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Bacterial Sepsis-Associated acute lung injury (ALI) and its progression to acute

respiratory distress syndrome (ARDS) are clinically prevalent critical conditions

with high morbidity and mortality. As a vital component of lung tissue, alveolar

epithelial cells (AECs) play a crucial role in maintaining pulmonary homeostasis

and are deeply involved in the pathophysiological processes of bacterial Sepsis-

Associated ALI. This review systematically summarizes the pathophysiological

changes in AECs during bacterial sepsis, focusing on oxidative stress,

programmed cell death, and disruption of the epithelial barrier. It further

explores the inflammatory responses triggered by both Gram-positive and

Gram-negative bacteria, as well as the interactions between AECs and immune

cells, shedding light on how these processes contribute to the inflammatory

response during bacterial sepsis. It elaborates on the regulatory mechanisms of

key molecular pathways, including Nuclear factor kappa-B (NF-kB), Nuclear
Factor Erythroid 2-related Factor 2 (NRF2), nucleotide-binding oligomerization

domain-like receptor family pyrin domain-containing 3 (NLRP3), and Toll-like

receptor (TLR), in AEC dysfunction and inflammatory responses. Furthermore,

therapeutic strategies for AEC injury are comprehensively analyzed frommultiple

perspectives, such as AEC repair and regeneration, modulation of inflammatory

responses, restoration of barrier function, and exosome-based therapies.

Although these approaches show promising results in preclinical studies, their

clinical translation faces significant challenges. This review underscores the need

for further research into the complex mechanisms of AEC injury in bacterial

sepsis and advocates for the development of more targeted interventions to

improve patient outcomes.
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1 Introduction

The lungs are essential organs in the human body, and injury to

lung tissue, along with subsequent respiratory failure, constitutes a

significant clinical concern. Severe cases of lung injury may progress

to acute respiratory distress syndrome (ARDS), exacerbating the

underlying condition, complicating treatment efforts, and

increasing mortality rates (1). Previous studies have indicated that

ARDS develops as a progression of acute lung injury (ALI).

Research has identified several factors that contribute to ALI,

including infectious agents such as pulmonary (2) and non-

pulmonary sepsis (3), as well as non-infectious causes like

trauma, electronic cigarette exposure (4), mechanical ventilation

(5), pancreatitis, and blood transfusion. These factors induce ALI

through both localized inflammatory responses and systemic

inflammation, impairing respiratory function. Among these,

sepsis remains the most common and severe cause of ALI (6).

Sepsis is a critical condition triggered by immune dysfunction

induced by infections leading to widespread systemic

inflammation and organ failure, with the lungs frequently affected

(7). The inflammation associated with sepsis can directly or

indirectly damage endothelial cells (8) and alveolar epithelial cells

(AECs) (9) via mechanisms such as oxidative stress, inflammatory

responses, and disturbances in microcirculation. These processes

result in vascular leakage, pulmonary edema, reduced alveolar

surfactant, and alveolar collapse, which ultimately leads to

respiratory failure (10, 11). In addition, AECs interact with

alveolar macrophages to secrete various substances that trigger

immune responses to defend against pathogens and clear

particulate matter (12). Research on ALI has highlighted the

involvement of AECs in the inflammatory process (13, 14), with

studies showing that preventing AEC death can effectively reduce

ALI and improve patient prognosis (15).

This review investigates the pathophysiological role of AECs in

bacterial Sepsis-Associated ALI. It provides a comprehensive

overview of the alterations in AECs that occur during the onset of

bacterial Sepsis-Associated ALI, highlighting the underlying

molecular mechanisms. The review also explores various

therapeutic approaches and potential targets for modulating AEC

function and activity to mitigate the impact of sepsis-associated

ALI. These insights offer valuable perspectives for advancing

research and mitigating the progression of sepsis-associated ALI

to acute respiratory distress syndrome (ARDS).
2 Physiological function of AECs

The alveoli are the terminal respiratory units of the lung,

playing a crucial role in maintaining normal respiratory function

and facilitating gas exchange. AECs, which are essential

components of the alveolar structure, are classified into type I

alveolar epithelial cells (AEC I) and type II alveolar epithelial cells

(AEC II) pneumocytes (16). AEC I are derived from the

differentiation of multipotent stem cells into AEC II, followed by

transdifferentiation. These cells form the majority of the alveolar
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epithelium. AEC I, with their unique flattened morphology, enable

efficient gas diffusion into the capillaries, maintain ion balance at

the alveolar air-liquid interface, and support optimal gas exchange

(17). In addition to their structural role, AEC I are involved in

inflammatory responses and apoptosis. A deficiency in AEC I

function can lead to inflammation, defective tissue repair,

impaired remodeling, and interstitial fibrosis, contributing to

chronic pulmonary diseases such as chronic obstructive

pulmonary disease (COPD) and pulmonary fibrosis (18). AEC I

express Toll-like receptors (TLRs) and secrete pro-inflammatory

cytokines in response to injury, modulating immune responses.

AEC II, on the other hand, are responsible for synthesizing

pulmonary surfactant, a mixture of proteins and phospholipids

that binds microbial components (such as bacterial, fungal, and

viral lipids/proteins) to facilitate phagocytic clearance and enhance

lung immunity (19). Surfactant produced by AEC II reduces

alveolar surface tension, stabilizes the epithelial barrier, and

prevents alveolar collapse, thus preserving lung architecture (20).

Notably, AEC II possess progenitor cell properties. In response to

AEC I injury or death, they proliferate and differentiate into AEC I

to repair the alveolar epithelium. This regenerative function

underscores the critical role of AEC II in maintaining epithelial

integrity (21). Together, the AEC I-AEC II epithelium forms a

tightly regulated barrier that allows for efficient gas exchange while

preventing the passage of excess water, electrolytes, and hydrophilic

solutes. The functional synergy between AEC I and AEC II, coupled

with the integrity of their junctional complexes, ensures the

coordination of gas exchange and alveolar fluid clearance

(22) (Figure 1).
3 Pathophysiology of AECs in bacterial
sepsis-associated ALI

AEC injury plays a critical role in the pathogenesis and

progression of bacterial sepsis-Associated ALI. In Sepsis-

Associated ALI, the structural integrity of the alveolar walls is

compromised. AEC I undergoing cytoplasmic swelling, blebbing,

and rupture. Meanwhile, AEC II exhibits cytoplasmic shrinkage,

disorganized structures with vacuolar degeneration, depletion and

necrosis of lamellar bodies, and lysosomal proliferation.

Additionally, AEC II show a reduction or complete loss of

microvilli, mitochondrial cristae destruction, endoplasmic

reticulum dilation, altered nuclear morphology, and prominent

perinuclear spaces. Apoptotic nucleoli, secretory granules, and

apoptotic bodies are also observed (23, 24). Infection by bacterial

pathogens, immune complexes, extracellular vesicles (EVs) released

by immune cells, and bacterial endotoxins contribute to AEC injury

and dysfunction. These factors induce oxidative stress, promote

various forms of programmed cell death, including apoptosis,

necroptosis, and pyroptosis, impair cellular viability and

proliferation (25–27), and disrupt intercellular junctions and the

epithelial barrier function (28). These mechanisms also facilitate

epithelial-mesenchymal transition (EMT) (29), exacerbating lung

injury. Moreover, interactions between AECs and immune cells
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during immune-inflammatory responses can drive systemic

inflammation (30), further increasing the risk of ALI or directly

damaging lung tissue (31, 32) (Figure 2).
3.1 AEC injury and dysfunction in sepsis

3.1.1 Oxidative stress and cell death
Oxidative stress and mitochondrial dysfunction are important

mechanisms of cellular injury, contributing to the pathogenesis

of various pulmonary diseases, including COPD, idiopathic

pulmonary fibrosis (IPF), and ALI (33). In bacterial sepsis-

induced AEC injury, bacterial components and endotoxins

trigger endoplasmic reticulum stress and dysregulated autophagy

in AECs (34). These pathological changes lead to the excessive

production of reactive oxygen species (ROS), reactive nitrogen

species (RNS), and lipid peroxidation products, in conjunction

with a weakened antioxidant defense system (35). As a result,
Frontiers in Immunology 03
mitochondrial membrane potential depolarization and functional

impairment occur, disrupting cellular energy metabolism and

promoting AEC apoptosis (36). Therapeutic interventions

targeting these pathways—such as antioxidant therapy,

modulation of mitophagy (37, 38), and the regulation of oxidative

stress and mitochondrial function (39, 40)—can alleviate sepsis-

induced AEC injury by promoting alveolar epithelial cell

proliferation, inhibiting apoptosis and ferroptosis, suppressing

inflammatory responses, and reducing oxidative stress, thereby

mitigating bacterial Sepsis-Associated ALI.

