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Unraveling the role of GPCR
signaling in metabolic
reprogramming and immune
microenvironment of
lung adenocarcinoma: a
multi-omics study with
experimental validation
Zhaoxuan Wang1†, Cheng Wang1,2†, Shilei Zhao1*

and Chundong Gu1*

1Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University,
Dalian, China, 2Department of Thoracic Surgery, Xishan People’s Hospital Of Wuxi City, Wuxi Branch
of Zhongda Hospital Southeast University, Wuxi, China
Background: Lung adenocarcinoma (LUAD) is characterized by metabolic and

immune heterogeneity, driving tumor progression and therapy resistance. While

G protein-coupled receptors (GPCR) signaling is known to regulate metabolism

and immunity in cancers, its role in LUAD remains poorly defined. This study

explores the influence of GPCR signaling on LUAD metabolism and

immune landscape.

Methods: We performed non-negative matrix factorization (NMF) clustering of

GPCR signaling genes in TCGA-LUAD cohort to identify distinct molecular

subgroups. A prognostic model was developed based on GPCR signaling

genes using least absolute shrinkage and selection operator (LASSO) analysis

and Cox regression. Differentially expressed genes were analyzed for metabolic

pathway enrichment and immune infiltration. In addition, key genes within GPCR

signaling were identified and validated through functional assays.

Results: NMF clustering based on GPCR signaling identified three subgroups in

LUAD, with cluster 3 exhibiting poorer overall survival and significant enrichment

in multiple prognostic associated metabolism pathways including purine,

pyrimidine, glyoxylate and dicarboxylate metabolism. Then, we developed a

GPCRscore prognostic model and validated across multiple cohorts, which

effectively stratified LUAD patients into distinct risk groups. High-risk LUAD

patients had an immunosuppressive microenvironment and activated

metabolic reprogramming. ADM was identified as a key gene in the high-risk

group, correlating with tumor stage, immune suppression, and resistance to

immunotherapy. Clinically, ADM was highly expressed in tumor tissues and

shows elevated concentrations in the peripheral blood of patients with

advanced-stage LUAD. Subsequently, we demonstrated that knock-down of

ADM in LUAD cells impaired their proliferation, migration, and invasion, while also

reducing the angiogenic potential of endothelial cells in vitro. Adrenomedullin
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promoted LUAD progression in a murine metastasis model. Further,

adrenomedullin inhibited CD8+ T cells proliferation, induced exhaustion, and

impaired cytotoxic function. Finally, drug sensitivity and cell viability analysis

showed LUAD patients with high levels of ADM exhibited sensitivity to the

treatment of Staurosporine and Dasatinib.

Conclusions: In summary, this study reveals the pivotal role of GPCR signaling

particularly mediated by ADM in orchestrating metabolic reprogramming and

immune modulation in LUAD. ADM emerges as a potential predictive biomarker

and therapeutic target, offering valuable implications for optimizing strategies.
KEYWORDS

GPCR signaling, lung adenocarcinoma, metabolic reprogramming, immune
microenvironment, ADM, prognostic model
Introduction

Lung adenocarcinoma (LUAD), the most prevalent subtype of

non-small cell lung cancer (NSCLC), poses a significant clinical

challenge worldwide due to its high incidence and poor prognosis

(1). While therapeutic paradigms have evolved from conventional

surgery and chemoradiation to precision strategies incorporating

targeted therapies (e.g., EGFR/ALK/ROS1 inhibitors) (2) and

immune checkpoint inhibitors (anti-PD-1/PD-L1 agents) (3),

significant challenges remain in addressing therapeutic resistance

and unfavorable prognosis. These challenges underscore the

urgent need for improved predictive biomarkers and more

effective treatment strategies in LUAD. LUAD exhibits significant

metabolic heterogeneity and immune microenvironment

complexity, which contribute to tumor progression and

therapeutic resistance. Metabolic reprogramming, a hallmark of

cancer, enables tumor cells to adapt to fluctuating energy demands

and microenvironmental constraints, facilitating immune evasion

and disease progression (4). Emerging evidence suggests that the G

protein-coupled receptor (GPCR) signaling pathway plays a pivotal

role in modulating both metabolic processes and immune responses

in various cancers (5–7), yet its precise role in LUAD remains

insufficiently elucidated.

GPCR constitute the largest superfamily of membrane receptors,

characterized by a structure comprising seven transmembrane

domains, an extracellular N-terminal region, and an intracellular

C-terminal tail (8). They function as critical mediators of signal

transduction, translating extracellular stimuli into intracellular

signaling networks and activating complex downstream effectors. In

cancer, aberrant activation of GPCR modulates a wide range of

oncogenic processes, including tumor cell proliferation, migration,

and invasion, regulation of immune responses, promotion of

angiogenesis, metastatic survival, reprogramming in glucose and

lipid metabolism, adaptation to oxidative stress, and remodeling

of the tumor microenvironment (TME) (9–12). Specially,
02
lysophosphatidic acid (LPA) and its G-protein-coupled receptors

(Lpar1) promoted tumor cell proliferation and motility through the

PI3K/AKT signaling pathways (13). Besides, GPCR-mediated

signaling could shape the TME by modulating cytokine secretion,

immune cell recruitment, and stromal interactions (14–16). For

instance, CXCR4 signaling facilitates the recruitment of

immunosuppressive myeloid-derived suppressor cells (MDSCs) and

regulatory T cells (Tregs) (17), contributing to immune evasion (18).

Similarly, GPR132 promotes macrophage polarization toward a

tumor-promoting M2 phenotype, thereby enhancing an

immunosuppressive milieu (19). Notably, GPCR constitute the

most extensive family of druggable membrane receptors, with over

30% of Food and Drug Administration (FDA)-approved drugs acting

through them (20). For instance, CXCR4 antagonists such as

plerixafor have been evaluated in hematologic malignancies for

their ability to disrupt tumor-stroma interactions and sensitize

cancer cells to chemotherapy (21). Similarly, agents targeting

protease-activated receptors (PARs), chemokine receptors (e.g.,

CCR5 and CXCR2), and endothelin receptors have demonstrated

anti-tumor effects in preclinical studies and early-phase clinical trials

(22). These findings underscore the untapped potential of GPCR as

therapeutic targets in cancer and highlight the need for further

translational research to develop GPCR-directed anti-cancer

therapies. However, the interplay between GPCR-driven metabolic

reprogramming and TME remodeling in LUAD is not fully

understood, highlighting the need for a comprehensive

investigation. Multi-omics approaches, including transcriptomics,

single-cell sequencing, and pathological features, provide powerful

tools to dissect the molecular mechanisms underlying LUAD

progression. By integrating these datasets, we systematically

identified GPCR-associated metabolic reprogramming and their

impact on immune cell infiltration and function. Furthermore,

experimental validation using in vitro and in vivo models is

essential to confirm the functional relevance of GPCR signaling in

metabolic-immune crosstalk.
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In this study, we used GPCR signaling genes to explore

heterogeneity in LUAD patients and established the robustness

prognostic model using LASSO and Cox regression based on

integration of multiple bulk RNA-seq cohorts. The high-risk

LUAD patients showed tumor progression, poor prognosis, low

immune infiltration level, and metabolic reprogramming.

Furthermore, we found that ADM in GPCR signaling significantly

associated with metabolic reprogramming, immunosuppression, and

immunotherapy resistance. Subsequent functional assays validated

that knock-down of ADM in LUAD cells impaired their proliferation,

migration, and invasion, while also reducing the angiogenic potential

of endothelial cells in vitro. Besides, adrenomedullin (coding gene

ADM) aggravated LUAD progression in the mouse metastasis model,

suppressed ex vivo CD8+ T cells proliferation and cytotoxic function.

