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Background: Rheumatoid arthritis (RA) is a common chronic joint disease.

However, many patients exhibit inadequate responses to treatment due to

disease heterogeneity. Identifying novel biomarkers for RA is crucial for

advancing molecular diagnosis and identifying potential therapeutic targets.

Methods: Synovial tissue transcriptome data from RA patients and healthy

controls were obtained from the GEO database. Differentially expressed gene

(DEG) analysis, functional enrichment analysis, and weighted gene co-expression

network analysis (WGCNA) identified key gene modules in RA. Machine learning

algorithms were used to identify hub genes, followed by immune infiltration

analysis and gene set variation analysis (GSVA). Mendelian randomization (MR)

analysis explored the causal relationship between hub genes and RA. Clinical

synovial tissue samples were used to validate CKAP2 expression via quantitative

real-time polymerase chain reaction (qRT-PCR), western blot, and

immunohistochemistry (IHC). The potential role of CKAP2 in the pathogenesis

of RA was investigated through CCK-8 assay, wound healing assay, transwell

migration assay and transwell invasion assay.

Results: A total of 242 DEGs were identified between 20 RA patients and 17

healthy controls. Six gene modules were recognized, with the “turquoise”

module associated with RA (cor = 0.39, p = 0.00017). Three hub genes, CKAP2

(AUC = 0.876), POU2AF1 (AUC = 0.885), andHLA-DOB (AUC = 0.897), involved in

the IL-6/JAK/STAT3 signaling pathway and inflammation, were identified.

Immune infiltration analysis showed these genes were associated with plasma

cells and T cell infiltration. MR analysis confirmed a causal relationship between

CKAP2 and RA. qRT-PCR, western blot, and IHC demonstrated CKAP2 expression

was higher in RA synovial tissue compared to osteoarthritis (OA) samples. Cellular

functional assays demonstrated that CKAP2 knockdown inhibited the

proliferation, migration, and invasion of MH7A and HFLS-RA cells.
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Conclusion: CKAP2, a signature gene in RA, is highly expressed in RA synovial

tissues, and contributes to the pathogenesis of RA by promoting the proliferation,

migration, and invasion of MH7A and HFLS-RA cells. This gene holds potential as

a novel biomarker for RA and provides valuable insights into its molecular

diagnosis and targeted therapies.
KEYWORDS
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Introduction

Rheumatoid arthritis (RA) is a systemic inflammatory

autoimmune disease that affects about 0.5%~1% of the

population, with women being 3~5 times more likely to be

affected than men (1–3). The pathogenesis of RA is multifactorial,

involving genetic, environmental, and immunologic factors that

contribute to both initiation and progression of the disease (4, 5).

These processes lead to synovial inflammation and hyperplasia,

which ultimately results in joint destruction, swelling, pain, and

symmetric polyarthritis, impairing the patient’s quality of life (6–8).

Although current anti-cytokine therapies have improved disease

control and prognosis, the complexity of pathogenesis and its

heterogeneity still results in many patients experiencing

inadequate responses to treatment (9, 10). Thus, identifying novel

RA biomarkers and developing more effective molecular diagnostic

and therapeutic strategies remain of paramount importance.

The advent of gene microarray technology and high-

throughput techniques has made bioinformatics methods crucial

for the effective identification of differentially expressed genes

(DEGs) (11). In recent years, machine learning has been

increasingly utilized to address complex challenges in the

biomedical field. The integration of bioinformatics analysis with

machine learning presents valuable opportunities to enhance the

accuracy, reliability, and predictability of disease diagnosis (12–14).
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Mendelian randomization (MR) is a method that overcomes the

limitations of observational studies to identify potential causal

relationships between exposure and outcome, making it a widely

used tool in causal association research (15, 16).

Cytoskeleton-associated protein 2 (CKAP2) encodes a protein

that stabilizes microtubules and plays a crucial role in the regulation

of cytokinesis, which is closely linked to cellular proliferative

activity, migration, and invasion (17–19). Previous studies have

shown that CKAP2 expression is elevated in various cancers,

including gastric adenocarcinoma, lung adenocarcinoma,

hepatocellular carcinoma, cervical carcinoma, and breast

carcinoma, where it influences tumor cell proliferation, migration

and invasion (20–24). In the progression of RA, proliferation,

migration and invasion of fibroblast-like synoviocytes (FLS) are

key factors contributing to synovial hyperplasia and joint

destruction (25, 26). However, the role of CKAP2 in RA is

unknown and whether CKAP2 can participate in proliferation,

migration and invasion in FLS yet to be investigated.

