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Background: Exercise is known to regulate the immune system. However, its

prognostic value in hepatocellular carcinoma (HCC) remains largely unknown.

Objective: This study aims to construct a machine learning-based prognostic

signature using exercise-related immune genes (EIGs) to predict prognosis

in HCC.

Methods: We obtained mRNA-seq and scRNA of HCC from GeneCards, GEO,

TCGA and ICGC. EIG were obtained using WGCNA, differential gene expression

analysis and CIBERSORT. Univariate COX analysis and 101 combinations of 10

machine learning algorithms were used to construct EIG prognostic signature

(EIGPS), and survival analyses were performed. Furthermore, we conducted

molecular subtyping, qRT-PCR, biological functions, immune infiltration, drug

sensitivity, and single cell analyses on EIGPS.

Results:UsingWGCNA, differential gene expression analysis, and CIBERSORT, 59

EIGs were identified, of which 54 were associated with prognosis. EIGPS

constructed by 7 EIGs (UPF3B, G6PD, ENO1, FARSB, CYP2C9, DLGAP5,

SLC2A1) had the highest average C-index value (0.742), showing good

predictive performance independent of clinical features. qRT-PCR results

showed that CYP2C9 was lowly expressed in HCC cells, while all other genes

were highly expressed. 7 EIGs were divided into two subtypes, with C2 exhibiting

better anti-tumor immunity. Immunological biological differences between

high- and low-risk groups based on EIGPS involved immune responses. EIGPS

was mainly expressed in macrophages. The high-risk group had higher

macrophage abundance and immune escape ability, as well as greater

sensitivity to Afatinib and Alpelisib.
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Conclusions: We identified key EIGs and constructed an EIGPS that can

effectively predict the prognosis of HCC, which offers avenues for better

personalized treatments.
KEYWORDS

exercise-related immune genes, multi-omics, hepatocellular carcinoma, machine
learning, prognosis
Introduction

Hepatocellular carcinoma (HCC), the most common primary

liver cancer, had a global incidence of about 900,000 and caused

approximately 830,000 deaths in 2020. The incidence of HCC is

growing rapidly, with an estimated incidence of over 1 million cases

by 2025 (1, 2). Surgery combined with radiotherapy and

chemotherapy remains the mainstay of clinical treatment, with

drug being the primary therapy for advanced patients to ensure

quality of life. Unfortunately, 5-year survival rate ranges from 13%

to 36% from early to late stages (3). Therefore, developing new

biomarkers and prognostic model has great clinical implications.

Exercise-induced immunoregulatory changes are associated

with cancer progression. Our earlier studies reported changes in

multiple immune-related pathways and gene expression after

exercise. In animal models, voluntary exercise induced immune

cell infiltration into tumor tissue and reduced tumor incidence and

growth by 60%, implying that exercise is more than preventive, it

may also be therapeutic (4). Immune cells from blood collected after

exercise could be utilized as adoptive cell therapy for cancer (5).

Additionally, while chemoradiotherapy can stimulate the immune

system by increasing tumor antigenicity and altering adjuvants, it

may cause some side effects, whereas exercise-induced immune

changes seem unlikely to have adverse effects (6). Taken above, the

value of exercise-related immune genes (EIGs) in cancer warrants

further exploration; however, their value in HCC has rarely been

reported, and their prognostic value remains unclear.

In this study, we aimed to identify EIGs associated with HCC

prognosis throughWGCNA, immune infiltration, and univariate COX

analysis. Subsequently, we constructed a prognostic model using

machine learning methods and evaluated its performance. Based on

the prognostic model, we further performed functional and pathway

analysis, single cell analysis, nomogram construction, and explored its

immune functions, tumor mutational burden, and drug sensitivity.
Method

Data collection and processing

Figure 1 presents the research flowchart. Supplementary Table S1

was the List of Abbreviations. RNA-seq, mutation data, and clinical
02
information were obtained from The Cancer Genome Atlas (TCGA)

(424 HCC cases; https://portal.gdc.cancer.gov/v1) as the training set.