Our study provides new insight into GPCR in shaping the TME,

highlighting its potential as a therapeutic target for improving

outcomes in LUAD patients with poor prognosis and resistance to

conventional treatments.
Methods

Publicly available data collection and
processing

We acquired survival data from bulk RNA-seq datasets available

from The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases: TCGA-LUAD and GSE31210 (23).

RNA-seq dataset of LUAD for the East Asian ancestry cohort

(EAS) was obtained from Chen et al.’s study (24). Inclusion criteria

for all cohorts included: a. histologically confirmed LUAD diagnosis;

b. available gene expression data (microarray or RNA-seq); c.

complete overall survival (OS). Exclusion criteria included: a.

incomplete clinical or survival data; b. presence of other cancer

types or mixed histology; and c. non-tumor samples. The level 4

RPPA dataset of LUAD patients including approximately 300 protein

markers, covering all major cancer signaling pathways was retrieved

from The Cancer Proteome Atlas (TCPA) (25). The spatial

transcriptomics of one poorly differentiated LUAD sample was

obtained from the study by Luo et al. (26). For microarray datasets,

the normalization process was conducted using the R package

“limma” (v3.54.1) (27). For bulk RNA-seq datasets, the public

normalized gene expression data based on fragments per kilobase

of exon model per million reads mapped (FPKM) was converted into

Transcript Per Million (TPM), which were used as the gene

expression matrix for downstream analysis. The gene-spot matrices

generated after spatial transcriptomics data processing were analyzed

with R package “Seurat” (v4.3.0) (28). Briefly, we analyzed spatial

transcriptomics beginning with the Load10X_Spatial function. We

applied the SCTransform function to normalize the spots. Spatial

feature expression plots were created using the SpatialFeaturePlot

function in Seurat. In addition, R package “SpaCET” (29)

deconvolution algorithm was used to accessorily identify

malignant cells.
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NMF clustering

The bulk RNA-seq expression profiles of GPCR signaling-

related genes from the TCGA-LUAD dataset were analyzed using

non-negative matrix factorization (NMF) clustering. NMF

clustering based on GPCR signaling pathway (REACTOME_

SIGNALING_BY_GPCR) were downloaded from the Molecular

Signatures Database (MSigDB, https://www.gsea-msigdb.org/gsea/

msigdb/). The R package “NMF” (30) was employed, with the

number of clusters (rank) set between 2 and 6. Clustering was

performed using the standard “lee”method with 100 iterations. The

optimal number of clusters was determined based on the NMF rank

survey metrics and the ability to effectively discriminate between

distinct molecular subtypes.
Construction of the GPCR risk score

The TCGA-LUAD cohort served as the primary training

dataset, while GSE31210 and EAS cohorts were used as

validation datasets. To identify prognostically relevant GPCR-

related genes, we first performed univariate Cox proportional

hazards regression analysis on the training cohort. Genes with a

p-value < 0.05 were considered statistically significant and selected

for further analysis. To reduce dimensionality and prevent model

overfitting, we subsequently applied the least absolute shrinkage

and selection operator (LASSO) regression using the “glmnet” R

package. The optimal penalty parameter (l) was determined via

10-fold cross-validation, and genes with non-zero coefficients at

the optimal l value were retained as candidate variables. Finally,

the selected genes were subjected to multivariate Cox proportional

hazards regression analysis to construct the prognostic model. The

GPCR risk score was then calculated using the function “predict

()” from the “glmnet” package. To assess the prognostic

performance of the model, LUAD patients were stratified into

high- and low-risk groups according to the median risk score.

Overall survival (OS) differences between groups were analyzed

using the log-rank test, while the predictive accuracy of model was

evaluated through receiver operating characteristic (ROC)

curve analysis.
Immunological characteristics of the TME
analysis

We employed a multi-faceted approach to evaluate the diversity

in the TME within high GPCRscore and low GPCRscore of LUAD.

Briefly, we utilized the ESTIMATE (31), EPIC (32), quantiseq (33),

and TIMER (34) algorithms to elucidate the proportions of immune

and stromal cells across histological subtypes. The above algorithms

are included in the R package “IOBR” (v0.99.9) (35). Data on the

use of deep learning to identify mappings of TILs from H&E

pathological images of TCGA-LUAD were derived from the study

by Saltz et al. (36).
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Identification of differentially expressed
genes

The R package “DEseq2” (37) was used to identify differentially

expressed genes (DEGs) for each modification pattern. An adjusted

p-value < 0.05 and an absolute fold change > 2 were used as the

criteria for the significance of DEGs.
Functional gene set enrichment analysis

The over-representation analyses of Gene Ontology (GO) and

Reactome pathways were performed using the R package

“clusterProfiler” (v4.6.0) (38). Hallmark and Kyoto encyclopedia

of genes and genomes (KEGG) gene sets were downloaded from

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). We

performed Gene Set Enrichment Analysis (GSEA) (39) to

examine the hallmark gene sets that are significantly

enriched pathway.
Drug sensitivity analysis

Drug sensitivity data were obtained from the Genomics of Drug

Sensitivity in Cancer (GDSC2, https://www.cancerrxgene.org/),

including GDSC2 gene expression profiles and corresponding

drug response data. Ridge regression models were developed to

assess the sensitivity of lung adenocarcinoma cells to 198 drugs.

Lower half-maximal inhibitory concentration (IC50) values were

indicative of heightened sensitivity to drug response. Using the R

package “oncoPredict” (v1.2) (40), we calculated drug sensitivities

within the TCGA-LUAD cohort.
Cell lines and cell culture

Human lung adenocarcinoma cell lines (A549 and H1299) and

primary human umbilical vein endothelial cells (HUVECs) were

obtained from the American Type Culture Collection (ATCC).

Cells were cultured in DMEM or RPMI-1640 medium

supplemented with 10% fetal bovine serum (FBS), penicillin, and

streptomycin. Small interfering RNAs (siRNAs) targeting ADM and

corresponding negative controls were purchased from Sangon

Biotech (Shanghai, China). A549 and H1299 cells were transiently

transfected with siRNAs using Lipofectamine 2000 for 12 h,

followed by functional and downstream assays. All cell lines were

maintained at 37°C in a humidified incubator containing 5% CO2.

The siRNA sequences are listed in Supplementary Table S1.
RNA isolation, cDNA synthesis and qPCR

Total RNA was extracted using the UNIQ-10 Column RNA

Isolation Kit, and reverse-transcribed with HiScript II Q RT

SuperMix. Quantitative PCR was performed on an ABI ViiA7
Frontiers in Immunology 04
system using ChamQ Universal SYBR qPCR Master Mix.

GAPDH was used as the normalization control for the obtained

results. Primer sequence were listed in Supplementary Table S1.
Cell viability assays

To analyze the impact of ADM on LUAD cells proliferation, a

total of 1×103 A549 (si-NC and si-ADM) or H1299 cells (si-NC and

si-ADM) were seeded in a 96-well plate and cultured in DMEM in

humidified incubator for 24 h, 48 h, 72 h, and 96 h. The cells were

incubated using Cell counting Kit-8 (CCK8) assay (HY-K0301,

MCE) according to the manufacturer’s instructions. Besides, a total

3×103 of A549 (si-NC and si-ADM) or H1299 (si-NC and si-ADM)

cells were seeded in 6-well plate at 37°C, 5% CO2 in humidified

incubator for 12 days. Colonies were fixed with 4%

paraformaldehyde and stained with crystal violet solution. For

drug sensitivity assays, the following compounds were used:

Dasatinib (Selleck, S1021), Staurosporine (Selleck, S1421), and

Zorifertinib (Selleck, S7971). Cells were seeded at a density of

3×10³ A549 cells per well in 96-well plates, and then treated with

varying concentrations of each compound for 48 hours. Cell

viability was then measured using the CCK8 assay.
Migration and invasion assays

To study the cell migration of ADM on LUAD cells, a transwell

migration assay was employed. Cells were subjected to an overnight

fast in a medium containing only 1% FBS. Subsequently, 2×104

A549 (si-NC and si-ADM) or H1299 cells (si-NC and si-ADM)

(resuspended in 200 ml of FBS-free medium) were seeded into

transwell chambers with an 8.0-mm pore-size membrane, placed in

a 24-well plate filled with 30% FBS-containing media (600 ml). For
invasion assays, the upper chamber was coated with 70 μl of matrix

gel diluted at a ratio of 1:3 and incubated at 37°C for 30 minutes.

