
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chiara Moltrasio,
Fondazione IRRCS Ca’ Granda Ospedale
Maggiore Policlinico, Italy

REVIEWED BY

Elena Niculet,
Dunarea de Jos University, Romania
Xin Tong,
Ragon Institute, United States

*CORRESPONDENCE

Fei Han

hanfei83@sxmu.edu.cn

Jian Li

jianli@uni-bonn.de

Qi Mei

borismq@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 04 April 2025

ACCEPTED 21 May 2025

PUBLISHED 06 June 2025

CITATION

Feng H, Jia L, Ma Y, Liu P, Yang X, Hu L, Xu K,
Yang F, Zhang D, Li J, Mei Q and Han F
(2025) The role and prognostic value of
PANoptosis-related genes in skin
cutaneous melanoma.
Front. Immunol. 16:1605977.
doi: 10.3389/fimmu.2025.1605977

COPYRIGHT

© 2025 Feng, Jia, Ma, Liu, Yang, Hu, Xu, Yang,
Zhang, Li, Mei and Han. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 June 2025

DOI 10.3389/fimmu.2025.1605977
The role and prognostic value
of PANoptosis-related genes
in skin cutaneous melanoma
Huijing Feng1†, Linzi Jia2†, Yanan Ma1, Pengmin Liu1,
Xiaoling Yang1, Lina Hu3, Kai Xu4, Fan Yang5, Dongfeng Zhang6,
Jian Li7*, Qi Mei1* and Fei Han8*

1Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi
Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China, 2Department of General
Medicine, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China, 3Department of Pathology, Shanxi
Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of
Shanxi Medical University, Taiyuan, Shanxi, China, 4Department of Dermatology and Venereology,
Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital
of Shanxi Medical University, Taiyuan, Shanxi, China, 5Department of Bone and Soft-Tissue Tumor,
Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China, 6Department of Thoracic Oncology, Linfen
Central Hospital, Linfen, Shanxi, China, 7Institute of Molecular Medicine and Experimental
Immunology (IMMEI), University Hospital Bonn, Bonn, North Rhine - Westphalia, Germany,
8Department of Head and Neck Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to
Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical
University, Taiyuan, Shanxi, China
Introduction: Skin cutaneous melanoma (SKCM), a malignant tumor, has

PANoptosis implicated in its progression and metastasis. However, the exact

mechanisms remain unclear. This study aims to develop a prognostic model for

SKCM based on PANoptosis.

Methods: SKCM - related datasets were retrieved from public databases.

Differentially expressed PANoptosis - related genes (DEPRGs) were determined

by intersecting differentially expressed genes from differential expression analysis

and key module genes from weighted gene co - expression network analysis

(WGCNA). Prognostic genes for SKCM were derived using Cox analysis and

machine learning algorithms, leading to the construction and validation of a

prognostic model. Independent prognostic factors were identified, and a

nomogram was developed. Enrichment analysis and immune infiltration

analysis were performed for the two risk groups. A competitive endogenous

RNA (ceRNA) network was constructed, and potential therapeutic drugs were

predicted. Bioinformatics findings were validated experimentally using reverse

transcription quantitative PCR (RT - qPCR).

Results: CD8A, ADAMDEC1, CD69, CRIP1, LSP1, BCL11B, and CCR7 were

identified as prognostic genes. The risk model and nomogram showed

excellent predictive abilities for SKCM patients. Genes in both high - and low -

risk groups were linked to cytokine - regulated immune responses, with nine

differential immune cells identified between the groups. The ceRNA network

revealed that prognostic genes were regulated by several miRNAs (such as hsa-

miR-330-5p) and lncRNAs (such as AL355075.4). MPPG and DT - 1687,

associated with LSP1, may offer promising treatment options. RT - qPCR

validation confirmed significant expression differences of CD8A, ADAMDEC1,

CD69, CRIP1, and BCL11B between SKCM and control samples.
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Discussion: This study presents a robust prognostic model for SKCM based on

PANoptosis - related genes, providing a theoretical foundation for

SKCM treatment.
KEYWORDS

skin cutaneous melanoma, PANoptosis, prognosis, competitive endogenous RNA,
PANoptosis-related genes
1 Introduction

Skin cutaneous melanoma (SKCM) is a malignant skin tumor

resulting from the transformation of melanocytes in the epidermal basal

layer (1, 2). The incidence of SKCM in the United States is

approximately 31.91 per 100,000, compared to 0.5 per 100,000 in

China (3), accounting for 0.7% of all cancer-related deaths (4).

Current treatment strategies for SKCM involve a multimodal

approach, including surgery, radiotherapy, chemotherapy, targeted

therapy, and immunotherapy (5). However, SKCM has a high

propensity for metastasis, with many patients diagnosed at advanced

stages. Stage IV patients have a poor prognosis, with a 5-year survival

rate of less than 5% (6). Therefore, identifying novel prognostic

biomarkers is crucial for improving treatment outcomes. PANoptosis

is an inflammatory programmed cell death pathway controlled by the

PANoptosome complex, which integrates key features of Pyroptosis,

Apoptosis, and/or Necroptosis (7, 8). PANoptosis plays a significant role

in cancer biology and therapeutic strategies. Preclinical studies have

shown that IRF1-dependent PANoptosis inhibits colorectal cancer

progression in murine models, and combined TNF-a and IFN-g
treatment induces PANoptotic cell death in human cancer cells (9,

10). Recent research has highlighted the prognostic index (PANGPI)

subtype system, constructed using PANoptosis-related genes, as a

predictor of prognosis and immunotherapy response in diffuse large

B-cell lymphoma (DLBCL), offering insights into personalized

treatment (11). Similarly, in patients with ovarian cancer (OC),

prognostic models based on PANoptosis genes effectively predict both

prognosis and immune responses (12). Moreover, PANoptosis plays a

critical role in programmed cell death, cancer progression, and immune

evasion in melanoma, presenting new avenues for personalized

treatment (13, 14). Overall, the prognostic and immune implications

of PANoptosis in various cancers provide valuable guidance for

individualized treatment approaches. The PANoptosis gene signature

consists of 27 genes, including cytosolic sensors, adaptors, effector

proteins, and upstream regulatory components. Tumor specimens can

be stratified into PANoptosis-High and PANoptosis-Low cohorts based

on gene expression profiles. The PANoptosis-High cluster correlates

with significantly improved overall survival (OS) in SKCM.