Cell death is generally categorized into programmed cell death

(including apoptosis, necroptosis, and pyroptosis) and metabolism-

related cell death (such as ferroptosis and cuproptosis), that arise

due to metabolic dysregulation. These mechanisms are essential for

the removal of damaged or senescent cells, thereby ensuring normal

growth and development. However, dysregulated or excessive

activation of these pathways can contribute to the pathogenesis of

various diseases (41).
FIGURE 1

Physiological function of AECs. AEC I and AEC II cooperatively maintain alveolar structure and regulate fluid clearance. AEC I primarily mediate gas
exchange and participate in inflammatory responses, while AEC II synthesize pulmonary surfactant to stabilize alveoli. Notably, AEC II possess
progenitor capacity, enabling their differentiation into AEC I to repair damaged epithelium. This synergistic interaction ensures proper alveolar
function and integrity.
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In the context of bacterial Sepsis-Associated ALI, research has

shown that endotoxins, certain bacterial pathogens, and immune

complexes can promote apoptosis in AECs while inhibiting AEC

proliferation. These effects are mediated through multiple

mechanisms, including modulat ion of glycolysis and

inflammatory responses (42), inhibition of activated protein C

(43), and disruption of heat shock proteins (44). These factors all

enhance apoptosis-inducing factors and worsen Sepsis-Associated

ALI progression (45, 46). Notably, pharmacological inhibition of

AEC apoptosis has been found to alleviate ALI in experimental

models, improving survival outcomes (47, 48). Endotoxins can also

activate canonical pyroptosis-related molecules in AECs, such as

nucleotide-binding oligomerization domain-like receptor family

pyrin domain-containing 3 (NLRP3) and gasdermin D

(GSDMD), promoting inflammatory responses and contributing

to cellular injury (49). Inhibition of the activation of these

pyroptosis-related molecules can alleviate AEC damage, thereby

mitigating bacterial Sepsis-Associated ALI (50, 51).

Ferroptosis has emerged as a key form of metabolic cell death in

AECs during bacterial Sepsis-Associated ALI. Experimental

findings demonstrate that endotoxins induce ferroptosis in AECs
Frontiers in Immunology 04
by disrupting the expression of ferroptosis-related proteins, such as

Glutathione Peroxidase 4 (GPX4), Solute Carrier Family 7 Member

11 (SLC7A11), and Ferritin Heavy Chain 1 (FTH1). This leads to

characteristic mitochondrial alterations in AECs, including

shrinkage, reduced size, and a loss of cristae (52). Furthermore, in

the Cecal ligation and puncture (CLP) mouse model, the release of

neutrophil extracellular traps (NETs) can induce ferroptosis in

AECs by regulating the stability of Hypoxia-Inducible Factor-1

Alpha (HIF-1a), thereby exacerbating ALI (53). Pharmacological

modulation of the ferroptosis pathway showed therapeutic

potential, enhancing cellular viability and significantly reducing

pulmonary inflammation and ALI in septic animal models (54, 55).

Cuproptosis represents a recently identified form of metabolic cell

death. Current bioinformatic studies reveal its involvement in

bacterial sepsis pathogenesis, particularly demonstrating complex

relationships with bacterial Sepsis-Associated ALI (56, 57).

However, the precise mechanisms through which cuproptosis

contributes to bacterial Sepsis-Associated ALI, including its

specific interactions with AECs, require further elucidation.

In summary, programmed and metabolically regulated cell

death pathways in AECs constitute significant pathophysiological
FIGURE 2

Pathophysiology of AECs in bacterial sepsis-associated ALI. Bacterial sepsis triggers AEC injury through two major pathways: (1) Cellular dysfunction
and structural damage, involving oxidative stress, multiple cell death pathways (apoptosis, pyroptosis, ferroptosis, and cuproptosis), and disruption of
tight junctions (ZO-1, claudins) and ion channels (ENaC, AQPs) that impair alveolar barrier function and fluid clearance; (2) Inflammatory
amplification through cytokine release and crosstalk with immune cells (macrophages and neutrophils). These synergistic mechanisms collectively
contribute to the development and progression of bacteria Sepsis-Associated ALI.
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alterations contributing to the development of bacterial Sepsis-

Associated ALI. While current research has yielded insights into

apoptosis and ferroptosis, a definitive consensus on their precise

roles and mechanisms remains elusive, and the translation into

effective clinical therapeutics necessitates further investigation.

Furthermore, the contributions of emerging cell death modalities

—such as necroptosis, pyroptosis, and cuproptosis, to the

pathogenesis of bacterial Sepsis-Associated ALI warrant

deeper exploration.
3.1.2 Breakdown of epithelial barriers and tight
junctions

AECs are essential structural components of the alveoli, crucial for

maintaining normal pulmonary function through their intercellular

junctions and barrier properties. Recent studies have shown that AECs

from septic patients secrete mucus containing carbohydrates such as

N-acetyl-galactosamine, galactose, and N-acetyl-neuraminic acid.

These alterations in carbohydrate composition disrupt lectin-

binding patterns, impairing the mucosal immune barrier and

resulting in delayed or defective protective responses (58).

Pathogenic factors, including bacteria and endotoxins, significantly

reduce the expression of tight junction proteins (such as ZO-1 (Zonula

Occludens-1), occludin, claudin-1, claudin-3, and claudin-18) and

adherens junction proteins (E-cadherin) in AECs. This disruption of

intercellular connections compromises alveolar barrier integrity,

increases permeability, and exacerbates pulmonary exudation and

pathological damage in bacterial sepsis (28, 59, 60). In vitro co-

culture experiments have shown that AEC-derived soluble

protective factors can attenuate lipopolysaccharide (LPS)-induced

migration of human pulmonary microvascular endothelial cells and

neutrophils, while reducing endothelial permeability and albumin

leakage (61). Moreover, endotoxins downregulate the expression

and accelerate the degradation of surfactant proteins (62) and key

ion channels/water transporters - including the Epithelial Sodium

Channel (ENaC), Sodium-Potassium ATPase (Na+/K+-ATPase), and

Aquaporin-1/5 (AQP1/5) - in AECs. These molecular changes impair

alveolar fluid clearance, contribute to pulmonary edema, and

exacerbate exudation, ultimately facilitating the development of

bacterial Sepsis-Associated ALI (63–65).

In conclusion, oxidative stress, programmed cell death, and

dysfunction of intercellular junctions and barrier properties in

AECs play central roles in the pathogenesis of bacterial Sepsis-

Associated ALI. Therapeutic strategies aimed at restoring AEC

viability and barrier function represent promising approaches for

treating bacterial Sepsis-Associated ALI. However, further research

is needed to develop specific pharmacological modulators and

clarify their mechanisms of action.
3.2 Bidirectional interaction between AECs
and inflammation in bacterial sepsis-
associated ALI

While the systemic inflammatory response induced by bacterial

sepsis is a well-recognized contributor to AEC injury, emerging
Frontiers in Immunology 05
evidence suggests that AECs themselves can actively participate in

the inflammatory cascade. Under certain pathological conditions,

AECs are capable of producing pro-inflammatory cytokines and

chemokines, thereby amplifying systemic inflammation and

contributing to multi-organ damage in conditions such as sepsis,

ALI, and ischemia-reperfusion injury (66). Furthermore, AECs

engage in crosstalk with immune cells, modulating both local

pulmonary inflammation and broader immune responses. These

interactions can disrupt alveolar structure and impair respiratory

function, further exacerbating disease progression (67).