After a 24-hour incubation for migration and invasion assays,

cotton swabs were used to clean the interior of the insert, and the

cells were fixed in 4% paraformaldehyde for 30 minutes, rinsed

thrice with PBS, and stained with 0.5% crystal violet for 10 minutes.

Images of cells were captured using a Zeiss microscope. Cellular

migration was quantified by enumerating the nuclei of

migrated cells.
Conditioned medium collection and
angiogenesis tube formation

A549 or H1299 (si-NC and si-ADM) cells were seeded in 60

mm dishes. When the cell confluence reached more than 90%, the

medium was replaced with serum-free DMEM medium. The

conditioned medium was collected after 48 h, then filtered

through a 0.22 mm strainer, and diluted with DMEM with 20%

FBS, at a ratio of 1:1. In a 96-well plate, 50 μl of Matrigel at a

concentration of at least 10 mg/ml is added to each well and
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incubated at 37°C for 30 minutes to allow gelation. HUVEC cells

pre-cultured with conditioned medium from A549 or H1299 (si-

NC and si-ADM) for 48 h were resuspended in complete medium,

and 100 μl of cell suspension containing 3 × 104 cells was added to

each well. The plate is then incubated for tube formation in the

culture incubator, and images are captured at 2, 4, and 6-hour time

points for observation. Quantitative analysis is performed using the

Angiogenesis Analyzer plugin in Image J software.
Murine CD8+ T cells isolation and T cells
proliferation

Murine CD8+ T cells were isolated from the spleen of 6- to 8-

week-old male C57BL/6 mice using the MojoSort Mouse CD8 T

Cell Isolation Kit (480008, BioLegend) following the manufacturer’s

instructions. Mouse T-Activator CD3/CD28 for T cell expansion

and activation for 48 h (anti-mouse CD3, 5 mg/mL, 100238,

BioLegend; anti-mouse CD28, 1 mg/mL, 102116, BioLegend).

Murine CD8+ T cells cultured in RPMI-1640 medium

supplemented with 10% FBS, 1% penicillin-streptomycin, and

mouse IL-2 (200 ng/ml, PeproTech, 212-12-20UG). Then the

same number of murine CD8+ T cells were cultured in the

expansion media containing PBS or 200ng/ml adrenomedullin

(LS-G11810, LSBio) for 24-72h, respectively.
Flow cytometric analysis

Murine CD8+ T cells were cultured in the expansion media

containing PBS or 200ng/ml adrenomedullin (LS-G11810, LSBio)

and single-cell suspension were harvested. Cells were incubated

with LIVE/DEAD FIX AQUA (L34966, Invitrogen, 1:200) or

Fixable Viability Dye eFluor (65-0866-18, eBioscience, 1:200) and

Fc receptor blocking reagent (553142, BD Pharmingen,1:400) on ice

for 20 min and centrifuged at 400×g for 5 min. Then, cells were

resuspended in the staining buffer and stained with antibodies on

ice for 30 min in dark. Use the following antibodies: FITC anti-

mouse CD8a (100705, BioLegend, 1:200); PE anti-human/mouse

Granzyme B (372207, BioLegend, 1:200) Brilliant Violet 421™ anti-

mouse CD366 (Tim-3) (119723, BioLegend, 1:200); APC anti-

mouse CD279 (PD-1) (135209, BioLegend, 1:200). Flow

cytometry was performed using an LSRFortessa instrument (BD

Biosciences) and analyzed using FlowJo software (v10.8.1).
Immunohistochemistry staining

Paraffin-embedded LUAD tissue samples were subjected to

immunohistochemistry (IHC) to assess ADM protein expression.

Briefly, tissues were first fixed in 10% formalin, dehydrated through

graded ethanol, embedded in paraffin, and sectioned into 4mm-thick

slices. Sections were deparaffinized in xylene and rehydrated

through a descending ethanol series into distilled water. For

antigen retrieval, the slides were heated in sodium citrate buffer
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(pH 6.0) using a microwave for 20 minutes. Endogenous peroxidase

activity was quenched by incubating the slides with 3% hydrogen

peroxide for 10 minutes at room temperature, followed by three

washes with phosphate-buffered saline (PBS, pH 7.4). Non-specific

binding was blocked with 3% bovine serum albumin (BSA) for 30

minutes. The slides were then incubated with the primary antibody

against ADM (Proteintech, #10778-1-AP, 1:200) overnight at 4°C.

After washing in PBS, sections were incubated with HRP-

conjugated secondary antibodies (matched to the host species of

the primary antibody) for 50 minutes at room temperature,

followed by additional PBS washes. Color development was

achieved using 3,3′-diaminobenzidine (DAB), which produced a

brownish-yellow stain in positive areas. Hematoxylin was used as a

counterstain to visualize nuclei. Slides were then dehydrated

through a graded alcohol series (75%, 85%, two changes of 100%,

and butanol, each for 5 minutes), cleared in xylene for 5 minutes,

air-dried, and mounted with a resin-based medium. Positive cell

detection was performed using QuPath software, with DAB as the

chromogen and hematoxylin as the counterstain. The optical

density (OD) thresholds were adjusted to classify cells into

negative, weak (1+), moderate (2+), and strong (3+) positive

staining intensities based on the DAB signal. The H-score was

then automatically calculated within QuPath using the formula: H-

score = (1 × %1+) + (2 × %2+) + (3 × %3+), yielding a final score

ranging from 0 to 300 for each annotated tumor region.
Adrenomedullin concentration detection

We prospectively collected peripheral blood samples from

treatment-naïve patients with different clinical stages of LUAD

from the First Affiliated Hospital of Dalian Medical University. The

blood samples were collected using EDTA-treated tubes and

centrifuged for 15 min at 1000g, and the plasma layer was

transferred to separate tubes and stored at −80°C. Concentration of

human adrenomedullin was detected by enzyme-linked

immunosorbent assay (ELISA) kit (CUSABIO, CSB-E09146h) in

accordance with the manufacturer’s instructions. Briefly, bring all

reagents to room temperature before use for 30min and each well was

then added with 100 ml of standard and test plasma, and incubated at

37°C for 2 h. Next, the liquid was removed, and 100 ml of biotin-
labeled antibody (1x) was added to each well, followed by incubation

at 37°C for 1 h. After washing the plate 3 times, 100 ml of horseradish
peroxidase-labeled avidin working solution was added to each well,

and incubated at 37°C for 1 h. After washing the plate 5 times, 90 ml
of substrate was added to each well sequentially, and incubated at 37°

C for 20 minutes for color development. The reaction was stopped by

adding 50 ml of stop solution, and the optical density (OD value) of

each well was measured at a wavelength of 450 nm.
Animal experiments

The 6- to 8-week-old male C57BL/6 mice were purchased from

Beijing Vital River Laboratory Animal Technology and housed in a
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specific pathogen-free environment with a 12/12h day/night cycle.