In this study, we employed machine learning algorithms

combined with bioinformatics analysis and MR analysis to

identify genes causally associated with RA. The expression of

these hub genes in RA was subsequently validated using clinical

tissue samples, and their potential role in RA pathogenesis was

further explored through cellular functional assays. This research

aimed to identify novel biomarkers for RA and provide new insights

into its molecular diagnosis and targeted therapies.

Materials and methods

Data collection and processing

The microarray dataset for RA was retrieved from the GEO

database of the National Center for Biotechnology Information

(NCBI) (http://www.ncbi.nlm.nih.gov/geo/) using the search term

“rheumatoid arthritis.” The selection criteria were as follows: (1) the

study type involved expression profiling via microarrays, (2) the

tissue type was synovial tissue, and (3) the organism was Homo

sapiens. To minimize the influence of biological disease-modifying

anti-rheumatic drugs (bDMARDs), only pre-treatment samples

were included (27, 28). In total, four gene expression datasets
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(GSE206848, GSE55235, GSE172188, and GSE12021) were

identified as suitable. The GSE206848, GSE55235, and

GSE172188 datasets were used as the training set, consisting of 20

RA patients and 17 healthy controls, while the GSE12021 dataset

served as the validation set, comprising 12 RA patients, 9 healthy

controls, and 10 osteoarthritis (OA) patients. Information on

patient age and sex is provided in Supplementary Table S1.

The “GEOquery” package was employed to convert the probe

matrix into a gene expression matrix, using probe annotation files.

If multiple probes corresponded to the same gene, the expression

values of the first probe were retained. Given that these three

datasets were derived from different platforms and exhibited

batch effects, the “sva” package was utilized to correct for

platform-related batch effects.
Identification of DEGs and functional
enrichment analysis

The “limma” package was employed to analyze DEGs between RA

patients and healthy controls. The selection criteria for DEGs included

a p < 0.05 and an absolute fold change > 2. Functional enrichment

analysis of Gene Ontology (GO) terms and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways for the upregulated DEGs was

performed using the “clusterProfiler” package in R. Pathways with

p < 0.05 was considered significantly enriched.
Weighted gene co-expression network
analysis for the DEGs

We used the R package “WGCNA” to construct a weighted gene

co-expression network for the DEGs. The soft threshold was

selected using the “pickSoftThreshold” algorithm to build the

gene co-expression modules. Each module contained at least 5

genes, with any remaining ungrouped genes assigned to the grey

module. We calculated the correlation coefficients between modules

and phenotypes to identify modules closely associated with RA.

Additionally, gene significance and module membership were

assessed to evaluate the relationship between gene modules and

RA patients.
Screening of hub genes by machine
learning algorithms

We employed machine learning algorithms for hub gene

selection, including the random forest (RF) model (29) and least

absolute shrinkage and selection operator (LASSO) regression (14).

The RF model is a decision tree-based machine learning

approach. In this study, we utilized R package “randomForest”

to build the random forest model. To determine the optimal

number of variables, we computed the average error rate of

candidate module genes. We then evaluated the error rate across
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a range of tree numbers, from 1 to 1000, and selected the number

of trees that yielded the lowest error rate. Finally, we determined

the feature importance scores for each candidate gene in the

significant modules and selected genes with importance values

greater than 0.

LASSO regression is a widely used machine learning algorithm

for fitting generalized linear models. By applying an L1 penalty (l),
coefficients of less important variables are set to zero, thereby

selecting the most important variables and building optimal

classification models. In our study, we performed LASSO

regression analysis on the candidate genes using R package

“glmnet” to identify hub genes. The optimal value of l was

determined through tenfold cross-validation, selecting the value

that resulted in the smallest standard error.
Diagnostic value of hub genes in RA

To evaluate the diagnostic accuracy of hub genes selected

through machine learning algorithms, we employed the R

package “pROC” to plot receiver operating characteristic (ROC)

curves comparing RA patients with healthy controls in the training

set. The area under the curve (AUC) was used to assess the

diagnostic accuracy of these genes as potential hub genes for RA,

with a larger AUC indicating higher accuracy. This analysis was

subsequently validated in the independent validation set.