Furthermore, the expression differences between PANoptosis clusters
02
are linked to key molecular mechanisms, such as the activation of

proliferation pathways, aneuploidy, immune cell density and activation,

and the regulation of barrier genes. These findings contribute to

stratifying patient prognosis based on the PANoptosis phenotype and

offer a new perspective for personalized SKCM treatment (14).

However, the clinical prognostic value of PANoptosis-related genes in

SKCM requires further investigation.

This study explored the role of PANoptosis in SKCM and

developed a novel prognostic model based on PANoptosis-related

genes. Additionally, differences in immune cell infiltration and their

correlation with prognostic models were investigated. Overall, this

study provides a theoretical foundation for SKCM treatment and

guides the selection of optimal therapeutic strategies.
2 Materials and methods

2.1 Data sources

Transcriptome data related to SKCM were retrieved from The

Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/

). A total of 477 SKCM samples were obtained from the TCGA

dataset. After samples lacking survival information were removed,

457 samples with complete survival information were retained for

subsequent analysis. Clinical information samples, including age,

gender, tumor stage, M, N, and T staging, were extracted. After

samples lacking clinical information were deleted, 236 samples

remained for subsequent clinical information related analyses.

Additionally, datasets GSE46517 and GSE65904 were obtained

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/). The GSE46517 dataset contained

121 samples, which included metastatic melanoma, primary

melanoma, nevus, and normal skin samples. The metastatic

melanoma, melanoma, and nevus samples were excluded, and 31

primary SKCM samples along with 7 normal samples were retained

for analysis. The GSE65904 dataset contained 210 SKCM samples,

and all of them were included in the subsequent analysis. A total of

19 PANoptosis-related genes (PRGs) were sourced from existing

literature (Supplementary Table 1) (15).
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2.2 Calculation of PANoptosis scores and
identification of key module genes

In TCGA-SKCM dataset, the enrichment scores of the PRGs in the

SKCM samples were calculated using the ssGSEAmethod in the GSVA

package (version 1.42.0) of R language. The parameters were set as gsva

(as.matrix(exp), geneSet, method=‘ssgsea’, kcdf=‘Gaussian’,

abs.ranking=TRUE). Subsequently, the enrichment scores of PRGs

were defined as the PRGs score. To explore the impact of the

PANoptosis score on the survival of SKCM patients, SKCM patients

were divided into a high-PRG-score cohort and a low-PRG-score

cohort based on the median PANoptosis score (16). This approach

effectively balanced the sample sizes and provided a stable statistical

foundation for subsequent survival analysis. Kaplan-Meier (K-M)

survival analysis was then performed to compare survival rates

between the two groups (p < 0.05) (17). Differentially expressed

genes (DEGs) between the two groups were identified using the

DEseq2 package in R (|log2FC| > 1 and P adj. < 0.05) (18) Volcano

and heat maps were generated using the ggplot2 and pheatmap

packages in R, respectively, to visualize the results (19).

To identify key PANoptosis-associated module genes in SKCM

samples, weighted gene co-expression network analysis (WGCNA)

was conducted. Firstly, outlier samples in the TCGA-SKCM dataset

were removed through cluster analysis. Then, the coefficient of

determination (R^2) of the scale-free network was set to 0.85, and

the optimal soft threshold was obtained when (R^2) first exceeded

the critical value of 0.85 and the average connectivity of the co-

expression network was close to 0 (20). Next, according to the

screened soft threshold, a scale-free network was constructed, and

the minimum number of genes in each module was set to 200, so

that genes could be effectively grouped into multiple modules.

Subsequently, the PANoptosis score was taken as the trait.

Through Pearson correlation analysis of the correlation between

the module and the trait, the module with the strongest significant

correlation was selected as the key module.20 Genes with |Module

Membership (MM)| > 0.8 and |Gene Significance (GS)| > 0.5 in the

key module were considered as key module genes (21, 22).
2.3 Identification and enrichment analyses
of differentially expressed PRGs

To identify DEGs in samples from normal and SKCM cohorts,

the limma R package was used with the GSE46517 dataset (|log2FC|

> 1 and P adj. < 0.05) (23). A volcano plot was created using the

ggplot2 R package (version 3.3.6) to illustrate the filtering results

(19). Heatmaps of DEG expression were visualized using the

pheatmap R package (version 1.0.12) (23). Differentially expressed

PANoptosis-related genes (DEPRGs) were identified by intersecting

DEGs between normal and SKCM samples, key module genes, and

DEGs from high and low-PANoptosis score groups.

Finally, Kyoto Encyclopedia of Genes and Genomes and Gene

Ontology (GO) analyses for the DEPRGs were performed using the

clusterProfiler R package (version 4.4.4) (24).
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2.4 Developing a prognostic model for
patients with SKCM

In the TCGA-SKCM dataset, 457 samples were divided into a

validation set (137 samples) and a training dataset (320 samples).

Univariate Cox analysis was performed on the DEPRGs in the

training dataset to identify prognostic-related genes (HR ≠ 1, p <

0.05). Subsequently, the least absolute shrinkage and selection operator

(Lasso) was applied using the R package glmnet. Based on 10-fold cross-

validation, prognostic-related genes with the smallest cross-validation

error value (l value) and non-zero regression coefficients were selected

as the characteristic genes for SKCM patients. A multifactorial Cox

analysis was then conducted on these characteristic genes to identify

prognostic genes and build a prognostic model for SKCM (25). The

variance inflation factor (VIF) values of the multivariate Cox regression

model were calculated using the vif function, and the model

performance metric, the C-index, was computed (C-index > 0.6).