Mice were used for construction of metastasis model with the 5.0 ×

105 LLC-luciferase cells through tail vein injection. Then, C57BL/6

mice were injected with PBS (n=6) or mouse recombinant

adrenomedullin (n=5) (20 μg/kg) through tail vein every 3 days.

In vivo imaging observation was performed 4 weeks after the

implantation. IHC staining of anti-Ki-67 (#28074-1-AP,

proteintech, 1:500) was used to detect metastatic LUAD cells. All

animal maintenance and operational procedures were carried out in

accordance with the animal ethical agreement (No.AEE24060)

approved by the Animal Care and Ethics Committee of Dalian

Medical University.
Survival analysis

Survival analysis was performed using the R packages

“survminer” (v3.1-8) and “survival” (v3.1-8). Patients within all

datasets were divided into two groups based on the best-separation

cut-off value determined by the ‘‘surv_cutpoint’’ function to plot the

Kaplan–Meier survival curves, and P-value was calculated using a

log-rank test. Univariate Cox proportional models were first used to

analyze associations between the clinical parameters and OS, among

which the parameters with statistical significance were further

included in a multivariate Cox regression analysis. P-value < 0.05

was considered statistically significant.
Statistical analyses

All statistical analyses and graphical presentations were

performed using open-sourced R (v4.2.2) or GraphPad Prism

software (v10.0). Quantification data are depicted as the mean ±

standard deviation. As appropriate, statistical significance was

determined using either Student’s t-test or Wilcoxon rank-sum

test. Before the comparisons, the normality of the distributions was

tested with the Shapiro-Wilk test. Correlation analysis was created

with Pearson’s correlation. The statistical tests used in the figures

are specified in the figure legends, and statistical significance was set

at a P-value < 0.05. Significance levels are denoted as *P<0.05,

**P<0.01, ***P<0.001, ****P<0.0001.
Results

GPCR-based NMF clustering reveals
prognostic subtypes in TCGA-LUAD

To investigate the role of GPCR signaling in LUAD, we

performed non-negative matrix factorization (NMF) clustering

based on GPCR signaling gene expression profiles (REACTOME_

SIGNALING_BY_GPCR) from MSigDB using the TCGA-LUAD

cohort. Based on the cophenetic correlation coefficient and

dispersion, this analysis stratified LUAD patients into three

distinct molecular subgroups, indicating heterogeneity in GPCR
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pathway activation (Figure 1A; Supplementary Figure S1). Notably,

Kaplan-Meier survival analysis revealed that patients in cluster 3

exhibited significantly worse overall survival (OS) compared to

cluster 2 (log-rank P < 0.05) (Figure 1B), suggesting that GPCR

signaling may be associated with tumor aggressiveness and

unfavorable clinical outcomes. To further explore the molecular

differences among these subgroups, we conducted DEGs analysis,

which identified a set of significantly upregulated (n=122) and

downregulated (n=237) genes in cluster 3 compared to cluster 2

(Figure 1C). Gene ontology analysis showed that overexpressed

genes in cluster 3 group involved in multiple metabolic pathways

such as alpha-amino acid metabolic process, glutamine family

amino acid metabolic process, and one-carbon metabolic process

(Figure 1D), while cluster 2 group were related to immune-

activating pathways including MHC class II protein complex

assembly, leukocyte mediated immunity, and positive regulation

of T cell activation (Figure 1E). In addition, GSEA based on KEGG

pathways revealed distinct metabolic and signaling profiles across

molecular subgroups. Specifically, cluster 3 was significantly

enriched in pathways such as cell cycle, cysteine and methionine

metabolism, purine metabolism, pyrimidine metabolism, as well as

glyoxylate and dicarboxylate metabolism, whereas cluster 2 showed

enrichment in the JAK-STAT signaling pathway and fatty acid

metabolism (Figure 1F). Furthermore, prognostic analysis using the

web-based tool PESSA (41) indicated that elevated activity of purine

metabolism, pyrimidine metabolism, and glyoxylate and

dicarboxylate metabolism had association with poor overall

survival in LUAD patients, while enhanced fatty acid metabolism

was correlated with favorable prognosis (Figures 1G–J). Given their

enrichment in the high-risk subgroup, these metabolic alterations

may contribute to the observed poor prognosis by supporting rapid

tumor proliferation and influencing the TME. These findings

suggested that GPCR-driven molecular subtypes in LUAD exhibit

distinct metabolic and prognostic characteristics. Especially, the

enrichment of nucleotide metabolism pathways in the high-risk

group highlights a potential mechanistic link between GPCR

signaling and metabolic reprogramming in LUAD, warranting

further investigation into their functional relevance and

therapeutic implications.
Construction and validation of a
prognostic model based on GPCR-related
genes

Based on the significant heterogeneity in GPCR pathway activity

observed across LUAD subgroups, we sought to develop a clinically

relevant prognostic model. First, we performed univariate Cox

regression analysis to identify GPCR-related genes significantly

associated with OS (Figure 2A). To refine the selection and

enhance model stability, we applied LASSO regression, reducing

redundancy and preventing overfitting (Figures 2B, C). The final

set of prognostic genes was further incorporated into a multivariate

Cox regression model to construct a robust GPCR-based risk

signature. To assess the predictive performance of our model, we
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validated it across multiple independent cohorts including GSE31210

and EAS cohort. The risk score effectively stratified patients into high-

and low-risk groups based on median risk score, with the high-risk

group consistently exhibiting significantly worse OS (P < 0.05)

(Figures 2D, F, H). The distribution of GPCRscore and the survival

status plot revealed that the high-risk group had higher GPCRscore

and a greater proportion of deceased patients (Supplementary Figures
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S2A-C). Besides, time-dependent receiver operating characteristic

(ROC) curve analysis measured the area under the curve (AUC) at

1-year, 3-year, and 5-year OS were 0.731, 0.734, and 0.753 in TCGA-

LUAD, 1-year, 3-year, and 5-year OS were 0.936, 0.769, and 0.767 in

GSE31210, 1-year, 3-year, and 5-year OS were 0.562, 0.649, and 0.744

in EAS cohort, respectively (Figures 2E, G, I). Multivariate Cox

regression demonstrated that GPCRscore remained statistically
FIGURE 1

Identification of GPCR heterogeneity in LUAD patients. (A) Consensus matrix heatmap analysis. (B) Survival analysis of LUAD subgroups. (C) Volcano
plot of differentially expressed genes between cluster 2 and 3. (D, E) Barplot showing the functional enrichment of using GO enrichment analysis.
(F) Differential pathways were identified via GSEA analysis. (G-J) The enriched metabolism related pathway survival analysis based on ssGSEA score.
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FIGURE 2

A consensus prognostic GPCRscore model was developed and validated. (A) Forest plot showing prognosis-associated GPCR signaling genes using
univariate regression analysis. (B, C) Least absolute shrinkage and selection operator (LASSO) Cox regression were used to determine the optimal
lambda and corresponding coefficients of the four indicators. (D) Kaplan–Meier curves of OS according to the GPCRscore in TCGA-LUAD (log-rank
test: P <0.0001). (E) The diagnostic receiver operating characteristic (ROC) curve and time-related ROC curve confirmed the accuracy and stability
of GPCRscore in predicting the prognosis of patients with TCGA-LUAD. (F) Kaplan–Meier curves of OS according to the GPCRscore in GSE31210
(log-rank test: P <0.0001). (G) The ROC curve and time-related ROC curve confirmed the accuracy and stability of GPCRscore in predicting the
prognosis of patients with GSE31210. (H) Kaplan–Meier curves of OS according to the GPCRscore in EAS cohort (log-rank test: P =0.0069). (I) The
ROC curve and time-related ROC curve confirmed the accuracy and stability of GPCRscore in predicting the prognosis of patients with EAS cohort.
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significant (P < 0.05) after adjusting for available clinical traits, such

as age, gender, and TNM stage, which suggested that GPCRscore was

an independent risk factor for survival time `(Supplementary Figures

S2D-F). Additionally, decision curve analysis (DCA) revealed that

GPCRscore and TNM stage provided higher clinical benefit

compared to other clinical features (Supplementary Figures S2G-I).