Furthermore, to assess the specificity of the hub genes for RA

diagnosis, we plotted ROC curves comparing RA patients to OA

controls in the validation set. Expression levels of the hub genes in

RA patients and controls were visualized using box plots generated

by R package “ggplot2.”
Gene set variation analysis and immune
infiltration analysis of hub genes

We conducted gene set variation analysis using the R package

“GSVA” to explore the correlation between hub genes and hallmark

signaling pathways. Subsequently, we applied the CIBERSORT

algorithm to determine the infiltration of different immune cells

in RA synovial tissues and healthy controls. Spearman correlation

coefficients were then used to analyze the relationships between hub

genes and immune cell types.
Identification of the causal relationship
between signature genes and RA via MR
analysis

Data source
In this study, we performed MR analysis using data from the

IEU Open GWAS database (https://gwas.mrcieu.ac.uk). It is

important to note that the participants in the studies included in

the IEU Open GWAS database provided informed consent. GWAS
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data for the CKAP2, POU2AF1, andHLA-DOB genes were obtained

from the following GWAS IDs: eqtl-a-ENSG00000136108, eqtl-a-

ENSG00000110777, and eqtl-a-ENSG00000241106, respectively.

Additionally, the UC GWAS database (GWAS ID: ebi-a-

GCST90018910) contributed data for 417,256 individuals of

European ancestry, including 8,255 RA patients and 409,001

healthy controls.

Instrumental variables selection
In MR analysis, IVs derived from genetic variants are used to

obtain unbiased estimates of the causal effects of the exposure

variable on the outcome variable. To begin, we identified single

nucleotide polymorphisms (SNPs) that were significantly associated

with the exposure variable (p < 5×10-8) as IVs for MR analysis. SNPs

in linkage disequilibrium (LD) within a 10,000 kb distance and with

an R² < 0.01 were excluded. The strength of the IVs was assessed

using the F-statistic: F = (N- k-1)R²/[k(1 - R²)], where R² represents

the proportion of variance in the exposure explained by each IV. An

F-value greater than 10 indicates sufficient statistical power to retain

the instrument.

MR analysis
To validate the causal relationship between exposure and

outcome, our study employed R package “TwoSampleMR” for

two-sample MR analysis, utilizing several MR methods, including

inverse variance-weighted (IVW), weighted median (WM), MR-

Egger, simple mode, and weighted mode. The IVW method was

primarily used due to its superior statistical efficiency compared to

the other methods and its ability to consistently estimate the causal

effect of the exposure on the outcome.
Clinical samples

Twelve participants were recruited for this study from the First

Affiliated Hospital of Shantou University Medical College,

comprising 6 RA patients and 6 OA patients. The age and sex

information of the participants can be found in Supplementary

Table S1. Synovial tissue samples were collected from each

participant during joint surgery. Our study protocol was

approved by the Ethics Committee of the First Affiliated Hospital

of Shantou University Medical College (Approval No. B-2024-060).

Informed consent was obtained from all enrolled patients.
RNA isolation and quantitative real-time
polymerase chain reaction

Total RNA was extracted from tissue samples using TRIzol

(TIANGEN, China) according to the manufacturer’s instructions.

RNA was then reverse transcribed into complementary DNA

(cDNA) using cDNA Synthesis SuperMix for qPCR (YEASEN,

China). qRT-PCR reactions were conducted using Advanced qPCR

SYBR Green Master Mix (YEASEN, China). b-Actin was used as an
Frontiers in Immunology 04
internal control, and relative mRNA quantification was calculated

using the 2−DDCt method. Primer sequences used for qRT-PCR are

listed in Supplementary Table S2.
Western blot

Total protein was extracted from synovial tissue using RIPA

buffer (YEASEN, China) supplemented with protease and

phosphatase inhibitors (P002, NCM Biotech, China). Briefly,

protein samples were separated by 10% SDS-polyacrylamide gel

electrophoresis and transferred onto PVDF membranes. After

blocking with 5% non-fat milk, the membranes were incubated

overnight at 4°C with primary antibodies: GAPDH (1:10000,

10494-1-AP, Proteintech, USA) and CKAP2 (1:2000, 25486-1-AP,

Proteintech, USA), followed by incubation with secondary antibodies

at room temperature for 2 hour. Target proteins were detected using

an ECL kit (4AW011-200, 4A Biotech, China).
Hematoxylin and eosin staining and
immunohistochemistry