Subsequently, the proportional hazards (PH) assumption of the

multivariate Cox regression model was tested using cox.zph (p >

0.05). To investigate whether severe multicollinearity existed among

the prognostic genes, a linear model was constructed using the `lm`

function with each prognostic gene as the dependent variable and the

other genes as independent variables. The VIF for each gene was then

calculated using the vif() function from the `car` package. A VIF value

less than 5 indicated the absence of severe multicollinearity.

To evaluate the prognostic value of the model, patients with SKCM

in the training dataset were classified into high- and low-risk groups

based on the median risk score (25). K-M survival analysis was

performed to compare survival rates between the two groups.

Receiver operating characteristic (ROC) curves for the prognostic

model were generated using the survival ROC R package (17). The

robustness of the model was further validated using the external

GSE65904 dataset and the TCGA-SKCM validation set.
2.5 Construction of the nomogram

The independent prognostic value of clinicopathological

parameters (including age, history of neoadjuvant treatment, prior

treatment.diagnoses, prior systemic therapy, M stage, N stage, T stage,

gender and tumor_stage) and risk scores was assessed using univariate

and multivariate Cox proportional hazards regression analyses in the

training set (26, 27). A nomogram model was then constructed by

integrating factors with independent prognostic significance (17). The

rms package (version 6.5.1) was used to generate a calibration curve,

which was applied to assess the precision of the nomogram’s

prognostic ability (28).
2.6 Gene set enrichment analyses

To explore the biological functions and pathways associated

with the prognostic genes in SKCM, GSEA was performed using

TCGA-SKCM data. The DESeq2 R package was used to identify
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differential gene expression between the high- and low-risk groups

in the training dataset. These genes were ranked according to their

log2 fold-change (log2FC) values and subjected to GSEA through

the clusterProfiler and org.Hs.eg.db R packages (24).
2.7 Estimation of the immune
microenvironment

To examine differences in immune cell infiltration between the

high- and low-risk cohorts, the CIBERSORT algorithm was applied to

determine the distribution of 22 immune cell types in TCGA-SKCM (p

< 0.05). A bar plot, created with the ggplot2 R package, was used to

visualize the immune cell expression in the two risk groups (25). The

Wilcoxon test was employed to compare the distribution differences of

immune cells between the groups (p < 0.05) (29). Finally, the psych R

package (version 2.3.12) was used to explore the relationships between

differentially infiltrated immune cells and prognostic genes through

Spearman correlation analysis (30).
2.8 Construction of competitive
endogenous RNA network

The molecular regulatory mechanisms of prognostic genes were

explored in future studies. The miRNAs associated with prognostic

genes were identified using the miRTarBase database, and the

upstream miRNAs with a connectivity greater than 1 and

supported by experimental results were screened (31). Next,

miRNA-associated long non-coding RNAs (lncRNAs) were

predicted through the starBase database, applying a screening

criterion of clipExpNum > 10 (27). Competitive endogenous RNA

(ceRNA) networks were constructed using Cytoscape (31).
2.9 Predicting potential drugs for the
treatment of patients with SKCM

To explore drugs associated with prognostic genes and identify

potential treatments for SKCM, potential therapeutic agents for SKCM

were predicted using the Drug-Gene Interaction Database (DGIdb)

(http://dgidb.genome.wust l .edu/) , PubChem (ht tps : / /

pubchem.ncbi.nlm.nih.gov/), and the Therapeutic Target

Database (TTD) (https://db.idrblab.net/ttd/), based on the

prognostic genes (32–34). The drug-prognostic gene network was

then visualized using Cytoscape.
2.10 RNA extraction and reverse
transcription-quantitative PCR

In this study, RT-qPCR analysis was performed on HSF, MV3, SK-

MEL-28, and WM-115 cell lines purchased from the ATCC database

when cell confluence reached 70%-90%. Three samples were selected

for each cell type. Total RNA was extracted from these cells using
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TRIzol reagent (Ambion, Austin, USA), and incubated for 15 minutes.

One microliter of RNA solution was measured using the

NanoPhotometer N50. Reverse transcription to synthesize

complementary DNA (cDNA) was performed using the SureScript

First-strand cDNA Synthesis Kit (Servicebio, Wuhan, China).

Following cDNA synthesis, the solution was diluted 5 to 20 times

with RNase/DNase-free distilled water (ddH2O). A 10 ml reaction
system was configured for qPCR, which contained 3 ml of cDNA, 5
ml of 2xUniversal Blue SYBR Green qPCR Master Mix, 1 ml of 10 mM
Forward primer, and 1 ml of 10 mM Reverse primer. RT-qPCR

amplification was carried out using a CFX96 Real-Time Fluorescence

Quantitative PCR Instrument (Bio-Rad, California, USA) for a total of

40 cycles. Finally, Ct values of prognostic genes and calibrator gene

Glyceraldehyde-3-Phosphate Dehydrogenase(GAPDH) were employed

to compute relative expression of every prognostic gene in each sample

by 2−△△Ct method. The t-test of Graphpad Prism 5 (v 8.0) software

(35). GAPDH was used to assess RT-qPCR data (p < 0.05). Detailed

information about the RT-qPCR reaction system, primer sequences,

and amplification conditions is provided in Supplementary Tables 2–4.
2.11 Statistical analysis

Statistical analyses were performed using R software (v 4.1.0),

and the Wilcoxon test was used to compare pairs within cohorts. A

p-value of < 0.05 was considered statistically significant.
2.12 Ethics approval and consent to
participate

This study, titled The role and prognostic value of PANoptosis-

related genes in skin cutaneous melanoma, has been approved by the

ethics committee of Shanxi Bethune Hospital. The approval number

and date of approval are as follows: [YXLL-2023-087] and [2023-4-11].
3 Results

3.1 A total of 1460 DEGs and 426 key
module genes were identified in TCGA-
SKCM

In the TCGA-SKCM dataset, individuals in the low PANoptosis

score group exhibited significantly lower survival probabilities

compared to the high PANoptosis score group (Figure 1A).