These findings underscored the prognostic value of GPCR-related

genes and highlight the clinical applicability of our risk model in

LUAD prognosis.
Transcriptomic, genomic profiling, and
immune landscape differences between
high- and low-risk groups

To investigate the molecular characteristics associated with

GPCRscore, we first performed DEGs analysis between the

GPCRscore-high and GPCRscore-low groups. As shown in the

volcano plot (Figure 3A), multiple genes involved in immune

regulation and metabolism, including ADM, CCL20, IGFBP1,

RSPO3, and RGS20, were significantly upregulated in the

GPCRscore-high group. In contrast, small nucleolar RNAs such

as SCARNA6 and SNORA73B were enriched in the GPCRscore-low

group. GO enrichment analysis of the differentially expressed genes

revealed significant enrichment in biological processes such as

blood vessel diameter regulation, aging, regulation of membrane

potential, and extracellular matrix organization (Figure 3B). To

further explore functional pathway alterations, GSEA was

performed and showed the GPCRscore-high group demonstrated

significant enrichment in several metabolic pathways, including

pyrimidine metabolism, purine metabolism, phenylalanine

metabolism, and arginine and proline metabolism (Figure 3C).

These results suggested that high GPCR activity is closely

associated with reprogramming of nucleotide metabolism,

potentially contributing to tumor progression and altered

cellular functions.

Next, gene mutation analysis in the TCGA-LUAD cohort

revealed a significantly higher frequencies of somatic mutations

(95.75% vs. 86.74%) in GPCRscore-high group, including TP53

(53% vs. 46%), TTN (51% vs. 36%), CSMD3 (47% vs. 33%), MUC16

(43% vs. 38%), RYR2 (37% vs. 31%), and LRP1B (36% vs. 28%)

(Figure 3D). In line with this observation, the GPCRscore-high

tumors displayed significantly elevated levels of tumor mutational

burden (TMB) (Figure 3E), suggesting a potential link between

GPCR signaling activity and increased genomic instability.

To explore the immune-related characteristics of high- and low-

risk groups, we conducted a comprehensive investigation into their

underlying biological mechanisms. ESTIMATE analysis revealed

that the high-risk group exhibited a higher tumor purity score but

lower levels of stromal score, immune score, and overall

ESTIMATE score. Subsequent analysis using multiple TME

algorithms indicated that the GPCRscore-high group was

characterized by an elevated cancer-associated fibroblasts (CAFs),

while displaying lower levels of immune cell infiltration, particularly
Frontiers in Immunology 09
in B cells, T cells (CD8+ T cells and CD4+ T cells), and dendritic

cells (Figure 3F). Moreover, using deep learning technology, as

employed by Saltz et al. (37), we identified tumor-infiltrating

lymphocyte (TIL) data in H&E-stained pathological images from

the TCGA cohort. The subtype of TIL mapping and representative

images confirmed that the “Brisk, band-like” and “Non-brisk, focal”

infiltration patterns correlated with higher GPCRscore (Figure 3G),

suggesting that the GPCRscore-high group is characterized by lower

levels of lymphocyte infiltration. Even when immune cells do

infiltrate, they form a band-like border around the tumor, which

is insufficient to control tumor growth effectively within the tissue.

Together, these findings suggested that the high-risk LUAD

subgroup identified by our GPCR-based model is associated with

nucleic acid metabolism activation and an immune-suppressive

microenvironment, which may contribute to disease progression

and poor clinical outcomes. These insights provided a potential

rationale for targeting metabolic vulnerabilities and immune

modulation in high-risk LUAD patients.
ADM within GPCR-model linking metabolic
reprogramming and immune suppression

To identify potential mechanistic drivers within our prognostic

model, we analyzed the correlation between the expression levels of

the 13 model genes (ADM, CCL20, CCR2, GPR31, GPR37, HRH3,

LPAR6, NPY5R, OXTR, PCP2, RGS20, SHC1, and TAS1R2) and key

metabolic pathways. Among them, ADM exhibited positive

association with metabolic reprogramming, particularly

pyrimidine and purine metabolism and negative association with

fatty acid metabolism, suggesting its potential role in tumor

metabolic regulation (Figure 4A). Further clinical characteristics

analysis revealed that ADM expression was significantly associated

with tumor stage and pathological grade using BEST website (42)

(Figure 4B), indicating its potential involvement in LUAD

progression. Besides, estimation of the immune cell infiltrates

showed a significantly negative correlation between CD8+ T cell

infiltrates and ADM expression across TCGA-LUAD samples

(Figure 4C). Additionally, a weaker correlation is observed

between ADM expression and the infiltration of other immune

cell types (Figure 4C). Further, ADM expression was found to be

negatively correlated with immunotherapy benefit, with patients

exhibiting high ADM expression showing worse prognosis with

immune checkpoint blockade therapy including IMvigor210 (anti-

PD-L1 therapy) and VanAllen cohort (anti-CTLA4 therapy)

(Figure 4D). Consistently, we also found that ADM expression

was positively correlated with multiple immune inhibitory

checkpoints, including PDCD1, HAVCR2, IDO1, and LAG3

further supporting its role in shaping an immunosuppressive

TME and contributing to immune evasion in LUAD (Figure 4E).

Together, these findings suggested that ADM may act as a key

oncogenic driver that links metabolic reprogramming and immune

suppression in LUAD, contributing to tumor progression and

resistance to immunotherapy.
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FIGURE 3

Transcriptional characteristics, genomic profiling, and immune infiltration in high-GPCRscore and low-GPCRscore LUAD patients. (A) The volcano
plot of differential gene expressions in high-GPCRscore and low-GPCRscore group. The two vertical dashed lines represent absolute foldchange>2
in gene expression, and the horizontal dashed line denotes adjusted P-value cutoff 0.05. (B) Barplot showing the biological process of GO
enrichment analyses in high- and low-GPCRscore group. (C) GSEA enrichment analyses of KEGG gene sets exhibited functional enrichment in high-
and low-GPCRscore group. (D) Waterfall plot showing mutation profiles in the high- and low-GPCRscore group. (E) Violin plot illustrating the
distribution of tumor mutational burden (TMB) across different risk groups. (F) Heatmap showing immune cell infiltration in the high- and low-
GPCRscore group across four distinct computational methods including ESTIMATE, EPIC, quantiseq, and TIMER. (G) Representative staining of
tumor-infiltrating lymphocytes from the H&E images in the high- and low-GPCRscore group. Barplot showing the GPCRscore across different
mappings of TILs.
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ADM expression profiling in single-cell
sequencing, clinical samples, and spatial
transcriptomics