Synovial tissue was fixed in 4% paraformaldehyde, embedded in

paraffin, and sectioned into 4 mm-thick slices. The tissue sections

were deparaffinized and dehydrated in xylene. For H&E staining,

sections were stained with hematoxylin (G1100, Solarbio) and eosin

(G1140, Solarbio). IHC was performed using an IHC Kit (KIT-

9710, MXB Biotechnologies, China). The primary antibody used

was CKAP2 (1:800, PS13605M, Abmart, China). Sections were

stained using a DAB Detection Kit (DAB-0031, MXB, China) and

counterstained with hematoxylin. Neutral resin was applied to seal

the sections, and slides were imaged in the Department of Pathology

of Shantou Central Hospital using a digital slide scanner

(Pannoramic SCAN, 3DHISTECH Ltd, Hungary).
Cell culture and transfection

The MH7A (human rheumatoid arthritis synovial cell line) and

HFLS-RA cells (human fibroblast-like synoviocytes: rheumatoid

arthritis) were purchased from Shanghai Guan&Dao Biological

Engineering Co., Ltd. (Shanghai, China). The passage number of

all cell lines used for the experiments was no greater than 10. All cell

lines were maintained in DMEM (Gibco, USA) supplemented with

10% fetal bovine serum (Gibco, USA), at 37°C under 5% CO2. For

CKAP2 knockdown, shRNA sequences targeting CKAP2 or a

scramble sequence were cloned into an pLKO.1-puro lentiviral

cloning vector (Guangzhou IGE Biotechnology Co., Ltd., China).

The shRNA and scramble sequences are shown in Supplementary

Table S3. The virus was packaged in HEK293T cells after

transfection with lentiviral packaging vectors using EZ Cell

Transfection Reagent II (Shanghai Life-iLab Biotech, China), and

then used to infect MH7A and HFLS-RA cells. Transfected cells
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were selected with puromycin (2 μg/mL) for one week, and

expression levels of the target RNA were confirmed by qRT-PCR.
CCK-8 assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8) assay (YEASEN, China) according to the manufacturer’s

protocol. RA cells were seeded in 96-well plates at a density of 3,000

cells per well. Once the cells had adhered, CCK-8 solution (10 μL)

was added to 90 μL of serum-free medium at 0, 24, 48, 72, and 96

hours, followed by a 2-hour incubation at 37°C. Absorbance at 450

nm was measured to determine the optical density (OD) values. Cell

proliferation was calculated as follows: cell proliferation =

absorbance value at each time point/absorbance value at 0 hours.
Wound healing assay

Cells were digested with trypsin, counted, and seeded at a

density of 1 × 107 cells per well in a 6-well plate, allowing them

to grow until confluence. A scratch wound was made using a 200 μL

pipette tip. Closure of the wound was monitored at 0, 24, and 48 or

72 hours to assess cell migration.
Transwell assay

A transwell assay was used tomeasure cell invasion andmigration.

Cells were digested with trypsin, and 4 × 104 cells were seeded into the

upper chamber of a transwell insert containing serum-free culture

medium (for the migration assay) or pre-coated with Matrigel (for the

invasion assay). The lower chamber was filled with complete medium

to stimulate cell migration. After 48 hours of incubation, the medium

and non-migrated or non-invaded cells in the upper chamber were

removed. The remaining cells were fixed and stained with 0.1% crystal

violet. Migration or invasion was quantified by counting the cells in

five random fields at 200X magnification on each membrane.
Statistical analysis

Data were analyzed using R software (version 4.3.0) and

GraphPad Prism (version 9.5.1). Continuous variables were

compared using t-tests or Wilcoxon tests, while categorical

variables were evaluated using chi-square tests. Statistical

significance was defined as p < 0.05 (two-sided).
Results

Identification of DEGs between RA and
healthy controls and functional enrichment
analysis

Microarray datasets GSE206848, GSE55235, and GSE172188

were obtained from the GEO database, comprising a total of 20 RA
Frontiers in Immunology 05
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batch effect was effectively eliminated, ensuring a robust foundation

for subsequent analyses (Figures 1A, B). Differential expression

gene analysis revealed 242 DEGs in RA, with 146 upregulated genes,

and 96 downregulated genes. Volcano plots and heatmaps further

highlighted the differences in gene expression profiles between RA

patients and healthy controls (Figures 1C, D). Functional

enrichment analysis was conducted on the 146 upregulated genes.

GO enrichment analysis revealed that these genes were enriched in

pathways related to white blood cell-mediated immunity,

immunological synapse formation, immunoglobulin complex, and

chemokine activity, indicating their potential involvement in

immune responses. In KEGG enrichment analysis, the most

significantly enriched pathway was associated with RA, with

additional pathways related to Th1 and Th2 cell differentiation

and type 1 diabetes, all of which are closely linked to immune

responses or immune-related diseases (Figures 1E, F).
Identification of hub genes in RA using
WGCNA, RF and LASSO regression analysis

To identify hub genes associated with RA, we performed

WGCNA on the DEGs between healthy and RA synovial tissues.