Differential expression analysis revealed 1460 DEGs between the high

and low PANoptosis score groups (|log2FC| > 1 and P adj. < 0.05),

including 219 down-regulated genes and 1241 up-regulated genes

(Figures 1B, C). All samples in the TCGA-SKCM dataset were

successfully clustered, with no outliers observed (Figure 1D). To

construct a co-expression network and identify modules, the soft

threshold power of seven was selected to compute adjacencies

(Figure 1E). Dynamic tree-cutting identified eight modules

(Figure 1F), with the MEblue module showing the strongest
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FIGURE 1

Identification of differentially expressed genes (DEGs) and key module genes related to PANoptosis in SKCM. (A) Kaplan-Meier survival analysis comparing
overall survival between high and low PANoptosis score groups in TCGA-SKCM dataset. (B) Volcano plot showing differentially expressed genes (DEGs)
between high and low PANoptosis score groups. Red dots represent up-regulated genes, blue dots represent down-regulated genes, and gray dots
represent non-significant genes. (C) Heatmap of DEGs expression between high and low PANoptosis score groups. The color scale represents the
expression level of genes, with red indicating high expression and blue indicating low expression. (D) Sample dendrogram and trait heatmap. (E) Screening
with soft threshold. Left panel shows the scale independence plot, and the right panel shows the mean connectivity plot. (F) Identification of co-expression
modules. (G) Correlation heatmap. (H) Scatter plot of gene significance (GS) versus module membership (MM) for genes in the MEblue module.
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FIGURE 2

Identification and enrichment analysis of differentially expressed PANoptosis-related genes (DEPRGs) in SKCM. (A) Volcano plot of DEGs between
normal and SKCM samples. Red dots represent up-regulated genes, blue dots represent down-regulated genes, and gray dots represent non-
significant genes. (B) Heatmap of DEGs between normal and SKCM samples. The color scale represents the expression level of genes, with red
indicating high expression and blue indicating low expression. (C) Identification of DEPRGs. (D) Dot plot of Gene Ontology (GO) enrichment analysis
for DEPRGs. The size of the dots represents the count of genes, and the color represents the adjusted p-value. (E) Dot plot of Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis for DEPRGs. The size of the dots represents the gene ratio, and the color represents the
adjusted p-value.
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correlation with PANoptosis scores (cor = 0.83, p < 0.001) (Figure 1G).

Of the 3801 genes in the MEblue module, 426 were selected as key

module genes (Figure 1H).
3.2 DEPRGs were involved mainly in
cytokine and chemokine-mediated cellular
immune responses

Variable analysis of the GSE46517 dataset identified 854 DEGs

between normal and SKCM samples (P adj. < 0.05 and |log2FC| > 1),

comprising 472 down-regulated genes and 382 up-regulated genes

(Figures 2A, B).

A total of 26 DEPRGs were identified by intersecting 854 DEGs

from normal vs. SKCM samples, 1460 DEGs from high and low

PANoptosis score groups, and 426 key module genes (Figure 2C).

GO analysis revealed that DEPRGs were significantly enriched in
Frontiers in Immunology 07
lymphocyte differentiation, monocyte differentiation and migration,

cytokine activity, and chemokine activity (Figure 2D).

KEGG analysis revealed significant enrichment of DEPRGs in

cytokine and chemokine signaling pathways, as well as their

corresponding receptors (Figure 2E).
3.3 The prognostic model constructed
based on DEPRGs could accurately
measure the prognosis of patients with GC

Univariate Cox analysis identified 26 prognosis-related genes in

the training dataset (HR ≠ 1, p-value < 0.05) (Table 1). Following

this, LASSO analysis showed that when the minimum l value

(lambda.min = 0.011) was reached, the minimum error was

obtained, and 11 characteristic genes with non-zero regression

coefficients were derived (Figures 3A, B, Table 2). Multifactorial
TABLE 1 uniCox of result.