3.2.1 AEC and inflammation
Inflammation is a key pathogenic mechanisms in bacterial

Sepsis-Associated ALI. Research has found significant differences

in the mechanisms of neutrophil infiltration in the alveoli caused by

different pathogens (Gram-positive or Gram-negative bacteria). For

instance, Gram-negative bacteria can mediate infiltration through

CD18 or b2 integrins, whereas Gram-positive bacteria use CD29 or

b1 integrins. In ALI associated with pneumonia, inflammation is

often observed to resolve, whereas Sepsis-Associated ALI lacks this

resolution, suggesting differences in the lung injury caused by sepsis

depending on the infection site and pathogen (68).

In CLP or LPS-induced bacterial sepsis models, it was found

that suppression of Sirtuin 1 (SIRT1) expression in AECs (69) or

direct activation of the inflammasome (14) amplifies inflammatory

signaling, triggering a cascade of cytokines and chemokines that

further disrupt immune regulation and promote multi-organ

dysfunction (30, 70). In contrast, therapeutic strategies aimed at

reducing inflammatory cytokine release from AECs have been

shown to attenuate pulmonary inflammation and alleviate

bacterial Sepsis-Associated ALI pathology (71, 72).

Staphylococcus aureus represent the predominant Gram-positive

bacterial pathogens implicated in bacterial Sepsis-Associated ALI.

Current research has demonstrated that peptidoglycan (PGN) from

the Staphylococcus aureus cell wall can activate critical transcription

factors including AP-1, Nuclear factor kappa-B (NF-kB), and
Nuclear Factor for Interleukin-6 (NF-IL6) (73). Additionally, AECs

serve as highly responsive targets for Staphylococcus aureusa-toxin,
which hydrolyzes phosphatidylinositol (PtdIns) within these cells,

triggering the release of nitric oxide, prostaglandins (PGE2, PGI2),

and thromboxane A2 (TxA2), thereby exacerbating the pulmonary

inflammatory response (74).

In summary, irrespective of the causative Gram-positive or

Gram-negative bacterium, AECs in bacterial sepsis function

dually as targets of inflammatory assault and potent sources of

inflammatory cytokines. Consequently, targeting the regulation of

AEC-associated inflammatory responses presents a potential

therapeutic strategy for mitigating bacterial Sepsis-Associated

ALI/ARDS and the systemic inflammatory response syndrome

(SIRS) in sepsis.

3.2.2 Interaction of AEC with immune cells
Macrophages are key regulators of innate immunity, and play a

central role in the dysregulated inflammatory responses

characteristic of bacterial sepsis (75). Under physiological
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conditions, AECs and macrophages sustain pulmonary homeostasis

via ligand-receptor-mediated interactions. However, during the

early stages of ALI, endotoxins can regulate mitochondrial fusion

protein Optic Atrophy 1 (OPA1) acetylation through Sirtuin 3

(SIRT3), thereby modulating mitochondrial dynamics and

promoting macrophage activation. This leads to a shift from the

anti-inflammatory M2 phenotype to the pro-inflammatory M1

phenotype, which results in the secretion of pro-inflammatory

cytokines. Macrophages also activate inflammasomes in AECs

through exosome release, impairing AEC barrier function and

inducing pyroptosis (76, 77). In both cell and animal studies,

endotoxins have also been shown to promote the release of

exosomal mediators such as Tenascin-C (TNC) and miR-92a-3p

from AECs. These mediators activate the NF-kB inflammatory

signaling pathway in macrophages, enhancing the release of

inflammatory cytokines and inducing pulmonary tissue

inflammation (78, 79). Recent studies have found that several

targets, including NF-kB, Nuclear Factor Erythroid 2-related

Factor 2 (NRF2), Signal Transducer and Activator of

Transcription 1 (STAT1), Interferon Regulatory Factor 1 (IRF1),

and Peroxisome Proliferator-Activated Receptor Gamma (PPARg),
are associated with both macrophage polarization and AEC injury

in the context of bacterial Sepsis-Associated ALI. However, the

specific roles and regulatory mechanisms of these targets in the

interaction between AECs and macrophage polarization remain to

be further explored (80, 81). In the late stage of ALI, anti-

inflammatory cytokines secreted by selectively activated

macrophages suppress the inflammatory response, promote AEC

II proliferation, and facilitate differentiation into AEC I,

contributing to alveolar epithelial regeneration and structural

remodeling (82). These findings highlight a dynamic and

bidirectional interaction between macrophages and AECs in

bacterial Sepsis-Associated ALI (83). On one hand, macrophages

release pro-inflammatory cytokines that damage AECs, while AECs,

in turn, release exosomes that act back on macrophages, promoting

the release of inflammatory cytokines. On the other hand,

macrophages also promote alveolar epithelial regeneration and

structural remodeling, protecting alveolar structure and function.

Additionally, studies have found that endotoxins can enhance the

expression of intercellular adhesion molecule-1 (ICAM-1) in lung

tissue and AECs, increasing neutrophil adhesion to AECs,

promoting neutrophil infiltration and exacerbating the

inflammatory response in injured alveoli (84). AECs are closely

interact with macrophages, neutrophils, and other immune cells.

However, regulating these interactions to alleviate bacterial Sepsis-

Associated ALI requires further in-depth research.

In conclusion, AECs serve as both targets of bacterial sepsis-

induced systemic inflammatory damage and active participants in

the pathological process through the secretion of inflammatory

mediators, exosomes, and their dynamic interactions with immune

cells. Modulating AEC-derived inflammatory factor release,

exosome communication, and AEC-immune cell interactions

presents a promising therapeutic strategy to mitigate systemic

inflammation in bacterial sepsis and alleviate ALI. This dual

approach, targeting both AEC dysfunction and their
Frontiers in Immunology 06
immunomodulatory roles, may offer novel therapeutic avenues

for managing the complex pathophysiology of bacterial Sepsis-

Associated ALI. However, current research is still at the basic

research stage. Further clinical studies are needed to analyze the

correlation between exosomal proteins such as TNC, miR-92a-3p,

inflammatory cells, and inflammatory cytokines in bronchoalveolar

lavage fluid and peripheral blood of patients with bacterial Sepsis-

Associated ALI. These findings will help validate the results of basic

research and lay the groundwork for future clinical applications.
4 Key mechanisms