A soft threshold of 16 was set to ensure a scale-free network

distribution (Figure 2A). By evaluating gene correlations, we

constructed a hierarchical clustering dendrogram, revealing 6

distinct gene modules with similar co-expression patterns

(Figure 2B). The “turquoise” module exhibited a correlation

coefficient of 0.60 and a p of 8 × 10–5 with the RA, indicating a

strong association between the module’s gene expression and RA

(Figure 2C). Furthermore, within the “turquoise” module, a

significant correlation was observed between gene significance

and module membership, with a correlation coefficient of 0.39

and a p of 0.00017 (Figure 2D). As a result, the “turquoise”

module was identified as a key module associated with RA.

To further identify hub genes in RA, we applied the RF method

and identified 56 core genes (Figures 2E, F). Subsequently, LASSO

regression analysis was conducted, leading to the identification of 3

hub genes: CKAP2, POU2AF1, and HLA-DOB, all of which were

selected as hub genes associated with RA (Figures 2G, H).
Evaluation and validation of hub genes

To assess the diagnostic efficacy of the identified hub genes, we

performed ROC curve analysis. In the training set, the AUC values

were 0.876 for CKAP2, 0.885 for POU2AF1, and 0.897 for HLA-

DOB (Figure 3A). In the validation set, compared to healthy

controls, the AUC values were 0.898 for CKAP2, 0.935 for

POU2AF1, and 0.898 for HLA-DOB (Figure 3B). Additionally,

to evaluate the specificity of the hub genes for RA, we compared

RA to OA in the validation set and calculated the AUC values for

the hub genes. The results showed AUC values of 0.808 for

CKAP2 , 0.833 for POU2AF1 , and 0.750 for HLA-DOB
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FIGURE 1

Identification of DEGs and functional enrichment analysis. (A, B) PCA plots illustrating the efficiency of batch effect removal [(A) before; (B) after].
(C) Volcano plot depicting the expression of DEGs between RA patients and healthy controls. (D) Heatmap illustrating the top genes characterized
by the highest standard deviation changes between RA patients and healthy controls. (E) Bubble plot showing the top 5 upregulated GO terms in RA
patients relative to healthy controls. (F) Bubble plot depicting significantly upregulated KEGG pathways in RA patients compared to healthy controls.
DEG, Differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PCA, Principal component analysis; RA,
Rheumatoid arthritis.
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FIGURE 2

Identification of hub genes in RA using WGCNA, RF and LASSO regression. (A) Soft threshold power (left) and mean connectivity (right) of WGCNA.
(B) Cluster dendrogram derived from WGCNA. (C) Heatmap depicting the relationship between modules and RA. (D) Scatter plot between gene
significance and module members in the turquoise module. (E) Confidence intervals for error rates in the RF models within the training group.
(F) Feature importance plot illustrating the relative importance of genes in the RF model. (G) Path diagram of LASSO coefficients for hub genes
associated with RA identified through the RF model. (H) LASSO regression cross-validation curve with optimal l values determined by 10-fold cross-
validation. WGCNA, Weighted gene co-expression network analysis; RA, Rheumatoid arthritis; RF, Random forest; LASSO, Least absolute shrinkage
and selection operator.
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(Figure 3C). These findings indicate that the 3 hub genes possess

high diagnostic value for RA patients, regardless of whether they

are compared with healthy controls or OA controls. Furthermore,

we compared the expression profiles of the hub genes in RA
Frontiers in Immunology 08
patients, healthy controls, and OA controls in both the training

and validation sets. The results demonstrated that these hub genes

were expressed at higher levels in RA patients (Supplementary

Figures S1A–C).
FIGURE 3

Evaluation and validation of hub genes. (A) ROC analysis of the three hub genes in RA patients compared to healthy controls within the training
group. (B) ROC analysis of the same hub genes in RA patients vs. healthy controls in the validation group. (C) ROC analysis of the hub genes in RA
patients vs. OA patients in the validation group. OA, Osteoarthritis; RA, Rheumatoid arthritis; ROC, Receiver operating characteristic.
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Immune infiltration and GSVA analysis of
hub genes

The CIBERSORT algorithm revealed significant differences in

immune cell infiltration between RA patients and healthy controls

in the synovium. Specifically, RA patients exhibited markedly

increased infiltration of plasma cells (p = 0.011) and follicular

helper T (Tfh) cells (p = 0.033), while healthy controls showed

higher levels of resting memory CD4+ T cells (p = 0.016), activated

NK cells (p = 0.040), and activated mast cells (p = 0.004). A

relatively large proportion of M2 macrophages were found in

both RA patients and healthy controls, but they were not

statistically different (Figure 4A). Further analysis of immune cell

infiltration in RA revealed associations between 3 hub genes and

specific immune cell types. These genes were positively correlated

with the infiltration of plasma cells, Tfh cells, and activated CD4+ T

cells, while showing negative correlations with the infiltration of

resting memory CD4+ T cells, activated NK cells, and activated

mast cells (Figure 4B).

