, iNOS, and other

cytokines. These molecules not only amplify the inflammatory

response but also promote cancer cell growth (36). TNF-a and

NF-kB cooperate in the immune response, jointly promoting

inflammation and immune cell activation, thus forming a positive

feedback loop (37). As a transcription factor, NF-kB can also
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regulate the expression of TNF-a and other inflammatory factors,

further driving the inflammatory response (38). This TNF-a/NF-
kB-mediated inflammatory response is key to colitis development

and strongly associated with colon cancer progression (39). In our

study, the model group exhibited increased expression levels of NF-

kB and elevated contents of inflammatory cytokines. However,

these symptoms were significantly reduced following drug

administration. This indicates that the drug intervention inhibits

NF-kB signaling pathway activation by downregulating the
FIGURE 10

Network pharmacology analysis of TP anti-colon cancer. (A) Venn diagram of potential anti-colon cancer targets. (B) PPI network of common
targets between colon cancer and TP. The darker in color and the larger in circle represented a higher degree. (C) Top 10 GO terms of hub genes.
(D) Top 20 KEGG enrichment results of co-targets. (E) “Component-target-pathway” map of TP. Blue represented the TP components, green
represented the common targets, and pink represented the pathways.
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expression of p65, COX-2, TNF-a, and iNOS proteins in colon

tissue. This finding suggests that the preventive effect of ST on

AOM/DSS-induced colon cancer is primarily mediated through the

NF-kB signaling pathway. ST can reduce the protein expression

levels of TNF-a, NF-kB p65, COX-2, and iNOS in colon tissue in a
Frontiers in Immunology 16
dose-dependent manner and significantly inhibit the abnormal

activation of the NF-kB signaling pathway. Our findings

demonstrate that triterpenoids, as biologically active

phytochemicals, exert potent chemopreventive effects through

multimodal regulation of this pathway. Triterpenoids significantly
FIGURE 11

Molecular docking and molecular dynamics simulation analysis of TNF-a - Compound 27. (A) Docking heat map of 10 main active compounds in TP
and 6 core targets. The deeper the red color, the lower the binding energy and the stronger the binding ability. (B) Molecular model of TNF-a -
Compound 27 interaction. (C) RMSD curve, RMSF curve, Rg curve, hydrogen bond number fluctuation curve and SASA curve. (D) Free energy
distribution diagram. (E) Comparison of the structure of the complex at five moments of molecular dynamics simulation 0,25,50,75,100ns(In the
figure, the small molecules in red, green, blue, yellow and orange correspond to the molecular structure of compound 27 at five times, respectively,
0,25,50,75,100ns). (F) Average binding free energy. (G) Energy contribution of amino acid residues involved in compound 27 binding in TNF protein.
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downregulate TNF-a production and inhibit NF-kB activation in a

dose-dependent manner, thereby exerting anti-inflammatory

effects. Moreover, triterpenoids also suppress the expression of

downstream molecules such as COX-2 and the activity of iNOS.

To further clarify the transcriptional regulation mechanism of the

TNF and NF-kB signaling pathway in colon cancer, more in-depth

studies have been carried out at the gene level. Western-blot

experiments has proved that the effect of the TPH administration

group is better, so the TPH group is selected as the administration

group for subsequent experiments. In addition, we selected the tumor

necrosis factor TNF-a and nuclear translocation factor NF-kB p65 as

the main DNAmethylation indicators. Changes in the level and pattern

of DNA methylation are an important factor in tumorigenesis (40).

Abnormal changes in DNA methylation status are common in various

tumors, and abnormal DNA methylation status is one of the important

characteristics of tumors. Therefore, DNA methylation is of great

significance in the early diagnosis and prognosis evaluation of tumors

(41). In this study, mouse colon tissue was purified using BSP, and

positive plasmids were obtained for subsequent sequencing analysis.

Comparison of the methylation rates across different groups revealed

that tumor cells are typically activated in a hypomethylated state, which

is associated with pro-tumorigenic activity. Conversely, administration

of TPH induced a hypermethylated state, which was associated with the

inhibition of tumor cell activation. This finding indicates that TP can

suppress tumor genes at the genetic level, thereby inhibiting tumor

initiation and progression. The results of DNA methylation analysis

further demonstrate that triterpenoids exert epigenetic regulatory effects

by modulating DNA methylation status. In the model group, a

hypomethylation state was observed, which is typically associated with

pro-tumorigenesis. In contrast, TPH treatment significantly increased

the methylation level of the TNF-a/NF-kB binding site, inducing a

hypermethylated state. This hypermethylation is closely correlated with

the transcriptional silencing of oncogenic pathways. These findings

suggest that TPH inhibits the expression of inflammatory and tumor-

related genes by inducing hypermethylation at key regulatory sites,

thereby exerting its anti-tumor effects.

The triterpenoids components were qualitatively analyzed by

UPLC-Q-TOF-MS. High-resolution mass accuracy (<5ppm) and

dual-ion mode detection enhance the coverage of triterpenoids,

especially for those with lower ionization efficiency in a single mode.

We employed UPLC-Q-TOF-MS to identify 26 triterpenoids in TP.

Subsequently, active compounds were screened using network

pharmacology. Molecular docking technology, a computational

chemistry method that simulates the binding process between

ligands and receptors, was utilized to predict their binding modes

and affinities (42). Generally, a docking score <0 kcal/mol indicates

spontaneous binding between the compound and target, a score <-5

kcal/mol suggests good binding affinity, and a score <-7 kcal/mol is

considered to indicate strong binding affinity (43). Our molecular

docking results revealed that compound 27 exhibited high binding

energy with TNF-a. Further molecular dynamics simulations

demonstrated that the TNF-a - compound 27 complex was

stable. Collectively, these findings suggest that compound 27 in

TP may contribute to the prevention of colon cancer by forming a

stable complex with TNF-a, thereby downregulating TNF-a and
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inhibiting the NF-kB signaling pathway. The calculation and

prediction results need to be further confirmed in combination

with in vitro activity verification.

5 Conclusions

In this study, TR and TP have different degrees of prevention

and treatment effects on AOM/DSS-induced colon cancer mice.

They might reduce the proliferation of colon cancer cells by binding

to TNF-a, down-regulating TNF-a, inhibiting the NF-kB signaling

pathway, suppressing the CPG island from being in a

hypermethylated state, and affecting the binding of proteins to the

DNA promoter region. In conclusion, this study provides

preliminary methodological and theoretical foundations for the

search of new anti-tumor drugs, and also provides a new idea for

the development and utilization of S.L. and its processed products.
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