4.1 NF-kB and phosphorylation

NF-kB plays a pivotal role in various physiological and

pathological processes, including immune and inflammatory

responses, cell survival, proliferation, and metabolism. It is critical

in cellular responses to external stimuli, such as cytokines, stress,

and antigens (85). In the context of bacterial Sepsis-Associated ALI,

endotoxins induce AEC apoptosis and inflammatory responses

through the regulation of the NF-kB/p65 signaling pathway (86),

thereby inhibiting AEC apoptosis mediated by cytochrome C and

caspase-3. Targeting NF-kB protein levels (87, 88) or inhibiting its

activity (89) can reduce AEC inflammatory injury and alleviate

bacterial Sepsis-Associated ALI. Further studies have shown that

during septic inflammatory storms, NF-kB activation enhances the

release of inflammatory mediators - including TNF-a, IL-1b, and
Monocyte Chemoattractant Protein-1 (MCP-1) - while

simultaneously promoting NET formation through NLRP3

inflammasome activation, thereby exacerbating pulmonary

inflammation (90). Notably, NETs also facilitate m6A

methylation modification, leading to the degradation of GPX4

mRNA via the Tol l- l ike Receptor 9 (TLR9)/Myeloid

Differentiation Primary Response 88 (MyD88)/NF-kB/
methyltransferase-like 3 (METTL3) signaling pathway, thus

reducing GPX4 protein expression and promoting AEC

ferroptosis (72, 91). Reticulocalbin 3 (Rcn3) regulates the NF-kB/
NLRP3/inflammasome axis, thereby protecting AECs and

alleviating bacterial Sepsis-Associated ALI (92). Endotoxin-

stimulated AEC exosomes secrete TNC, which binds to Toll-like

Receptor 4 (TLR4) receptors and activates the P38/extracellular

signal-regulated kinase (ERK)/NF-kB pathway, driving M1

macrophage polarization and inducing macrophage pyroptosis,

thereby further intensifying inflammatory responses in bacterial

Sepsis-Associated ALI (78) . Addit ional ly , PGN from

Staphylococcus aureus cell walls can induce IL-8 expression

through CD14 enhancement, ultimately activating NF-kB in

AECs and promoting the development of bacterial Sepsis-

Associated ALI (73). Cell and animal experiments have also

confirmed that miR-92a-3p in AEC exosomes targets Phosphatase

and Tensin Homolog (PTEN), activating the NF-kB/p65 signaling

pathway in macrophages via the Phosphoinositide 3-Kinase (PI3K)/

Protein Kinase B (Akt) pathway, thereby promoting the release of

inflammatory cytokines and inducing pulmonary inflammation
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(79). Anemonin can inactivate NF-kB, thereby inhibiting

lipopolysaccharide-induced AEC inflammation and oxidative

stress, and alleviating bacterial Sepsis-Associated ALI (93). These

findings underscore the central role of NF-kB in orchestrating

complex inflammatory networks through various cellular and

molecular mechanisms in the pathogenesis of bacterial Sepsis-

Associated ALI.

Phosphorylation is the most prevalent post-translational

modification, playing a critical role in regulating protein function

and cellular functions. Dysregulated phosphorylation contributes to

various diseases by affecting cell signaling, transmembrane protein

synthesis, and key biological pathways, including apoptosis and

autophagy (94). Phosphorylation is closely linked to the regulation

of NF-kB in bacterial Sepsis-Associated ALI. Studies have shown

that endotoxins activate ERK1/2 and p38/MAPK phosphorylation,

leading to the translocation of cytoplasmic NF-kB to the nucleus
Frontiers in Immunology 07
and the activation of NF-kB activity. This may increase the

expression of immune response-related TLR2 and modulate the

expression of surfactant protein A (SP-A), which exacerbates

bacterial Sepsis-Associated ALI (95). In contrast, activation of

PI3K-Akt phosphorylation negatively regulates NF-kB
phosphorylation, thereby inhibiting AEC apoptosis, alleviating

bacterial Sepsis-Associated ALI, and reducing mortality in

experimental models (96, 97). Additionally, modulation of P65

phosphorylation, a key factor in the NF-kB signaling pathway,

has been shown to mitigate bacterial sepsis-induced AEC injury and

reduce pulmonary inflammation in septic mice (98). Moreover,

endotoxins promote c-Jun N-terminal Kinase (JNK) signaling

pathway phosphorylation in a time-dependent manner, leading to

AEC apoptosis (99).

In summary, modulation of the NF-kB signaling pathway and

its phosphorylation is one of the key targets for regulating AEC
FIGURE 3

Key mechanisms in bacterial sepsis-associated ALI. The pathogenesis of bacterial sepsis-associated ALI involves a complex interplay of key signaling
pathways (NF-kB, NRF2, NLRP3, HMGB, TLR, MAPK), post-translational modifications (phosphorylation, methylation, ubiquitination, acetylation), and
exosome-mediated intercellular communication, which collectively contribute to AEC injury and dysfunction. NF-kB drives inflammatory responses
through cytokine production and NLRP3 inflammasome activation, while NRF2 regulates antioxidant defense against oxidative stress and ferroptosis.
HMGB1-RAGE signaling and TLR activation further amplify inflammation and cell death pathways. Post-translational modifications, including METTL3/
4-mediated m6A methylation and SIRT/HDAC-dependent acetylation, fine-tune these processes by modulating mRNA stability and protein function.
AEC-derived exosomes propagate injury through immune cell activation, whereas MSC exosomes exert protective effects. Therapeutic interventions
targeting these mechanisms - including small molecule inhibitors (NF-kB, NLRP3), NRF2 activators, methylation regulators, ion channel modulators
(ENaC/AQP), and biologics (LL-37, MSC exosomes) - offer promising approaches to mitigate AEC damage and restore alveolar function in sepsis-
associated ALI. The integrated modulation of these interconnected pathways represents a viable strategy for developing effective treatments.
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injury and repair in bacterial Sepsis-Associated ALI. Recent

treatments targeting the NF-kB signaling pathway to alleviate ALI

have also proven effective in the treatment of Coronavirus Disease

2019 (COVID-19) (100). However, due to the significant

Heterogeneity of ALI caused by different factors, the effectiveness

of these drugs in ALI caused by various factors still requires further

research. Additionally, activation of the canonical NF-kB/p65
pathway in AECs regulates the expression of coagulation and

fibrinolysis-related proteins, such as tissue factor (TF) and

plasminogen activator inhibitor-1 (PAI-1) (101). However, the

precise molecular mechanisms underlying these effects require

further investigation.
4.2 NRF2

NRF2 is the master regulator of the antioxidant response element

(ARE) pathway. By binding to AREs in target gene promoters, NRF2

coordinates the expression of various cytoprotective enzymes and

proteins, playing a critical role in redox homeostasis, oxidative stress

defense, and cellular stress responses (102). In bacterial Sepsis-

Associated ALI, endotoxins have been shown to suppress the

NRF2/heme oxygenase-1 (HO-1) signaling pathway, exacerbating

AEC inflammation, oxidative stress, and ferroptosis. Conversely,

several agents, including AU-rich element ARE-binding factor 1

(AUF1) (103), mesenchymal stem cell (MSC)-derived exosomes

(88), ferulic acid (104), and sufentanil (105), Ciprofol (106), and

Anemonin (93) activate NRF2, thereby inhibiting AEC

inflammation, oxidative stress, and cellular ferroptosis and

apoptosis, ultimately alleviating bacterial Sepsis-Associated ALI

progression. NRF2 also promotes the production of IL-17D in

AECs, exerting a protective role in bacterial Sepsis-Associated ALI

(107). Furthermore, NRF2 is involved in METTL4-mediated m6A

methylation modification, thereby regulating mitochondrial

homeostasis and cellular ferroptosis in bacterial Sepsis-Associated

AECs (9). MSC-derived exosomes activate the NRF2 pathway,

regulating processes like mitochondrial biogenesis and fission,

maintaining mitochondrial function homeostasis, reducing LPS-

induced AEC apoptosis, and alleviating bacterial Sepsis-Associated

ALI in mice (108). Lysophosphatidylcholine (LPC) 14:0, by activating

the NRF2/HO-1 signaling pathway, can also inhibit LPS-induced

degradation of tight junction proteins, protecting AEC barrier

function (109). These findings suggest that NRF2 plays a key role

in the regulation of inflammation, oxidative stress, mitochondrial

homeostasis, and barrier function maintenance in sepsis-related AEC

injury. Targeting NRF2 could impact multiple aspects of bacterial

sepsis-associated AEC damage, making it a potential therapeutic

target for bacterial Sepsis-Associated ALI.
4.3 NLRP3 inflammasome

NLRP3 inflammasome is a multiprotein complex that plays a

pivotal role in regulating inflammatory responses and processes

such as pyroptosis through its signaling, regulatory, and effector
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functions (49, 110). In bacterial sepsis, endotoxins activate the

NLRP3 inflammasome in both macrophages (76, 111) and AECs

(14, 112), promoting AEC apoptosis, pyroptosis, and the release of

inflammatory cytokines. This activation amplify inflammatory cell

infiltration and exacerbate lung injury. This activation triggers

programmed cell death and the release of pro-inflammatory

cytokines, which in turn amplify inflammatory cell infiltration

and exacerbate lung injury. Therapeutic strategies aimed at

inhibiting NLRP3 activation, such as promoting NLRP3

degradation (51) or using anti-inflammatory compounds like

Phillyrin (a natural lignan derived from Forsythia) (50) and

Calycosin (an extract from Astragalus membranaceus) (72), have

shown efficacy in reducing inflammatory cytokine production and

the release of NETs. These interventions help alleviate AEC

pyroptosis, apoptosis, and inflammatory responses, thereby

mitigating the progression of bacterial Sepsis-Associated ALI.