GSVA demonstrated that CKAP2, POU2AF1, and HLA-DOB

were associated with pathways, such as IL6/JAK/STAT3 signaling,

and involved in inflammatory response, complement activation,

and interferon response (Figure 4C). Scatter plots with Spearman

correlation analysis were performed to compare the relationship

between the hub genes and the IL6/JAK/STAT3 signaling pathway,

as well as the inflammatory response (Figures 4D, E).
MR analysis to identify the causal
relationship between CKAP2 and RA

MR analysis integrates GWAS and expression quantitative trait

locus (eQTL) data, and was used to investigate the association

between RA and the eQTLs of CKAP2, POU2AF1, and HLA-DOB.

Results from the IVW, WM, and weighted models consistently

supported a positive correlation between CKAP2 and RA

(Figure 5A). A scatter plot illustrating the SNP effect size for

CKAP2 and RA shows the SNP effect on CKAP2 along the x-axis

and the SNP effect on RA along the y-axis (Figure 5B). MR-Egger

analysis revealed no evidence of horizontal pleiotropy (p = 0.77,

Figure 5C, Supplementary Table S4). The funnel plot demonstrated

no significant heterogeneity among the SNPs (p < 0.05, Figure 5D,

Supplementary Table S5). Leave-one-out analysis indicated that

individual SNPs did not influence the MR analysis results

(Figure 5E). These findings support a positive causal relationship

between CKAP2 and RA.
CKAP2 expression is increased in synovial
tissues from RA patients

We examined CKAP2 expression levels in synovial tissues from

patients with RA and OA. qRT-PCR and western blot analyses

revealed an upregulation of CKAP2 mRNA (Figure 6A) and protein

(Figure 6B) in RA synovial tissues. Histopathological analysis using
Frontiers in Immunology 09
H&E staining showed marked synovial hyperplasia and increased

immune cell infiltration in RA compared to OA (Figure 6C). IHC

confirmed CKAP2 expression in both RA and OA synovium, with

higher expression in RA synovium, compared to OA synovium

(Figure 6D). To determine whether CKAP2 expression is specific to

synovial tissue, we analyzed CKAP2 expression levels in peripheral

blood mononuclear cells from 232 RA patients and 43 healthy

controls using the GSE93777 dataset. No significant difference was

observed between the two groups (Supplementary Figure S2).
CKAP2 promotes the proliferation,
migration and invasion of MH7A and HFLS-
RA cells

We knocked down CKAP2 in MH7A and HFLS-RA cells, using

shRNA, and validated the extent of silencing by qRT-PCR. The

results indicated that CKAP2 expression was reduced in the

shCKAP2 groups compared to the scramble group.

Meanwhile, CKAP2 sh3 showed the superior silencing

efficiency and was thus selected for subsequent experiments.

(Figures 7A, B).

To assess the effect of CKAP2 on cell proliferation, we

performed a CCK-8 assay. shCKAP2 reduced the proliferation of

MH7A and HFLS-RA cells compared to the scramble group

(Figures 7C, D, both p < 0.001), suggesting that CKAP2

knockdown suppressed cell proliferative ability.

To evaluate the impact of CKAP2 on migration and invasion, we

conducted wound-healing and transwell migration and invasion

assays. Wound-healing assays showed wound surface areas for the

shCKAP2 group were larger than for the scramble group in both

MH7A and HFLS-RA cells (Figures 7E, F). Similarly, transwell assays

demonstrated that knockdown of CKAP2 inhibited both migration

and invasion of MH7A and HFLS-RA cells (Figures 7G, H).

Therefore, these results suggest that CKAP2 promotes the

migration and invasion of MH7A and HFLS-RA cells.
Discussion

Based on bioinformatics analysis combined with machine

learning algorithms and MR analysis, we identified and validated

CKAP2 as a signature gene of RA. Additionally, our study

demonstrates that CKAP2 is involved in RA pathogenesis by

promoting the proliferation, migration, and invasion of FLS, as

demonstrated by cl inical t issue samples and cel lular

functional assays.