Id z HR HR.95L HR.95H Pvalue

CCL4 -4.326538547 0.765112517 0.677722246 0.863771504 1.51E-05

CD8A -4.233557446 0.811290771 0.736425784 0.893766527 2.30E-05

GZMA -4.136954347 0.820911558 0.747640088 0.901363901 3.52E-05

CD2 -3.971270689 0.833329432 0.76161755 0.911793514 7.15E-05

CTSS -3.94765638 0.811428873 0.73146643 0.900132651 7.89E-05

IGSF6 -3.885201067 0.749811677 0.648439475 0.867031656 0.000102245

ADAMDEC1 -3.884118128 0.788745277 0.699729299 0.889085412 0.000102702

CCL5 -3.85373029 0.862902052 0.800556964 0.930102396 0.000116332

CYTIP -3.827594698 0.758701076 0.658657315 0.873940529 0.000129402

CMAHP -3.820099809 0.539588555 0.393181594 0.740512304 0.000133398

CD69 -3.786170974 0.680986022 0.558161489 0.830838335 0.000152986

CXCL13 -3.780336597 0.853882614 0.786738988 0.92675656 0.000156616

GZMK -3.697710997 0.812740003 0.728151401 0.907155177 0.000217552

SLAMF8 -3.688843374 0.808352585 0.721949985 0.905095803 0.000225276

PIM2 -3.684370149 0.77763437 0.68025473 0.888954073 0.000229269

CD3G -3.683302853 0.722203422 0.607364314 0.858756057 0.000230231

CD247 -3.6694957 0.7390696 0.628850034 0.868607527 0.000243029

ITGAL -3.546744016 0.818890464 0.733286324 0.914488066 0.000390023

IL18 -3.464908909 0.762947709 0.654676337 0.889125165 0.000530411

CRIP1 -3.413927586 0.32188031 0.167902712 0.617065279 0.000640336

LSP1 -2.896506019 0.842419146 0.750128721 0.946064319 0.003773434

IL7R -2.882973087 0.81372222 0.707317148 0.93613431 0.003939411

LTB -2.82474386 0.868002408 0.78679817 0.957587612 0.004731843

PLAC8 -2.380909342 0.760242386 0.606669079 0.952691517 0.017269962

BCL11B -2.272850056 0.775785763 0.623249619 0.965654099 0.023035217

CCR7 -2.125476184 0.878943089 0.780342613 0.990002264 0.033546899
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Cox analysis further identified seven prognostic genes and

constructed a prognostic model (Figure 3C). The VIF value of

each gene was less than 5 (Table 3), and the C-index of the model

was 0.64. The PH assumption test showed that the p-values of all

genes were greater than 0.05 (Table 4), indicating that these genes

had a certain predictive ability. The seven prognostic genes were

CD8A, ADAMDEC1, CD69, CRIP1, LSP1, BCL11B, and CCR7. The

multicollinearity test for the prognostic genes showed that the VIF

value for each gene was less than 5, indicating that there was no

significant multicollinearity (Supplementary Figure 1). Patients in

the high-risk cohort, who exhibited shorter survival times, were

predominantly found in the DEPRGs cases (Figure 3D). The high-

risk group demonstrated significantly worse survival outcomes (P <

0.0001) (Figure 3E). The prognostic model proved to be reliable in

assessing DEPRGs in the training dataset (Figure 3F).

Similar results were obtained in both the GSE65904 dataset and the

validation set, with patients in the high-risk group showing slower
Frontiers in Immunology 08
survival (Figures 4A, B). The 1-year, 3-year, and 5-year ROC curves for

SKCM patients were plotted. The AUC values were found to be 0.646,

0.657, and 0.681 in GSE65904 set, respectively, and 0.625, 0.660, and

0.646 in validation set, respectively (Figures 4C, D). The above results

demonstrate that the prognostic model is reliable in evaluating SKCM.
3.4 The nomogram model could reliably
predict the prognosis of patients with
SKCM

In the training set, univariate Cox analysis revealed significant

associations between risk score, age, TNM stage, and clinical stage

with the survival of patients with SKCM (P < 0.05). While, history

of neoadjuvant treatment, prior treatment diagnoses, prior systemic

therapy, and gender were found to have no significant impact on the

survival of SKCM (P > 0.05) (Figure 5A). Multivariate Cox analysis
FIGURE 3

Construction and validation of the prognostic model based on DEPRGs in SKCM. (A) LASSO regression analysis for feature selection. (B) LASSO
coefficient profiles of the 11 characteristic genes. (C) Forest plot of multivariate Cox regression analysis. (D) Risk score distribution and survival status
of SKCM patients in the training dataset. (E) Kaplan-Meier survival curves comparing overall survival between high-risk and low-risk groups in the
training dataset. (F) Receiver operating characteristic (ROC) curves for the prognostic model in the training dataset.
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identified N stage, T stage, and risk score as independent prognostic

factors (P < 0.05) (Figure 5B).

A nomogram incorporating T stage, N stage, and risk score was

constructed to reliably predict the prognosis of patients with SKCM

(Figures 5C, D).
3.5 Genes in high and low-risk cohorts
were mainly related to cytokine-mediated
cellular immune responses

KEGG analysis results indicated that genes in both groups were

predominantly associated with interactions between cytokines and

cytokine receptors, intestinal immunity networks for IGA

production, systemic lupus erythematosus, and allogeneic transplant

rejection, among others (Figure 6A). GO biological process analysis

revealed substantial enrichment of genes in both groups in processes
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such as adaptive immune response, epidermal and keratinocyte

differentiation, and biological processes involving intermediate

filaments (Figure 6B). GO cellular component analysis showed

significant enrichment in components like the cornified envelope,

immunoglobulin complex, and intermediate filaments (Figure 6C).

GO molecular function analysis identified key functions such as

antigen binding, immune receptor activity, immunoglobulin receptor

binding, andMHC protein complex binding (Figure 6D). According to

the oncogenic signature database, GSEA highlighted a primary

association with the upregulation of RPS14, SNF5, and STK33

(Figure 6E).The above results established associations between

SKCM prognostic genes and key biological processes such as

immune regulation, cell differentiation, and oncogenic pathways

through systematic functional genomics analysis. This not only

provided a logical framework for explaining the molecular

mechanisms of prognostic differences but also laid a data foundation

for developing combined targets for immunotherapy.
3.6 Nine types of differential immune cells
existed between high- and low-risk
groups, and prognostic genes were
correlated with most immune cells

The distribution of immune cells was analyzed in samples from

the high- and low-risk groups (Figure 7A). Significant differences
TABLE 2 LASSO of result.

Gene Regression coefficient

CCL4 -0.036309923

CD8A -0.079678751

GZMA 0

CD2 0

CTSS -0.029515353

IGSF6 0

ADAMDEC1 -0.136740393

CCL5 0

CYTIP 0

CMAHP -0.074567734

CD69 -0.284607168

CXCL13 0

GZMK 0

SLAMF8 0

PIM2 -0.063706757

CD3G 0

CD247 0

ITGAL 0

IL18 0

CRIP1 -0.662353571

LSP1 0.0700072975867431

IL7R 0

LTB 0

PLAC8 0

BCL11B 0.2458603688509

CCR7 0.220594896298752
TABLE 4 PH assumption test.