In summary, in addition to regulating inflammatory responses,

NLRP3 also plays a key role in apoptosis, pyroptosis, and other

forms of programmed cell death in bacterial Sepsis-Associated AEC

injury. Its mechanism may be related to the formation of the

PANoptosome, which drives cell pyroptosis, apoptosis,

PANoptosis, and necroptosis (113, 114). However, the specific

molecular mechanisms and how NLRP3 regulates these processes

in bacterial Sepsis-Associated ALI still require further investigation.
4.4 HMGB

High-mobility group (HMG) proteins are a family of

evolutionarily conserved, non-histone nuclear proteins

characterized by their high electrophoretic mobility. Among them,

high-mobility group box (HMGB) proteins are the most abundant,

comprising four isoforms: HMGB1, HMGB2, HMGB3, and HMGB4

(115). In bacterial Sepsis-Associated ALI, LPS promotes AEC

inflammation and apoptosis via the HMGB1/receptor for advanced

glycation end products (RAGE) pathway (116). Pharmacological

agents with anti-inflammatory properties, such as calycosin (72)

and propofol (89), have been shown to mitigate sepsis-induced

AEC injury by inhibiting HMGB1-mediated activation of

downstream inflammasomes and signaling pathways, thereby

alleviating bacterial Sepsis-Associated ALI. Additionally, increased

serum HMGB3 mRNA levels in bacterial Sepsis-Associated ALI

patients, along with the involvement of the miR-424-5p/HMGB3

axis in sepsis-induced AEC inflammation and apoptosis (117),

suggest that targeting HMGB proteins may offer a novel therapeutic

approach for managing AEC dysfunction in sepsis. Targeting HMGB

proteins or their signaling pathways may provide new therapeutic

strategies for the treatment of bacterial Sepsis-Associated ALI.

However, a deeper understanding of the molecular mechanisms by

which HMGB proteins regulate inflammation and apoptosis, as well

as the clinical validation of potential drugs and biomarkers, is essential

for developing effective treatments. As research progresses, it may

become possible to design novel therapies specifically targeting

HMGB1, HMGB3, and their associated pathways to alleviate the

impact of bacterial Sepsis-Associated ALI.
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4.5 TLR

TLR, an evolutionarily conserved family within the innate

immune system, act as the first line of defense against microbial

pathogens by recognizing pathogen-associated molecular patterns

(PAMPs). Dysregulated TLR responses contribute to a range of

inflammatory and immune disorders (118). During bacterial Sepsis-

Associated ALI, NETs regulate AEC functionality and disease

pathogenesis through TLR9 pathway activation, which

subsequently modulates METTL3-dependent methylation

patterns (91). Furthermore, endotoxin exposure upregulates TLR2

expression (95), initiating a downstream signaling cascade through

MyD88, mitogen-activated protein kinase 4 (MEK4), JNK1, and

AP-1. This signaling axis stimulates alveolar epithelial cells (AECs)

to overproduce surfactant protein-A (SP-A), thereby exacerbating

the pathogenesis of bacterial Sepsis-Associated ALI (119). Together,

these findings highlight the significant role of TLR activation in

influencing AEC function and surfactant protein production during

bacterial Sepsis-Associated ALI. These insights suggest that targeted

modulation of TLR expression could provide a promising

therapeutic approach for managing bacterial Sepsis-Associated

ALI (87). Further research could focus on developing drugs that

target TLRs to intervene and alleviate sepsis-associated AEC injury.
4.6 Methylation and METTL

The he t e r od ime r i c co r e comp l ex con s i s t i n g o f

methyltransferase-like 3 and 4 (METTL3/4) catalyzes N6-

methyladenosine (m6A) methylation, a prevalent modification in

mammalian messenger RNA (mRNA) and non-coding RNA. This

modification plays a critical role in regulating mRNA stability,

processing, and translation (120). In the context of bacterial sepsis,

lactate and NETs upregulate METTL3 expression by activating

p300 histone acetyltransferase-mediated enhancer modifications

(H3K27ac and H3K18la) (3, 53). These changes promote m6A

methylation of mRNAs such as Acyl-CoA Synthetase Long-Chain

Family Member 4 (ACSL4), HIF-1a, GPX4, and SIRT1, stabilizing

ACSL4 and HIF-1a transcripts while enhancing degradation of

GPX4 and SIRT1 mRNAs. This molecular regulation contributes to

AEC ferroptosis and autophagic dysfunction in bacterial Sepsis-

Associated ALI (121). Moreover, METTL4 exacerbates endotoxin-

induced AEC mitochondrial dysfunction and ferroptosis by

enhancing the interaction between YTH N6-Methyladenosine

RNA Binding Protein 2 (YTHDF2) and NRF2, leading to

increased m6A modification and degradation of NRF2 mRNA

(9). DNA methyltransferase 1 (DNMT1) further amplifies

inflammatory responses through the DNMT1/miR-130a/Zinc

Finger E-Box Binding Homeobox 1 (ZEB1) axis, promoting the

secretion of inflammatory factors from AECs (30). In summary,

methyltransferase-mediated modifications critically regulate

mRNA metabolism and contribute to sepsis-induced AEC injury

and inflammation. Targeted modulation of methyltransferase

activity may offer a promising therapeutic strategy to alleviate

AEC dysfunction and mitigate the progression of bacterial Sepsis-
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Associated ALI (120, 122). Targeting methylation-modifying

enzymes, such as METTL3, METTL4, and DNMT1, provides a

promising therapeutic strategy to regulate gene expression, alleviate

AEC dysfunction, and slow the progression of bacterial Sepsis-

Associated ALI. However, the precise molecular mechanisms by

which these modifications regulate cellular responses in sepsis

remain to be explored, making this an essential area for

future research.
4.7 MAPK

MAPK family consists of a series of signaling molecules that

transduce signals from the cell surface to the nucleus. MAPKs play a

crucial role in various cellular processes, including proliferation,

stress responses, inflammation, differentiation, transformation,

apoptosis, and other signaling pathways. In mammals, the

conventional MAPK family consists of four subfamilies: ERK,

JNK, p38, and ERK5. The MAPK/ERK pathway is primarily

involved in cell proliferation, differentiation, and the activation of

various growth factor receptors. The MAPK/p38 pathway mainly

mediates cellular responses related to inflammation and apoptosis,

while the MAPK/JNK pathway participates in cellular stress

responses such as radiation and osmotic stress (123).