In this study, we retrieved and merged 3 microarray cohorts.

Using bioinformatics analysis and machine learning algorithms, we

identified 3 hub genes associated with RA: CKAP2, POU2AF1, and

HLA-DOB. These genes demonstrated strong diagnostic efficacy in

both the training set and external validation set, with significantly

higher expression levels in RA patients. This indicates that our

approach to identifying hub genes is both reliable and feasible.

Previous studies have suggested that these hub genes may be
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associated with the pathogenesis of RA. Research by Levels et al. has

shown that the POU2AF1 were significantly elevated in the

synovial tissue of RA patients and revealed that it may be a key

transcription factor in the activation of pathogenic B cells (30,

31). Teitell et al. indicated that POU2AF1, as a B lymphocyte-
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specific coactivator, regulates the expression of immunoglobulins

and other immune-related genes, and is involved in immune and

inflammatory responses (32). Afroz et al. conducted a meta-

analysis and found that HLA-DOB is significantly upregulated in

peripheral blood mononuclear cells in RA patients. HLA-DOB, a
FIGURE 4

Immune infiltration analysis and GSVA of hub genes. (A) Immune cell infiltration profiles between RA patients and normal controls. (B) Association
between the three hub genes and various immune cell infiltrates. (C) GSVA of hub genes. (D) Association of the 3 hub genes with IL6/JAK/STAT3
signaling pathways. (E) Association of the 3 hub genes with inflammatory response. GSVA, Gene set variation analysis; RA, Rheumatoid arthritis;
*, p < 0.05; **, p < 0.01; ***, p < 0.001.
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B cell lineage, MHC-II-related molecule has been reported to

exhibit strong immunogenicity in human T cells (33). Kang et al.

found that the HLA-DOB232–240 epitope could serve as an

immunotherapeutic target for multiple myeloma (34).

Therefore, HLA-DOB might also be a potential therapeutic
Frontiers in Immunology 11
target for controlling inflammation in RA. Currently, there are

no reports on the role of CKAP2 in RA, but substantial evidence

from previous studies indicated that CKAP2 was associated with

cell proliferation, migration, and invasion, which are key factors

in joint destruction caused by FLS in RA (24, 25, 35–37).
FIGURE 5

MR analysis identifying the genetically linked gene CKAP2. (A) Forest plot displaying causal effects between the 3 hub genes and RA through multiple
MR methods. (B) Scatter plot, employing 5 methods, illustrating causal estimates of CKAP2 on RA. (C) Forest plot for MR pleiotropy testing. (D) MR
funnel plot showcasing IVW and MR-Egger methods. (E) Leave-one-out sensitivity analysis forest plot for MR. IVW, Inverse variance-weighted; MR,
Mendelian randomization; RA, Rheumatoid arthritis.
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Immune infiltration analysis suggests that plasma cells and Tfh

cells are the primary infiltrating cell types in the RA synovium,

potentially playing a pivotal role in the pathogenesis of RA. These

findings are consistent with those of previous studies. Zhang et al.

utilized single-cell RNA sequencing analysis to demonstrate the

expansion of autoimmunity-associated B cells (ABCs) in the

synovium of RA patients (38). Similarly, Qin et al. confirmed the

expansion of ABCs in both the peripheral blood and synovial tissue

of RA patients, suggesting a potential role of ABCs in inflammatory

arthritis (39). Furthermore, Li et al. reported an increased number

of ABCs, in both mouse models of inflammatory arthritis and

human peripheral blood, which are recruited to inflamed joints

through chemotactic mechanisms, promoting the progression of

chronic synovitis by secreting self-reactive antibodies (40).

Additionally, Tfh cells, a subpopulation of CD4+ T cells, promote

the activation of autoreactive B cells and the production of high-

affinity antibodies. Increased numbers of Tfh cells are strongly

associated with exacerbation of rheumatoid arthritis (41–43).

Furthermore, we observed a relatively large proportion of M2

macrophages in both RA and healthy controls, which is still an

interesting phenomenon even though there was no statistical

difference between the two groups. It has been found that an

increased proportion of M2 macrophages in RA synovial tissues

is associated with lower RA disease activity and synovial

inflammation, with anti-inflammatory and homeostatic functions
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(44), whereas synovial macrophages in healthy synovial tissues are

predominantly CD206-positive macrophages, the M2macrophages,

which play an important role in the maintenance of tissue

homeostasis (45). A systematic review found no significant

difference in the proportion of M2 macrophages in synovial tissue

and PBMC between RA and healthy controls, a finding consistent

with our results (46).