Gene P

CD8A 0.245277518691229

ADAMDEC1 0.51221251220946

CD69 0.279092800562971

CRIP1 0.180995978758048

LSP1 0.152248823288871

BCL11B 0.239207649688264

CCR7 0.0885880421429388

GLOBAL 0.0631386724075474
TABLE 3 The VIF values of the multivariate Cox regression.

Gene VIF

CD8A 3.03131006000874

ADAMDEC1 2.95042297591821

CD69 4.7734142488617

CRIP1 2.97646297241868

LSP1 3.25516923407163

BCL11B 2.94852743575457

CCR7 4.20569712916761
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were observed in the distribution of nine immune cell types between

the two groups (Figure 7B). Prognostic genes showed an inverse

correlation with Macrophage M0 and a positive correlation with

most differentially infiltrating immune cells (Figure 7C). Through

immune cell infiltration analysis, the dynamic associations between

SKCM prognostic genes and the tumor immune microenvironment

were revealed, providing key insights for deciphering the

immunological mechanisms of prognostic differences, developing

immunotherapy biomarkers, and optimizing combination

treatment strategies.
3.7 Prognostic genes-specific ceRNA
network: regulation of CD69, LSP1, and
BCL11B by miRNAs and lncRNAs

miRNA prediction was performed for three prognostic genes

(CD69, LSP1, and BCL11B), leading to the construction of a ceRNA

network comprising three mRNAs, 56 miRNAs, and 27 lncRNAs

(Figure 8A). Among these, SNHG3, AL355075.4, and LRRC75A-

AS1 regulate BCL11B expression by modulating hsa-miR-326 and

hsa-miR-330-5p. The non-coding RNA regulatory mechanisms of

SKCM prognostic genes were revealed above, and potential ceRNA

regulatory axes and therapeutic targets were screened out, providing

a theoretical basis for deepening the understanding of tumor
Frontiers in Immunology 10
molecular mechanisms and developing novel biomarkers or

RNA therapies.
3.8 A total of seven potential therapeutic
agents for SKCM based on prognostic
genes CD8A, LSP1, CD69, and CCR7

Seven potential therapeutic agents for SKCM were identified

based on CD8A, LSP1, CD69, and CCR7, while no agents were

predicted based on ADAMDEC1, CRIP1, or BCL11B (Figure 8B).

The identified therapeutic agents included Fluoropeptide vaccine,

LIPO-4, Anti-VEGFR2 CD8 cell therapy, MPPG, DT-1687,

TOCILIZUMAB, and JBH492. By integrating prognostic gene

expression and drug sensitivity data, the screening range of

therapeutic agents for SKCM was narrowed, providing candidate

regimens for personalized treatment.
3.9 CD8A, ADAMDEC1, CD69 and CRIP1
were down-regulation in SKCM cell lines,
while BCL11B was up-regulation

As presented in Figure 9, RT-qPCR analysis demonstrated that

in SKCM cell lines (MV3, SK-MEL-28, and WM-115), expression
FIGURE 4

Validation of the prognostic model in the test and external validation datasets. (A) Kaplan-Meier survival curves comparing overall survival between high-risk
and low-risk groups in the test dataset. (B) Kaplan-Meier survival curves comparing overall survival between high-risk and low-risk groups in the external
validation dataset (GSE65904). (C) Receiver operating characteristic (ROC) curves for the prognostic model in the test dataset. (D) Receiver operating
characteristic (ROC) curves for the prognostic model in the external validation dataset (GSE65904).
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levels of CD8A, ADAMDEC1, CD69, and CRIP1 were significantly

lower compared to the HSF cell line, while BCL11B expression was

significantly higher. No significant difference in the expression of

LSP1 and CCR7 was observed.
4 Discussion

Prognostic prediction in SKCM is essential for effective

diagnosis and treatment. PANoptosis-related genes have been

shown to predict OS in several tumors.13,14 In this study, a novel

prognostic model for SKCM was developed using bioinformatics

approaches, aiming to provide a theoretical foundation for

its treatment.

A total of 26 DEPRGs were identified, which were primarily

involved in cytokine and chemokine-mediated immune responses,

as revealed by GO and KEGG pathway enrichment analysis.

Previous studies have indicated that high expression of certain

cytokines/chemokines (e.g., APRIL/CXCL10/CXCL13) in tumors
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correlates with improved OS (36). From these findings, seven

prognostic genes—CD8A, ADAMDEC1, CD69, CRIP1, LSP1,

BCL11B, and CCR7—were identified as independent prognostic

factors. The results of the multicollinearity test showed that the VIF

values of each genes was less than 5, indicating there was no

significant multicollinearity issue among the prognostic genes in

the model. This suggests that each prognostic gene can

independently affect the prognosis of SKCM patients, allowing the

model to accurately evaluate the contribution of individual genes in

prognosis prediction. These findings ensure the stability and

reliability of the established multivariate Cox regression model

(37). A prognostic model was then constructed incorporating

these genes along with N and T stages. CD8A, a glycoprotein

primarily expressed on cytotoxic T lymphocytes, which cleave the

cytoskeleton and nuclear chromatin, thereby inducing tumor cells

apoptosis (38). Our results confirmed that CD8A showed the

strongest positive correlation with CD8+ T cells, aligning with

previous reports (39). ADAMDEC1, as a member of the

metalloproteinase family, can cleave Gasdermin family proteins,
FIGURE 5

Construction and validation of the nomogram for predicting SKCM patient survival. (A) Univariate Cox regression analysis of clinicopathological
parameters and risk score in the training dataset. (B) Multivariate Cox regression analysis of clinicopathological parameters and risk score in the
training dataset. (C) Nomogram for predicting 1-year, 3-year, and 5-year overall survival (OS) in SKCM patients. (D) Calibration curves for the
nomogram predicting 1-year, 3-year, and 5-year OS.
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FIGURE 6