In bacterial Sepsis-Associated ALI, the MAPK signaling

pa thway cr i t i c a l l y r egu l a t e s NF-kB ac t i va t i on and

phosphorylation, contributing to disease pathogenesis (for

detailed mechanisms, refer to the section on NF-kB and

Phosphorylation). Notably, studies have demonstrated that

suppressing histone deacetylase 4 (HDAC4) expression attenuates

LPS-induced alveolar epithelial cell (AEC) inflammation and

oxidative stress by inhibiting the JNK/AP-1 signaling axis. This

intervention improves mitochondrial function and reduces AEC

apoptosis (124). Sea buckthorn has been shown to inhibit the LPS-

induced upregulation of MAPK3 expression in AECs, suppress

ferroptosis, and enhance cell vitality (54). Studies in sepsis patients

with COVID-19 pneumonia have also found that Rapidly

Accelerated Fibrosarcoma (RAF)/MEK/ERK pathway activation

may be associated with immune system recovery, correlating with

patient survival rates (125). In summary, the MAPK signaling

pathway plays a significant role in regulating AEC inflammation

and cell injury in bacterial Sepsis-Associated ALI. Modulating the

MAPK signaling pathway offers a potential therapeutic approach to

improve AEC damage in bacterial Sepsis-Associated ALI. However,

the specific molecular mechanisms and potential drug candidates

remain to be further explored through in-depth research.
4.8 Ion channels

Vascular leakage and alveolar edema are significant pathological

changes in bacterial Sepsis-Associated ALI. In bacterial Sepsis-

Associated ALI, endotoxins reduce the expression and increase

the degradation of ion channels and water channel proteins in

AECs, including ENaC, Na,K-ATPase AQP1, and AQP5, leading to
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decreased alveolar fluid clearance, increased pulmonary edema, and

lung exudation, thus exacerbating bacterial Sepsis-Associated ALI

(64, 65). Postmortem examinations of patients with diffuse alveolar

damage have also shown an increased expression of AQP3, AQP5,

and Na-K-ATPase, and a decreased expression of ENaC (126).

Modulating the expression of water channel proteins, ENaC, and

Na+,K+-ATPase can reduce pulmonary edema and lung tissue

pathology by influencing alveolar fluid clearance, thus improving

lung compliance, lung function, and survival rates in experimental

animals (127, 128). Additionally, studies have found that water

channel proteins such as AQP4 and AQPs are associated with

inflammasome activation, while AQP3, AQP7, AQP9, and AQP10

enhance glycolysis during sepsis by promoting glycerol transport,

supporting glucose uptake, and interacting with various metabolic

signaling pathways, thereby regulating the immune cell energy

supply and immune metabolism (129–131). In summary, ion

channel-related proteins play a crucial role in regulating alveolar

fluid balance, immune cell activation, and inflammatory responses

in bacterial Sepsis-Associated ALI. However, the relationship and

mechanisms by which these proteins modulate immune cell

activation and inflammation, in connection to AEC damage in

bacterial Sepsis-Associated ALI remain to be further explored.
4.9 Ubiquitination

Ubiquitination is a key post-translational modification

regulated by the coordinated action of E1 ubiquitin-activating

enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin

ligases. This process facilitates the covalent attachment of

ubiquitin to target proteins, influencing signaling pathways and

the assembly or degradation of protein complexes (132). In bacterial

Sepsis-Associated ALI, several ubiquitination-related enzymes have

been implicated in AEC injury and inflammation. These include

ubiquitin-specific peptidases (USP10, USP38) (71, 133), E3

ubiquitin ligases, including S-phase kinase-associated protein 2

(SKP2) and F-box/WD repeat-containing protein 7 (FBXW7) (51,

103), and the trimeric E3 ligase family member Ring finger protein

99 (98). These enzymes regulate the ubiquitination and

deubiquitination of key proteins such as GPX4, NLRP3, and

AUF1, with their modulation offering potential therapeutic

benefits in mitigating AEC injury and bacterial Sepsis-Associated

ALI progression. Additionally, erythropoietin (EPO) has been

shown to inhibit endotoxin-induced ubiquitin-mediated

degradation of ENaC and Na,K-ATPase in AEC II via the EPOR/

JAK2/STAT3/SGK1/Nedd4-2 pathway. This intervention enhances

alveolar fluid clearance, alleviates bacterial Sepsis-Associated ALI

pathology, restores pulmonary function, and improves survival

outcomes in experimental models (63). Collectively, these findings

highlight the therapeutic potential of targeting ubiquitination

pathways in bacterial Sepsis-Associated ALI, with beneficial

effects observed in protein homeostasis regulation, AEC

protection, inflammation reduction, and alveolar fluid balance

restoration. The ubiquitination regulatory system plays a dual role

in the pathogenesis of bacterial Sepsis-Associated ALI: it
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contributes to the amplification of harmful inflammation and

apoptosis, while also exerting protective effects by regulating

protein stability and function to promote alveolar repair and fluid

clearance. Therefore, precise modulation of ubiquitination enzymes

and their associated signaling pathways may offer novel strategies

for the intervention and treatment of ALI.
4.10 Acetylation

Acetylation and deacetylation exhibit target diversity and are

post-translational modifications closely linked to metabolism. They

are highly sensitive to the concentrations of acetyl-CoA, acyl-CoA,

and Nicotinamide Adenine Dinucleotide (NAD), playing critical

roles in various cellular and physiological processes such as

transcription, autophagy, mitosis, and differentiation (134). These

modifications are involved in the pathogenesis of bacterial sepsis-

induced organ dysfunction, contributing to progression of the

disease (135). In sepsis-mediated AEC injury, histone deacetylases

Histone Deacetylase 3 (HDAC3) (60) and SIRT1 (69, 121) play key

roles in regulating AEC autophagy, oxidative stress, mitochondrial

dysfunction, and inflammatory factor release, thereby influencing

AEC viability. Notably, HDAC3 also suppresses the expression of

intercellular junction proteins, compromising epithelial integrity,

increasing permeability, and exacerbating bacterial Sepsis-

Associated ALI progression (60). Conversely, SIRT3 exerts

protective effects by inhibiting lipopolysaccharide-induced

acetylation of OPA1 at K792 in alveolar macrophages (77) and

promoting the deacetylation of Superoxide Dismutase 2 (SOD2) at

K122/K68 in AECs (136). These mechanisms contribute to

mitochondrial quality control, suppress macrophage polarization,

and regulate AEC autophagy and fatty acid oxidation. Ultimately,

SIRT3 activity reduces oxidative stress, mitigates cellular damage,

and preserves barrier function, thereby alleviating bacterial Sepsis-

Associated ALI. These findings underscore the importance of

acetylation and deacetylation dynamics in bacterial sepsis, which

modulate autophagy, oxidative stress, and mitochondrial

dysfunction to influence AEC inflammatory responses, injury,

and barrier integrity. Targeting this intricate post-translational

regulatory network represents a promising therapeutic strategy

for bacterial Sepsis-Associated ALI management.
4.11 Exosomes

Exosomes, small extracellular vesicles involved in intercellular

communication, mediate the transfer of proteins, lipids, and nucleic

acids, influencing immune responses, metabolic reprogramming,

coagulopathy, and organ dysfunction in bacterial sepsis (137).

Studies indicate that serum exosomes from sepsis patients induce

oxidative stress, inflammation, and AECs injury via the

Diacylglycerol Kinase (DGK)/Diacylglycerol (DAG)/Protein

Kinase C (PKC)/NADPH Oxidase 4 (NOX4) pathway (25).

Additionally, endotoxin-stimulated alveolar macrophages release

exosomes that activate AEC inflammasomes, promoting
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inflammatory responses (76). In turn, AEC-derived exosomes

amplify pulmonary inflammation by activating inflammatory

signaling in macrophages, exacerbating mitochondrial damage,

and inducing macrophage apoptosis—processes that may be

mitigated by inhibiting AEC exosome release, a potential

therapeutic approach for bacterial Sepsis-Associated ALI (78, 79).

Furthermore, MSC cell-derived exosomes have shown protective

effects by maintaining mitochondrial homeostasis, suppress

lipopolysaccharide-induced inflammatory cytokine release in

AECs through NRF2 and NF-kB-related signaling pathways,

thereby alleviating bacterial Sepsis-Associated AEC apoptosis and

promoting cell proliferation (88, 108). Collectively, these findings

highlight the role of exosomes in bacterial Sepsis-Associated ALI

pathogenesis and suggest their potential as both biomarkers of

bacterial sepsis-induced AEC damage and therapeutic agents.