To further delineate the cellular sources and spatial distribution

of ADM expression in LUAD, we performed integrative analysis
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using multiple single-cell RNA sequencing (scRNA-seq) datasets

from the TISCH database (43), including GSE148071 (44),

GSE162498 (45), and GSE117570 (46). Across these datasets,

ADM was predominantly expressed in malignant epithelial tumor

cells and tumor-associated macrophages (Figures 5A–I), rather than

in stromal or lymphoid compartments. This dual expression pattern
FIGURE 4

ADM as a key GPCR-associated gene linking metabolism and immune suppression. (A) Correlation heatmap showing the correlation between
expression level of 13 genes in GPCRscore and metabolic enrichment score. (B) The expression of ADM in the different stage and pathological grade
of LUAD patients. (C) Scatter plot showing the correlation between ADM and immune cells. (D) Survival analysis of ADM expression in
immunotherapy cohorts. (E) Scatter plot showing the correlation between ADM and immunosuppressive checkpoint including PDCD1, IDO1,
HAVCR2, and LAG3.
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suggested that ADM may contribute to both tumor-intrinsic

metabolic reprogramming and tumor-extrinsic immune

modulation, aligning with its proposed role in shaping an

immunosuppressive TME.
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To validate these findings at the protein level, we next examined

ADM expression in immunohistochemical (IHC) staining images

from the Human Protein Atlas (HPA) and in our own clinically

collected LUAD specimens. Consistent with transcriptomic data,
FIGURE 5

ADM expression in single-cell sequencing and pathological tissue. (A) UMAP plot showing cell types in GSE148071. (B) ADM expression in
GSE148071. (C) Violin plot showing ADM expression in different cell types in GSE148071. (D) UMAP plot showing cell types in GSE162498. (E) ADM
expression in GSE162498. (F) Violin plot showing ADM expression in different cell types in GSE162498. (G) UMAP plot showing cell types in
GSE117570. (H) ADM expression in GSE117570. (I) Violin plot showing ADM expression in different cell types in GSE117570. (J) IHC staining of ADM in
normal lung tissue and LUAD tissue from HPA database. (K) IHC staining of ADM in para-cancerous tissue (n=6) and LUAD tissue (n=6) from our
center. The H-score showing the degree of positivity. Statistic tests: two-sided t test. Significance levels are denoted as *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001. Scale bar: 100mm.
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ADM protein expression was markedly elevated in LUAD tumor

tissues compared to normal lung parenchyma and adjacent non-

tumorous tissues (Figures 5J, K). In particular, ADM staining was

localized to the cytoplasm of tumor cells and a subset of tumor-

infiltrating immune cells, corroborating its cell-type specificity

observed in scRNA-seq. Further, we prospectively collected a total

of 40 plasma samples from LUAD patients. The level of plasma

adrenomedullin in advanced-stage LUAD patients was significantly

higher than in early-stage LUAD patients. Besides, we found that

patients with T2-T4, N1-N3 and M1 exhibited significantly higher

adrenomedullin levels compared with T1, N0 and M0, respectively

(Figures 6A–D). In addition, ROC curve analyses to evaluate the

diagnostic efficiency of adrenomedullin on clinical stage (Stage I vs.

Stage II-IV), T stage (T1–2 vs. T3-4), N stage (N0 vs. N1-3), M stage

(M0 vs. M1) with AUC of 0.9060 (Sensitivity=74.1%;

Specificity=100.0%), 0.8631 (Sensitivity=91.9%; Specificity=67.9%),

0.9661 (Sensitivity=83.3%; Specificity=100.0%), and 0.9749

(Sensitivity=90.9%; Specificity=96.6%) (Figures 6E–H). These results

emphasized the level of adrenomedullin was a potential peripheral

blood marker to predict the occurrence of LUAD metastasis.

Next, spatial transcriptomics from the study by Luo et al.

showed that pyrimidine and purine metabolism were upregulated

in regions with dense malignant cell distribution (Figures 6I-K),

suggesting active nucleotide biosynthesis in tumor cores. Notably,

ADM expression showed strong spatial co-localization with

metabolically active tumor regions, particularly those enriched

in nucleotide metabolism (Figure 6L), implying a potential role

for ADM in supporting tumor metabolic reprogramming.

Furthermore, expression of immune markers associated with T

cell cytotoxicity and exhaustion was evaluated. CD8A showed a

scattered yet discernible presence in the peripheral tumor areas

(Figure 6M). Exhaustion markers including PDCD1, IDO1, and

HAVCR2 were predominantly enriched in tumor-adjacent regions

(Figures 6N-P), which exhibited partial spatial overlap with ADM

expression. Collectively, these findings suggested that ADM was

spatially associated with regions of heightened purine/pyrimidine

metabolism and immune exhaustion, indicating its dual role in

promoting tumor proliferation and immune evasion within TME

of LUAD.
ADM promotes tumor cells proliferation,
migration, invasion, and pro-angiogenesis
in vitro and in vivo

To validate the above findings, we knocked down ADM

expression in A549 and H1299 cells using siRNA (Figure 7A).

Cell viability was assessed using the CCK8 assay, which revealed

that ADM inhibition significantly impaired the proliferative

capacity of LUAD cells (Figure 7B). This was further

corroborated by colony formation assays, which showed a similar

trend (Figure 7C). In addition, significant decreased enrichment of

EMT pathway (CDH1, CDH2, MMP2, MMP9, TWIST1, and

TWIST2) and angiogenesis pathway (VEGFA and VCAN) were

observed in knocked down ADM expression in A549 and H1299
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cells (Figures 7D, E). Transwell migration and invasion assays

demonstrated that knockdown of ADM notably reduced the

migratory and invasive capabilities of LUAD cells (Figures 7F-G).

Additionally, when HUVEC cells were co-cultured with A549 cells

and H1299 cells transfected with si-ADM, a significant decrease in

both branch points and tube length was observed (Figures 7H-I),

suggesting that ADM plays a key role in promoting angiogenesis in

the TME.

Next, we injected murine LLC-luciferase cells through the tail

vein into immune-competent C57BL/6 mice to construct a

metastasis model. Adrenomedullin recombinant protein was

intravenously injected into immune-competent C57BL/6 mice

every 3 days (Figure 7J). Bioluminescence imaging revealed a

significant increase of fluorescence signal in the distant metastasis

C57BL/6 mice injected with adrenomedullin (Figures 7K-L). Tumor

cells (Ki-67+ cells) were detected in the lesion of intrapulmonary

metastasis (Figure 7M), which exhibited a significant increase in

lung metastasis compared to the control group. Collectively, these

findings provided preclinical evidence supporting ADM as a pro-

metastasis factor contributed to poor clinical outcomes for LUAD

patients through promoting tumor neovascularization.
ADM suppresses CD8+ T cell proliferation
and induces exhaustion

To elucidate its effects, we isolated primary CD8+ T cells from the

spleens of C57BL/6 mice and cultured them in the presence of

recombinant murine adrenomedullin protein (200 ng/mL). After

24 to 72 hours of incubation, ex vivo proliferation assays revealed a

marked suppression of CD8+ T cell proliferation in adrenomedullin-

treated groups compared to controls (Figures 8A-B), indicating that

ADM directly impaired CD8+ T cells expansion. Flow cytometry

analysis further demonstrated that adrenomedullin induced an

exhaustion phenotype in CD8+ T cells (Figure 8C). Specifically,

there was a significant upregulation of exhaustion-associated

markers, including PD-1 and TIM3, alongside a concomitant

downregulation of key cytotoxic effector molecules Granzyme B

(GZMB) (Figures 8D-E). These findings suggested that ADM not

only inhibits T cell proliferation but also actively drives functional

exhaustion, thereby impairing their anti-tumor capacity. Taken

together, these results highlighted ADM as a dual-function

modulator that promoted tumor progression by simultaneously

inducing immune suppression and enabling metastatic

dissemination. Targeting ADM or its downstream signaling

pathways may therefore offer a promising therapeutic strategy to

restore CD8+ T cells function and enhance anti-tumor immunity,

particularly in metastatic or immunotherapy-resistant settings.
ADM-associated metabolic reprogramming
and drug sensitivity analysis