To further investigate the role of hub genes in RA, we employed

MR analysis to examine the causal relationship between hub genes

and RA. The results indicated that upregulation of CKAP2 is

associated with RA. CKAP2 expression is higher in RA synovial

tissue compared to OA synovial tissue. H&E staining showed

increased immune cell infiltration in RA compared to OA, as RA

is an autoimmune disease characterized by synovial inflammation

and hyperplasia as the core pathological changes, while OA is

primarily considered a degenerative disease mainly associated

with the aging process (47). The number of inflammatory cells in

OA synovial tissue is fewer than to RA synovial tissue, which is

consistent with the findings of Lange-Brokaar et al. (48).

Additionally, cellular functional assays suggested that CKAP2

plays a central role in RA pathogenesis by promoting the

proliferation, migration, and invasion of fibroblast-like synovial

cells. Numerous studies have suggested that CKAP2 promotes

tumor cell proliferation, migration, and invasion through the

JAK/STAT3 signaling pathway or the FAK-ERK2 pathway, which
FIGURE 6

CKAP2 expression is increased in synovial tissues from RA patients. (A) CKAP2 mRNA expression in synovial tissues from RA and OA patients.
(B) Western blot analysis revealing CKAP2 protein levels in synovial tissues from RA and OA patients. (C) H&E staining for CKAP2 in synovial tissues
from RA and OA patients. (D) IHC staining for CKAP2 in synovial tissues from RA and OA patients. H&E, Hematoxylin and eosin; IHC,
Immunohistochemistry; OA, Osteoarthritis; RA, Rheumatoid arthritis. *, p < 0.05; ***, p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1606201
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2025.1606201
could contribute to poor disease prognosis (17, 35, 49, 50), as

observed in cancers such as gastric adenocarcinoma, hepatocellular

carcinoma, cervical carcinoma, and breast carcinoma (20, 22–24).

Moreover, GSVA indicated that CKAP2 may influence RA through
Frontiers in Immunology 13
the IL-6/JAK/STAT3 pathway, which is consistent with previous

research on CKAP2. Zhang et al. demonstrated that the levels of

phosphorylated JAK2 and STAT3 are lower in CKAP2 knockdown

cells compared to control cells, inducing G0/G1 arrest and
IGURE 7F

Knockdown of CKAP2 inhibits MH7A and HFLS-RA cell proliferation, migration, and invasion. (A, B) qRT-PCR showing CKAP2 mRNA levels in MH7A
and HFLS-RA cells after infection with either scrambled or shCKAP2 lentivirus. (C, D) CCK-8 assay demonstrating inhibition of cell proliferation
following CKAP2 knockdown in MH7A and HFLS-RA cells. (E, F) Wound-healing assay indicating reduced migration after CKAP2 knockdown in MH7A
and HFLS-RA cells. (G, H) Transwell assay revealing inhibited migration and invasion after CKAP2 knockdown in MH7A and HFLS-RA cells. *, p <
0.05; **, p < 0.01; ***, p < 0.001.
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apoptosis in osteosarcoma cells (35). Jin et al. showed that

inhibiting CKAP2-mediated FAK and STAT3 phosphorylation

signaling could suppress the proliferation, adhesion, and

migration of triple-negative breast cancer cells (17). Zhang et al.

found that hypermethylation-regulated silencing of miR-9, along

with CKAP2, activates the IL-6/JAK/STAT3 pathway, potentially

contributing to cancer cell growth, migration, and malignant

transformation (51). Therefore, CKAP2 may promote the onset

and progression of RA by activating the IL-6/JAK/STAT3 pathway.

To summarize, our study may contribute to the molecular

diagnosis and targeted therapy of RA. However, the datasets used

in our study are mainly from Europe, which may limit the

generalizability of our findings. Future multicenter and

multiregional data are necessary to confirm our conclusions.

Additionally, the relatively small sample size may reduce the

statistical power and generalizability of the findings.
Conclusion

This study employed bioinformatics analysis, combining

machine learning algorithms with MR analysis, to identify and

validate CKAP2 as a signature gene of RA. Clinical tissue samples

and cellular function experiments confirmed that CKAP2 is highly

expressed in the RA synovium and promotes the proliferation,

migration, and invasion of FLS, contributing to RA pathogenesis.

As a novel biomarker, CKAP2 may provide valuable insights into

molecular diagnosis and targeted therapies for RA.
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