Modulating endogenous exosome secretion or administering

exogenous exosomes may represent a promising strategy for

bacterial Sepsis-Associated ALI treatment (Figure 3).
5 Treatment progress

5.1 Repair and functional regulation of
AECs

As discussed, bacterial sepsis-induced AEC injury is a crucial

mechanism in the development of bacterial Sepsis-Associated ALI.

Research has identified several therapeutic agents that alleviate AEC

apoptosis and ferroptosis, thus exerting protective effects on the

lungs and mitigating the severity of bacterial Sepsis-Associated ALI.

For example, metformin (138), bovine alveolar surfactant (47),

ulinastatin (143), simvastatin (86), pyrrole derivatives (87),

ginsenoside Rg1 (97, 144), recombinant Klotho protein (48) and

Ciprofol (106) have all demonstrated lung-protective effects.

Traditional Chinese medicines, including sea buckthorn (54) and

shikonin (55), inhibit AEC ferroptosis, while the human

antimicrobial peptide LL-37 (49) and natural lignan phillyrin

(PHI) derived from Forsythia suspensa (50) suppress AEC

pyroptosis , thus reducing AEC injury and mitigating

inflammatory responses in bacterial Sepsis-Associated ALI.

Antioxidants such as N-acetylcysteine (NAC) (35), melatonin

(136), and tea polyphenols (139) have shown efficacy in

attenuating bacterial Sepsis-Associated ALI by reducing ROS and

RNS production, thus alleviating oxidative stress and improving

mitochondrial function. Additionally, the omega-3 fatty acid-

derived lipid mediator resolvin E1 (RvE1) has demonstrated

protective effects against inflammation-induced mitochondrial

dysfunction in AECs during severe inflammatory states (140).

Furthermore, small-molecule modulators targeting specific

signaling pathways, including the a7 Nicotinic Acetylcholine

Receptor (a7nAChR) agonist PNU-282987 (141), miR-155

inhibitor (69), Receptor-Interacting Protein Kinase 3 (RIPK3)

inhibitor UH15-38 (15), Glycogen Synthase Kinase-3 Beta (GSK-

3b) inhibitor Tideglusib (138), and glycolysis inhibitor 3PO (42),

have shown promise in improving bacterial Sepsis-Associated ALI
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outcomes through the regulation of AEC activity. In summary,

therapeutic strategies aimed at modulating AEC activity, oxidative

stress responses, and mitochondrial function offer promising

approaches for mitigating AEC injury and promoting cellular

repair and regeneration in bacterial Sepsis-Associated ALI.

Clinical studies have also shown that the combination of

ginsenoside Rg1 and ulinastatin in treating sepsis-associated ALI

can significantly improve hemodynamic and pulmonary circulation

parameters, such as cardiac index, intrathoracic blood volume

index, and central venous pressure (142). However, the lack of

clinical trial validation presents significant translational challenges,

including the need for optimal drug selection and rigorous

preclinical evaluation to ensure clinical safety and efficacy. This

gap underscores the need for extensive future research to bridge the

divide between preclinical findings and clinical application. In

summary, therapeutic strategies aimed at modulating AEC

activity, oxidative stress, and mitochondrial function to alleviate

AEC injury and promote cellular repair and regeneration represent

a promising approach to treating bacterial Sepsis-Associated ALI.

However, most of these drugs currently lack relevant clinical

randomized controlled trials. The selection of optimal drugs, drug

formulations, and treatment plans, as well as the evaluation of their

clinical safety and efficacy, still require further research. There is still

a long way to go before these approaches can be applied in

clinical settings.

Impairment of AEC barrier function is also a significant cause

of pulmonary inflammatory exudation in bacterial sepsis. In

bacterial Sepsis-Associated ALI, inhibiting the degradation of

tight junction proteins or using ferulic acid (FA) to improve the

expression of tight junction proteins in bacterial sepsis-associated

AECs can improve AEC barrier dysfunction and alleviate lung

tissue damage (104, 109). Similarly, antimicrobial therapies and

microbiota modulation can regulate junctional proteins, improving

bacterial Sepsis-Associated ALI and increasing survival rates in

experimental models (59). Additionally, pharmacological agents

such as dexamethasone (62), erythropoietin (EPO) (63), and the

anti-inflammatory formulation Yan Tiao Decoction (65) have been

reported to regulate ion channels in AECs, including ENaC, Na,K-

ATPase, NKAa1, NKAb1, AQP1, and AQP5. These agents

promote alveolar fluid clearance, thereby mitigating the

pathological effects of bacterial Sepsis-Associated ALI. These

findings suggest that modulating the expression of both AEC

junctional proteins and ion channels through pharmacological

interventions to restore alveolar barrier function and promote

fluid resolution may be one of the potential therapeutic strategies

for bacterial Sepsis-Associated ALI. However, key issues such as

drug selection and intervention timing still require further in-depth

research (Figure 3).
5.2 AEC-related inflammation regulation

Bacterial sepsis-induced dysregulation of inflammatory

cytokine release from AECs and their interactions with immune

cells play a critical role in the pathogenesis of pulmonary
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TABLE 1 Therapeutic strategies and treatment progress for AEC injury in bacterial sepsis-associated ALI.

Drug Types Model Mechanism of action and targets Reference

Metformin Compound P. aeruginosa-induced
pneumonia in mice

Cell Repair and Regeneration (AMPK) Becker E 2023 (138)

pulmonary
surfactant

Biological
Products

LPS-induced rat Cell Repair and Regeneration Chen X 2024 (47)

Ulinastatin Compound CLP-induced rat Cell Repair and Regeneration Li Y 2018 (143)

Simvastatin Compound LPS-induced rat Cell Repair and Regeneration(Survivin/NF-kB/p65) Nežić L 2022 (86)

Pyrrol derivates Compound LPS-induced A549 Cell Repair and Regeneration Cabrera-Benıt́ez N E
2016 (87)

Ginsenoside Rg1 TCM
Extracts

CLP-induced mouse, LPS-
induced MLE 12

Cell Repair and Regeneration (PI3K-Akt and PERK/eIF2a/
ATF4/CHOP)

Zhong K 2024 (97),
Zhong K 2024 (144)

Sea buckthorn TCM CLP-induced mice Cell Repair and Regeneration (IL1B, MAPK3, TXN Li M 2025 (54)

Shikonin TCM LPS-induced mice, LPS-induced
mice AECII

Cell Repair and Regeneration (TMEM16A) Jiang W 2023 (55)

Phillyrin TCM
Extracts

CLP-induced mice, LPS-induced
MLE 12

Cell Repair and Regeneration (NLRP3/caspase-1/GSDMD) Ji C 2024 (50)

N-
acetylcysteine

Compound LPS-induced A549 Cell Repair and Regeneration
(Cytochrome c, Caspase)

Chuang C Y 2011 (35)

Melatonin Compound CLP-induced mice, LPS-
induced A549

Cell Repair and Regeneration (SIRT3, SOD2) Ning L 2022 (136)

Tea Polyphenols Natural
Extracts

CLP-induced rat, LPS-
induced L2

Cell Repair and Regeneration (DJ-1) Jia C M 2021 (139)

Resolvin E1 Compound TNF a-induced A549 Cell Repair and Regeneration Mayer K 2019 (140)

CRAMP
(LL-37)

Biological
Products

LPS-induced mice, LPS-
induced A549

Cell Repair and Regeneration(NLRP3, GSDMD) Wang Q 2024 (49)

Recombinant
Klotho protein

Compound CLP-induced mouse, LPS-
induced HPAEpiCs

Cell Repair and Regeneration, Modulation of Inflammatory
Response (Bcl-2/Bax/caspase-3)

Li X B 2024 (48)

Ciprofol Compound LPS-induced mice, LPS-
induced MLE12

Cell Repair and Regeneration, Modulation of Inflammatory
Response (Nrf2)

Zhao Q 2024 (106)