To further explore the impact of ADM expression on tumor

metabolism, we grouped LUAD patients using the best cutoff
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calculated by maximally selected rank statistics (Figures 9A, B). We

analyzed DEGs between ADM-high and ADM-low expression

groups (Figure 9C). Additionally, we conducted correlation

analysis between the expression level of ADM and RPPA data.
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This analysis revealed a significant positive correlation between

ADM and pro-metastatic proteins such as PAI-1. In contrast, the

well-differentiated LUAD markers, TTF1 and Napsin A, showed a

significant negative correlation with ADM (Figure 9D). GSEA
FIGURE 6

ADM expression in peripheral blood and spatial transcriptomics of LUAD patients. (A–D) Violin plot showing the level of adrenomedullin in different
clinical stages (A), stage T (B), stage N (C), and stage M (D) of LUAD patients. (E–H) ROC curves showing diagnostic efficiency to evaluate the
sensitivity, specificity, and the area under the ROC curves (AUC) for differentiating different clinical stages (E), stage T (F), stage N (G), and stage M
(H) of LUAD patients. All ROC curve analyses were significant (p < 0.0001 from AUC of 0.5). (I) Spatial distribution of malignant cells inferred by
SpaCET deconvolution. (J, K) Spatial enrichment of purine metabolism and pyrimidine metabolism pathway activity, demonstrating elevated
metabolic activity in tumor-dense areas. (L–P) ADM, CD8A, PDCD1, IDO1, and HAVCR2 expression in spatial transcriptomics. Statistic tests: one-way
ANOVA. Significance levels are denoted as *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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FIGURE 7

ADM promotes tumor cells proliferation, migration, invasion, and pro-angiogenesis in vitro and in vivo. (A) Barplot showing the mRNA level of ADM
in LUAD cells (A549 and H1299) after si-ADM transfection. (B) Cell viability assay to evaluate the impact of si-ADM transfection on the proliferative
ability of A549 and H1299 cells. (C) Colony formation assay to assess the impact of si-ADM transfection on the clonogenic capability of A549 and
H1299 cells. (D, E) Barplot showing the mRNA level of CDH1, CDH2, MMP2, MMP9, TWIST1, TWIST2, VEGFA, VCAN in LUAD cells (A549 and H1299)
after si-ADM transfection. (F, G) Transwell assay to evaluate the impact of si-ADM transfection on the migration and invasion ability of A549 and
H1299 cells. (H, I) Endothelial tube-formation assay to evaluate the impact of si-ADM transfection on the promoting angiogenesis ability of A549
and H1299 cells. (J) In vivo LUAD tail vein injection model showing the effect of adrenomedullin on LUAD metastasis. (K, L) Fluorescence images and
quantifications of metastatic lesions. (M) Ki-67 antibody was used to detect murine tumor cells. Statistic tests: two-sided t test. Significance levels
are denoted as *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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FIGURE 8

ADM suppresses CD8+ T cell proliferation and induces exhaustion. (A) Representative bright-field images of CD8+ T cells cultured with PBS or
adrenomedullin (200ng/ml) at 24, 48, and 72 hours. (B) Quantification of CD8+ T cell numbers at 24, 48, and 72 hours. ADM significantly reduced
proliferation compared to PBS control. (C) Gating strategy for flow cytometric identification of live CD8+ T cells from culture. (D) Representative
flow cytometry showing expression of cytotoxicity marker GZMB and exhaustion markers PD-1 and TIM3 in CD8+ T cells following adrenomedullin
(200ng/ml) or PBS treatment at 72 hours. (E) Quantification of GZMB+, PD-1+, and TIM3+ CD8+ T cells. Statistic tests: two-sided t test. Significance
levels are denoted as *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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revealed that the ADM-high group exhibited significant enrichment

in pyrimidine metabolism, glycolysis, and lipid metabolism

pathways, consistent with its role in promoting metabolic

adaptation and tumor progression. In contrast, the ADM-low

group showed enrichment in oxidative phosphorylation and

immune activation pathways, suggesting a less aggressive

metabolic phenotype (Figure 9E; Supplementary Figure S3A).

Notably, correlation analysis found that ADM expression was

positively correlated with multiple rate-limiting enzymes in both

purine (PPAT, GMPS, RRM1, and RRM2) and pyrimidine (CAD

and UMPS) metabolic pathways (Supplementary Figure S3B). To

experimentally validate these findings, we performed RT-qPCR

analysis following ADM knockdown in lung cancer cells.

Conformably, we observed that the mRNA expression levels of

above genes were significantly reduced upon ADM knockdown

(Figure 9F), supporting a regulatory role of ADM in maintaining

nucleotide biosynthesis gene expression.

To further explore the therapeutic relevance of ADM

expression, we performed drug sensitivity analysis using

pharmacogenomic databases. Specifically, oncoPredict was used to

assess the sensitivity of 198 compounds from the GDSC2 database

in TCGA-LUAD samples stratified by ADM expression levels.

Spearman correlation analysis revealed that ADM expression was

significantly negatively correlated with the predicted IC50 values of

five compounds including Staurosporine, Dasatinib, AZD3759

(Zorifertinib), Vinorelbine, and GDC0810 (Spearman’s R < −0.2,

P < 0.05) suggesting enhanced sensitivity in ADM-high tumors.

Conversely, positive correlations were observed with Sabutoclax

and AZD1208 (Spearman’s R > 0.2, P < 0.05), indicating potential

resistance (Figure 9G). To validate these findings, we selected three

candidate drugs (Staurosporine, Dasatinib, and Zorifertinib) and

conducted cell viability assays in ADM-knockdown A549 cells

versus control cells. Consistent with in silico predictions, low

expression of ADM cells exhibited reduced sensitivity to all three

compounds, with remarkable differences observed for

Staurosporine and Dasatinib (Figure 9H; Supplementary Figure

S4). Collectively, these results suggested that high ADM expression

may serve as a potential biomarker for increased responsiveness to

Staurosporine and Dasatinib in LUAD.
Discussion

Given the distinct heterogeneity of LUAD, the prognosis of

LUAD patients exhibits substantial variability. Aberrant GPCR

activation influences key oncogenic pathways, including glucose

and lipid metabolism, oxidative stress responses, and immune

landscape. In this study, we identified three distinct molecular

subgroups in LUAD, which revealed significant heterogeneity in

GPCR pathway activation through NMF clustering. Then, we

explored the role of GPCR signaling in LUAD by developing a

prognostic model and examining its association with tumor

metabolism and immune evasion. Our findings suggested that

GPCR signaling played a pivotal role in LUAD progression, with

certain subgroups exhibiting distinct metabolic and immune
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characteristics. Notably, high-risk patients, characterized by

increased activation of purine and pyrimidine metabolism, was

associated with poor prognosis and an immunosuppressive TME.

The prognostic value of our GPCR-based model was further

validated across multiple independent cohorts, with high-risk

patients consistently exhibiting worse OS. This model, developed

through a multivariate Cox regression approach and validated by

time-dependent receiver operating characteristic (ROC) curves,

highlights the clinical utility of GPCR-related genes in stratifying

LUAD patients based on their risk of poor clinical outcomes.