Gene set enrichment analysis (GSEA) of high-risk and low-risk groups in SKCM. (A) GSEA of KEGG pathways showing significant enrichment in the
high-risk and low-risk groups. (B) GSEA of Gene Ontology Biological Process terms showing significant enrichment in the high-risk and low-risk
groups. (C) GSEA of Gene Ontology Cellular Component terms showing significant enrichment in the high-risk and low-risk groups. (D) GSEA of
Gene Ontology Molecular Function terms showing significant enrichment in the high-risk and low-risk groups. The top enriched terms include
antigen binding, immune receptor activity, and MHC protein complex binding. (E) GSEA of oncogenic signatures showing significant enrichment in
the high-risk and low-risk groups.
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release their N-terminal domains, form pores on the cell membrane,

cause the release of intracellular contents and trigger inflammatory

responses, which drive the tumor microenvironment toward a pro-

inflammatory state (40). CD69, as an early activation marker,

modulates calcium ion signaling in T cells to influence their

tumoricidal activity, and also participates in the regulation of

inflammatory cytokine release, thereby indirectly affecting the

dynamic balance of the PANoptosis pathway. The ceRNA-based

CD69 axis has emerged as a promising biomarker for the diagnosis

and prognosis of SKCM (41, 42).

LSP1 is expressed across various immune cells, including

lymphocytes, neutrophils, and macrophages (43). LSP1 also

activates the RIPK3-MLKL signaling axis, promoting MLKL

phosphorylation and translocation to the cell membrane, thereby

inducing necroptosis and releasing damage-associated molecular

patterns such as HMGB1, which further activates innate immune

cells and reshapes the tumor microenvironment (37, 44). CRIP1
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and BCL11B are involved in intestinal zinc transport and are closely

linked to B-cell malignancies (45). CRIP1 may regulate the

assembly and activation of the NLRP3 inflammasome by

interacting with pyroptosis-related adaptor proteins, thereby

indirectly influencing the pyroptosis process. Abnormal

expression of CRIP1 could potentially exacerbate the

inflammatory cascade in SKCM (46). BCL11B inhibits caspase-8

activity to block extrinsic apoptosis signaling transduction,

consequently enabling tumor cells to evade immune clearance

(47). CCR7, expressed in various lymphoid tissues, activates B

and T lymphocytes and facilitates tumor cell migration by

mediating interactions between tumor cells and chemokines

CCL19/CCL21, and may enhance tumor cell anti-apoptotic

capacity through regulation of necroptosis-related gene expression

(48). These genes do not function in isolation within the

PANoptosis regulatory network, but rather form a multi-level

regulatory framework through complex cross-talk between
FIGURE 7

Immune cell infiltration analysis and correlation with prognostic genes in SKCM. (A) Bar plot showing the distribution of 22 immune cell types in
high-risk and low-risk groups. (B) Box plots comparing the estimated proportions of significantly different immune cell types between high-risk and
low-risk groups. *represented p < 0.05,** represented p < 0.01, and *** represented p < 0.001. (C) Heatmap showing the correlation between
prognostic genes and differentially infiltrated immune cells. The color scale represents the correlation coefficient, with red indicating positive
correlation and blue indicating negative correlation.* represented p < 0.05, ** indicated p < 0.01, **** denoted p < 0.0001, and ns signified no
significant difference.
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upstream/downstream signaling and protein interactions.

Furthermore, these prognostic genes participate in most immune-

related receptors and biological functions, indicating that SKCM

prognosis is closely related to the immune system.

A risk model was constructed based on prognostic genes, and a

prognostic model was further developed by integrating N stage and

T stage. While existing SKCM prognostic models predominantly

focus on traditional apoptosis-related genes, immune checkpoints,

or metabolic pathway-related genes (49), our study pioneers the

incorporation of PANoptosis, a novel biological process, into

prognostic evaluation. By screening prognostic genes closely

associated with PANoptosis, our model not only incorporates

conventional factors like TN stage but also elucidates the

mechanism of tumor progression from the perspective of

inflammatory programmed cell death (50). In terms of predictive

performance, our model maintained AUC values ranging from

0.625 to 0.681 for the 1–5 year ROC curves in different datasets.

Although it did not reach extremely high predictive accuracy, the

model exhibited consistent performance across cohorts and

improved generalizability compared to previous models developed

based on a single dataset (51). The nomogram constructed in this

study, integrating T stage, N stage, and risk score, provides

clinicians with a visual and individualized prognosis prediction
Frontiers in Immunology 14
tool. Compared with previous models that solely relied on clinical

stage or a single gene, it can more comprehensively assess patient

risk (51, 52).

Further analysis revealed the association of prognostic genes with

SKCM progression. CD8A has been reported to influence SKCM

progression by regulating immune infiltration or immune escape.

Moreover, CD8A is closely linked to immunotherapy response and

serves as a predictive therapeutic biomarker. This can help optimize

anti-PD-1 therapy, improving patient outcomes (53). ADAMDEC1

plays a pivotal role in immune escape and regulating the tumor

microenvironment in SKCM, particularly affecting immune-related

gene expression. As a potential tumor antigen, ADAMDEC1 may

serve as a target for mRNA vaccines, with patients exhibiting immune

subtype IS2 potentially more responsive to these vaccines (54). The

ceRNA network regulates gene expression through complex

interactions by competitively binding miRNAs via RNA molecules,

thereby departing from traditional linear regulatory models (55).