Methylprednisolone Compound LPS-induced mice, LPS-induced
mice AECII

Modulation of Inflammatory Response (miR-151-5p/USP38,
SNHG5/CPNE1)

Yuan Z 2024 (71), Zhang
L 2021 (145)

Propofol Compound LPS-induced rat, LPS-
induced HPAEpiCs

Modulation of Inflammatory Response (HMGB1, TLR2/4,
NF-kB)

Wang X 2016 (89)

Sufentanil Compound CLP-induced rat, LPS-
induced A549

Modulation of Inflammatory Response (KNG1, NF-kB, Nrf2/
HO-1)

Hu Q 2020 (105)

Calycosin TCM
Extracts

CLP-induced rat, LPS-induced
rat AECII

Modulation of Inflammatory Response (HMGB1/MyD88/NF-
kB, NLRP3)

Chen G 2021 (72)

Msc exosomes Biological
Products

LPS-induced MLE12 Modulation of Inflammatory Response Li J 2020 (88)

Anemonin Compound LPS-induced mice, LPS-
induced MLE12

Modulation of Inflammatory Response (NF-kB, Nrf2/HO-1) Xia Q 2025 (93)

Dexamethasone Compound LPS-induced AEC-II of
newborn piglets

Modulation of Inflammatory Response, Barrier Function Repair
and Enhancement

He L 2018 (62)

Ferulic acid Compound CLP-induced mice, LPS-
induced MLE12

Barrier Function Repair and Enhancement (Nrf2/HO-1) Tang X 2022 (104)

EPO Biological
Products

LPS-induced rat, LPS-induced
rat AECII

Barrier Function Repair and Enhancement (ENaC, Na,
K-ATPase)

Gao Y 2024 (63)

Yantiao Decoction TCM CLP-induced rat LPS-induced
RLE-6TN

Barrier Function Repair and Enhancement (a-ENaC, NKAa1,
NKAb1,AQP1, AQP5, SP-D)

Xu M 2023 (65)
F
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LPS, lipopolysaccharide; CLP, Cecal ligation and puncture; TCM, Traditional Chinese Medicine; MSC, Mesenchymal stem cell; EPO, Erythropoietin.
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inflammation. Recent studies have highlighted the potential of anti-

inflammatory agents, including methylprednisolone (71, 145),

dexamethasone (62), propofol (89), sufentanil (105), calycosin

(72), Klotho (48), Ciprofol (106), and Anemonin (93) to

attenuate septic lung inflammation and injury. These agents act

by suppressing inflammasome activation and downstream signaling

pathways in AECs, thereby reducing pro-inflammatory cytokine

production. Additionally, MSC-derived exosomes have been shown

to inhibit LPS-induced inflammatory cytokine release from AEC II

and promote cellular proliferation (88). Small-molecule modulators

targeting specific signaling pathways—such as the PKC inhibitor

LXS-196 (Darovasertib), novel NOX4 inhibitor GLX351322 (25),

Calcium/Calmodulin-Dependent Protein Kinase IV (CaMK4)

inhibitor KN-93 (14), a7nAChR agonist PNU-282987 (141), NF-

kB suppressor Bay-117082 (90), glycolysis inhibitor 3PO (42), and

miR-155 inhibitor (69)—can also mitigate septic pulmonary

inflammation and lung injury by modulating AEC inflammatory

signaling and cytokine release. Further research on exosomes has

revealed their involvement in septic pulmonary inflammation.

Inhibition of AEC-derived exosome secretion reduces

macrophage-mediated lung inflammation (82), while MSC-

derived exosomes regulate AEC inflammatory factor release in

bacterial Sepsis-Associated ALI (88). However, the full

mechanistic details of these processes remain to be elucidated. In

addition, inflammatory damage to AECs caused by Gram-positive

bacteria is also one of the important causes of bacterial Sepsis-

Associated ALI, but related therapeutic agents have not been

extensively studied.

Collectively, these findings indicate that pharmacological

agents, small-molecule pathway modulators, and exosome-based

strategies targeting AEC-immune cell interactions and

inflammatory mediator release have the potential to effectively

ameliorate bacterial sepsis-induced pulmonary inflammation and

the severity of bacterial Sepsis-Associated ALI. Some clinical studies

have shown that the anti-inflammatory drug hydrocortisone can

reduce the 28-day mortality rate in patients with severe community-

acquired pneumonia (146). However, studies on bacterial sepsis-

associated ARDS have not yielded significant positive results (147–

149), which may be attributed to the heterogeneity between

different etiologies of bacterial sepsis-associated ARDS, as well as

inconsistencies in drug regimens and intervention timing. Further

research is needed to explore the optimal therapeutic approaches

and timing for intervention. Additionally, a retrospective analysis of

the effects of drugs currently used in clinical practice, such as

methylprednisolone, dexamethasone, propofol, and sufentanil, on

the inflammatory response in bacterial Sepsis-Associated ALI

patients could help promote further clinical research and

application of these medications (Table 1).
6 Conclusion and future perspectives

In this review, we have systematically summarized the

pathophysiological alterations of AECs in bacterial Sepsis-

Associated ALI, highlighted key molecular mechanisms, and
Frontiers in Immunology 13
evaluated current therapeutic advancements. This work provides

a foundation for further exploration of bacterial sepsis-induced

AEC dysfunction and development of targeted interventions aimed

at protecting AECs to mitigate bacterial ALI progression.

AECs, as essential components of the alveoli, not only maintain

normal alveolar function but also actively participate in

inflammatory responses during injury and subsequent repair

processes. Bacterial sepsis damages AECs through mechanisms

such as oxidative stress, cell death, and barrier dysfunction, while

bacterial sepsis-activated AECs exacerbate bacterial Sepsis-

Associated ALI by releasing inflammatory mediators and

interacting with immune cells. Although current research involves

a variety of substances, including traditional drugs, Chinese herbal

extracts, novel compounds, small-molecule modulators, and

exosomes, certain gaps still remain.

First, the drugs currently being researched, such as Chinese

herbal extracts and novel compounds, lack standardized, large-scale

preparation methods and unified drug regimens. This results in

potential discrepancies between research findings. Furthermore,

most of these drugs have not undergone pharmacokinetic studies,

indicating a significant gap before further clinical trials and

mechanistic exploration can take place.

Second, due to the unclear mechanisms and therapeutic efficacy of

certain drugs, most studies are limited to basic research. The few existing

clinical studies mainly focus on new uses for previously used drugs, and

no consistent results have been achieved. Thus, more in-depth

investigation into the specific mechanisms of these drugs is required.

Additionally, retrospective analyses of the impact of widely used clinical

drugs, such as metformin, ulinastatin, simvastatin, sufentanil, propofol,

and Ciprofol, on the prognosis of ARDS patients could promote further

research and clinical application of these therapies. However, the clinical

translation of new drugs discovered through basic research requires

long-term exploration and validation.

Moreover, sepsis is a heterogeneous syndrome involving

complex pathophysiological processes (150). Most current studies

use LPS and CLP models, which may introduce discrepancies due to

variations in the extent of injury caused by various operators.

Furthermore, these models only simulate bacterial Sepsis-

Associated ALI caused by endotoxins from Gram-negative

bacteria. More relevant models need to be developed to study ALI

induced by other Gram-negative bacteria, Gram-positive bacteria,

and bacterial exotoxins.

Finally, the effective prevention and treatment of sepsis-related

organ dysfunction require early recognition and intervention.

Developing reliable methods to detect or predict sepsis-induced

AEC injury, thereby preventing and treating SARDS and improving

patient prognosis, remains an area that requires further research

(151). Investigating its underlying mechanisms and developing new

biomarkers for early detection would also be crucial.

In conclusion, AECs are closely related to bacterial Sepsis-

Associated ALI. Promoting their activity and functional recovery,

along with regulating related inflammatory responses, is one of the

effective strategies for treating this condition. However, further

research into the specific mechanisms and drugs targeting AECs

is necessary for effective clinical application.
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