A critical observation in this study was the identification of ADM

as a key gene in our GPCR-related risk model. The calcitonin-like

receptor (CLR) is a typical GPCR, which plays a role in regulating

various physiological processes, including blood pressure,

metabolism, and nervous system function. The signaling of CLR

can be regulated through co-expression with one of three receptor

activity-modifying proteins (RAMPs). RAMPs influence the binding

of CLR with its endogenous ligands and determine the specific

signaling pathway it activates (47). Specifically, when CLR is co-

expressed with RAMPs, it can be activated by different endogenous

ligands, including: calcitonin gene-related peptide (CGRP), ADM,

and ADM2 (47). According to our analyses, ADM exhibited positive

correlation with metabolic reprogramming, particularly in purine

(PPAT,GMPS, RRM1, and RRM2) and pyrimidine (CAD andUMPS)

metabolic pathways, suggested that it played an important role in

tumor cell metabolic adaptation. As support, ADM could enhance

PI3K (48) andMAPK signaling (49), whichmay indirectly upregulate

rate-limiting enzymes such as CAD (50). Future studies are needed to

further explore the mechanisms underlying ADM involvement in

nucleotide metabolism. Moreover, ADM expression was linked to

immune evasion, with higher expression levels correlating with

reduced CD8+ T cell infiltration and resistance to immunotherapy.

These findings underscored dual role of ADM in promoting both

metabolic changes and immune suppression, positioning it as a

potential therapeutic target in LUAD. Consistent with the known

roles of adrenomedullin in tumor progression, our findings

reinforced the notion that ADM functions not only as a pro-

angiogenic and pro-survival factor but also as a key modulator of

the TME. The significant upregulation of ADM in tumor tissues

strengthened its potential as a biomarker for LUAD progression and

its promise as a therapeutic target. Further, our in vitro and in vivo

experiments provided compelling evidence that ADM contributed to

tumor progression and metastasis. ADM inhibition suppressed

LUAD cell proliferation, migration, invasion, and angiogenesis.

Recombinant adrenomedullin (coding gene ADM) limited CD8+ T

cell proliferation and cytotoxicity and promoted the exhaustion.

These results aligned with the clinical findings, supporting ADM as

a pro-metastatic factor and its involvement in immune

escape mechanisms.

Previous studies have highlighted dysregulation of adrenomedullin

in various types of tumors such as osteosarcomas, pancreatic cancer,

prostate cancer, and gastric cancer (51–54). Mechanistically, ADM

overexpression in cancer cells enhances neovascularization, thereby

facilitating macroscopic metastatic outgrowth, particularly after initial

entrapment in lymphatic vessels. In breast cancer, clinical evidence
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FIGURE 9

ADM-associated metabolic reprogramming and drug sensitivity analysis (A) Kaplan–Meier curves of OS according to ADM in TCGA-LUAD cohort
(log-rank test: P <0.0001). (B) Threshold Justification of ADM in TCGA-LUAD. (C) Volcano plot of differentially expressed genes between high
expression of ADM and Low expression of ADM. (D) The scatterplot showing the correlation between ADM and the RPPA protein level in TCGA-
LUAD. The blue color indicates a significantly negative correlation (P-value < 0.05, Peason's R<-0.3), while the red color represents a significantly
positive correlation (P-value < 0.05, Peason's R>0.3). (E) GSEA of DEGs showing the enrichment of tumor metabolic pathways. (F) Barplot showing
the mRNA level of PPAT, GMPS, CAD, UMPS, RRM1, and RRM2 in LUAD cells (A549 and H1299) after si-ADM transfection. (G) The scatterplot
showing the correlation between the GPCRscore and IC50 values for 198 compounds in TCGA-LUAD. The blue color indicates a significantly
negative correlation (P-value < 0.05, Peason's R<-0.2), while the red color represents a significantly positive correlation (P-value < 0.05, Peason's
R>0.2). (H) Barplot showing the relative viability of A549 cells treated with Staurosporine or Dasatinib after si-ADM transfection, in comparison with
the control group at 48 hours. Statistic tests: two-way ANOVA. Significance levels are denoted as ns, P>0.05, *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.
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supports this notion, as higher ADM protein levels are significantly

associated with axillary lymph node metastasis (55). Similarly, in

colorectal cancer, ADM is among the most selectively upregulated

genes in KRAS-mutant cells under hypoxia, and its expression is

markedly reduced upon KRAS silencing, highlighting ADM as a key

downstream effector of KRAS-driven tumorigenesis in hypoxic niches

(56). Beyond its vascular functions, ADM also exerts potent

immunomodulatory effects, notably by reprogramming TAMs

toward an M2-like, immunosuppressive phenotype. This dual

capacity to simultaneously drive angiogenesis and immune evasion

may underlie the association of ADM with aggressive disease

phenotypes across a spectrum of cancers, including glioma (57),

ovarian (58), and prostate cancers (59). Furthermore, a study

reported adrenomedullin promotes resistance to sunitinib, through

the reduction of FDX1 expression levels, thus inhibiting cuproptosis in

renal cell carcinoma (60). In addition, adrenomedullin also could

induce cisplatin resistance in ovarian cancer through reprogramming

of glucose metabolism (61). Taken together, these observations indicate

ADM as a multifunctional player in the TME, coordinating vascular

remodeling, immune suppression, and lineage plasticity in response to

environmental pressures such as hypoxia and therapeutic stress. These

findings not only highlight the clinical significance of ADM expression

in predicting metastatic potential and treatment resistance but also

support the rationale for therapeutic strategies targeting ADM

signaling to disrupt tumor-supportive stromal remodeling and

restore antitumor immunity.

Next, we aimed to determine whether certain therapeutic agents

might be particularly effective in tumors with high ADM

expression. Through bioinformatics-driven drug sensitivity

analysis and experimental validation, we identified a strong

association between elevated ADM levels and increased

responsiveness to Staurosporine and Dasatinib. Staurosporine, a

naturally derived compound from soil microorganisms, is a potent

inhibitor of protein kinase C (PKC) and has long been recognized

for its potential as an anti-cancer agent (62). In contrast, Dasatinib

exhibits broader kinase inhibition, targeting not only Src family

kinases but also several other tyrosine kinases (63). Despite their

promising profiles, the clinical application of these tyrosine kinase

inhibitors (TKIs) in solid tumors such as LUAD has been limited.

This is likely due to the distinct molecular landscape of solid tumors

compared to hematological cancers, as well as concerns over off-

target effects and associated toxicity. The Src family kinases are key

regulators of multiple signaling cascades, including the PI3K/AKT

axis (64). Since ADM is known to activate the PI3K/AKT pathway

(48), inhibition of Src kinases by agents like Dasatinib may disrupt

ADM-mediated signaling. This mechanistic overlap may underlie

the heightened sensitivity of ADM-high tumors to these inhibitors.

However, our study also highlights some important limitations

and areas for future research. While we have established ADM as a

key player in LUAD progression, its precise molecular mechanisms

and interaction with other signaling pathways remain to be

elucidated. Additionally, while our model shows promise in

predicting patient prognosis, further validation in larger, diverse

cohorts is required to confirm its clinical applicability. The potential

for combining GPCR-related biomarkers, such as ADM, with
Frontiers in Immunology 19
immunotherapy or targeted therapies offers an exciting avenue

for future studies. Moreover, further exploration of the

relationship between metabolic reprogramming and immune

modulation in LUAD could provide deeper insights into TME

dynamics and therapeutic opportunities.
Conclusion

In summary, our study identified a GPCR-driven molecular

subtyping system for LUAD that not only stratifies patients based

on prognosis but also reveals critical insights into tumor

metabolism and immune suppression. The identification of ADM

as a key mediator of metabolic reprogramming and immune

evasion provided a valuable target for future therapeutic

strategies. Moving forward, the integration of GPCR signaling

modulation with metabolic and immune therapies could offer

new approaches to improving patient outcomes in LUAD.
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