CD69 interacts with non-coding RNAs such as OIP5-AS1 and

MALAT1 through the ceRNA network, influencing the immune

microenvironment and response. Furthermore, in the ceRNA

network, lncRNAs such as SNHG3, AL355075.4, and LRRC75A-

AS1 may indirectly regulate BCL11B expression by adsorbing hsa-

miR-326 and hsa-miR-330-5p, suggesting their potential central
FIGURE 8

Construction of the ceRNA network and prediction of potential therapeutic agents for SKCM. (A) Competing endogenous RNA (ceRNA) network.
(B) Network of potential therapeutic agents targeting prognostic genes.
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regulatory role in SKCM progression (56, 57). BCL11B has been

closely linked to SKCM progression and treatment, particularly in

melanoma brain metastases. Melanoma-specific gene regulatory

networks have identified BCL11B as a potential therapeutic target,

offering new strategies for personalized immunotherapy and targeted

treatments (58).

Additionally, significant differences were observed in the

infiltration levels of nine immune cell types when assessing the

immune landscape of patients with SKCM exhibiting varying risk

profiles. Prognostic genes showed an inverse correlation with

Macrophage M0 and a positive correlation with most

differentially infiltrating immune cells. However, the specific

underlying mechanisms of these interactions remain to be

explored in greater depth. Furthermore, potential therapeutic

strategies for SKCM were explored. Fluoropeptides may enhance

immune response capabilities, while lipopeptide vaccines could

trigger sustained CD4+ and CD8+ T-cell responses (59, 60).

VEGFR2-targeting agents have been shown to promote

osteopontin secretion by CD8+ T cells and facilitate robust

immune cell infiltration and activation (61). Tocilizumab may

control cytokine release syndrome in the context of

immunotherapy (62).JBH492 may affect the biological behavior of

SKCM cells or the tumor microenvironment by targeting and
Frontiers in Immunology 15
regulating genes such as CD8A and LSP1. However, the specific

mechanism still requires further exploration (63).

Finally, RT-qPCR confirmed the mRNA expression levels of the

seven prognostic genes. The mRNA levels of CD8A, ADAMDEC1,

CD69, and CRIP1 were significantly downregulated, while BCL11B

showed significant upregulation. These findings suggest that these

genes could serve as biomarkers for SKCM diagnosis and treatment,

regardless of gender or lesion type. Consistent with our results, a

previous study reported increased mutation frequencies of

FAM135B and downregulation of genes such as CD8A, GBP5,

KIAA0040, and SAMHD1 in the iC3 subtype, which is associated

with the most aggressive SKCM cases, highlighting the critical role

these genes play in tumor progression and immune response (64).

Another study found that CD69 could serve as a prognostic marker

for SKCM, influencing immune response through interactions with

genes like PTPRC and IL7R, and impacting tumor progression by

regulating the tumor immune microenvironment (55). No

significant differences in the expression of LSP1 and CCR7 were

observed between the two groups, which may be attributed to the

small sample size or biological variations. These findings will be

validated through additional experiments.

In conclusion, this study identified PANoptosis-related genes

associated with SKCM prognosis and explored their potential roles in
FIGURE 9

Validation of prognostic gene expression levels in SKCM cell lines using RT-qPCR. (A) Relative expression levels of CD8A in HSF, MV3, SK-MEL-28,
and WM-115 cell lines. ** indicated p<0.01. (B) Relative expression levels of ADAMDEC1 in HSF, MV3, SK-MEL-28, and WM-115 cell lines. ** indicated
p<0.01 (C) Relative expression levels of CD69 in HSF, MV3, SK-MEL-28, and WM-115 cell lines. ns signified no significant difference. (D) Relative
expression levels of CRIP1 in HSF, MV3, SK-MEL-28, and WM-115 cell lines. * represented p<0.05, ** indicated p<0.01. (E) Relative expression levels
of LSP1 in HSF, MV3, SK-MEL-28, and WM-115 cell lines. * represented p<0.05, ** indicated p<0.01. (F) Relative expression levels of BCL11B in HSF,
MV3, SK-MEL-28, and WM-115 cell lines. * represented p<0.05, ** indicated p<0.01. (G) Relative expression levels of CCR7 in HSF, MV3, SK-MEL-28,
and WM-115 cell lines. ns signified no significant difference.
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SKCM treatment. However, this study has some limitations. In terms of

validation, it primarily relied on bioinformatics analysis and small-

sample RT-qPCR experiments, lacking functional validation in vitro

and in vivo such as animal models or cellular functional experiments,

and failing to clarify the causal role of identified genes in SKCM

progression. Besides, there is a lack of longitudinal data on patients’

long-term follow-up, making it impossible to dynamically track disease

progression in relation to gene expression changes. Regarding data

limitations, the datasets used lacked key information including BRAF/

NRAS gene mutation status and contained insufficient ulcer samples,

affecting the comprehensiveness of the analysis. Missing clinical

variables also restricted the clinical applicability of the model.

Additionally, the PANoptosis score system exhibits shortcomings due

to its limited gene selection, only including 19 genes, which fails to fully

capture the complexity of PANoptosis biology. Besides, the subjective

median-based grouping method compromises conclusion

generalizability. In the future, the clinical value of prognostic genes

will be verified through multicenter studies by collaborating with

clinical institutions to expand sample collection including tissues and

blood, and incorporate complete follow-up data. The association

between gene expression and disease progression at the protein level

well also be validated using immunohistochemistry and Western blot.

In exploring functional mechanisms, we will construct cell models with

gene knockdown/overexpression and in vivomouse models, combined

with experiments on proliferation, migration, and apoptosis, to

elucidate the role of prognostic PANoptosis-related genes in SKCM

progression. Multi-source data integration will be enhanced by

incorporating clinical variables such as BRAF/NRAS mutation status

and ulceration characteristics to improve the model variable system. In

the optimization of PANoptosis scoring, we will expand gene screening

range and replace median-based grouping with scientific cluster

methods to achieve precise patient stratification. Concurrently,

rigorous pharmacological experiments will be designed to validate

therapeutic effects of predicted drugs on SKCM through cell

proliferation inhibition and apoptosis induction assays, thereby

facilitating the research toward clinical application.
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