We obtained 6908 exercise-related genes from GeneCards (search

term: exercise; score: 1; www.genecards.org; Supplementary Table

S2). HCC RNA-seq and clinical information obtained from the

International Cancer Genome Consortium (ICGC) were used as the

external validation set (233 HCC cases; https://docs.icgc-argo.org/

docs/data-access/icgc-25k-data).
Weighted gene co-expression network
analysis

Weighted Gene Co-expression Network Analysis (WGCNA) is a

method that constructs scale-free gene co-expression networks to

identify functional modules significantly associated with clinical

phenotypes and uncover key regulatory genes. In our study,

WGCNA was performed to obtain genes most significantly

associated with HCC. We obtained gene expression data from

TCGA and removed genes with standard deviation of expression

level < 0.5 to construct a scale-free co-expression network. The

clustering dendrogram was cut at a height of 200 to detect outlier

samples. Scale independence and mean connectivity were used to

determine the optimal soft threshold, with a scale-free R2 of 0.9. The

adjacency matrix was converted into a topological overlap matrix

(TOM; TOM(i, j) = ou
aiuauj+aij

min(ki ,kj)+1−aij
) and calculated the corresponding

dissimilarity (1-TOM). In the TOM formula, the numerator accounts

for the direct connection weights and the indirect association strength

mediated by all common neighbors, while the denominator acts as a

normalization term. To convert TOM into a distance metric, the

dissimilarity between two genes is defined as 1 − TOM(x, y), where

TOM(x, y) quantifies the similarity between gene x and the gene y

based on their shared topological connectivity patterns. Subsequently,

dynamic tree cutting and hierarchical clustering were used to identify

modules, with the minimum module size of 50 genes, and the

dendrogram was cut at a height of 0.1 to define module clusters.
Identification of EIGs

We conducted differential gene expression analysis on the

module genes obtained from WGCNA analysis with |log2 fold
frontiersin.org
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FIGURE 1

Research flowchart. Based on GeneCards, ICGC, TCGA, we acquired exercise-related genes in HCC patients. Subsequently, EIGs closely associated
with HCC were identified using WGCNA, differential gene analysis, immune infiltration analysis, and univariate COX analysis. Multiple machine
learning algorithms were applied to construct EIGPS, which was further validated in the validation set. We also performed molecular subtyping, qRT-
PCR, survival analysis, clinical feature analysis, tumor mutational burden, immune infiltration, immunotherapy analysis, single-cell analysis, and
construction of nomograms.
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change (FC)| > 1 and FDRq < 0.05. Then, we used CIBERSORT

(https://CIBERSORT.stanford.edu/) to assess the infiltration

abundance of 22 immune cells in HCC patients. Finally,

Spearman analysis was employed to assess the correlation

between exercise-related differentially expressed genes (DEGs)

and the abundance of 22 immune cells with |r| >0.4.
Construction of EIGPS

We performed univariate COX analyses to obtain EIGs that

were significantly associated with survival in the training set for the

construction of EIG-related prognostic signature (EIGPS).

We used 10 machine learning algorithms — LASSO, Ridge,

StepCox, CoxBoost, survival support vector machine (survival-

SVM), supervised principal components (SuperPC), random

survival forest (RSF), generalized boosted regression modeling

(GBM), elastic net (Enet), and partial least squares regression for

Cox (plsRcox) — to screen variables based on 10-fold cross-

validation to construct 101 models. Models containing less than 5

genes were excluded. The optimal model was selected based on the

highest C-index. Using the linear combination of the optimal

model, we calculated a risk score for each HCC patient, and

subsequently divided them into high-risk group (HRG) and low-

risk group (LRG). Furthermore, since CoxBoost+SuperPC was the

subsequent optimal model, we briefly introduce these two

algorithms here. CoxBoost integrates the Cox proportional

hazards model with boosting algorithms. Boosting can iteratively

optimize regression coefficients to yield a sparse model. SuperPC

combines supervised learning with PCA. It first selects features

significantly associated with survival outcomes, then applies PCA to

reduce dimensionality and extract principal components (PCs) as

new features in the subsequent model. This strategy can address

high-dimensional collinearity and enhance model robustness.
Validation of EIGPS

We evaluated the model performance using the training set and

the validation set. Principal component analysis (PCA) was used to

reduce the dimensionality of gene expression data and project them

onto the principal components to identify the distribution of the

feature space of HRG and LRG after dimensionality reduction. The

K-M survival curve, clinical ROC curve, temporal ROC curve,

univariate and multivariate COX analysis, and risk curve were

obtained using the “Survival”, “survminer”, and “timeROC” R

package. The significance threshold was p < 0.05, and the area

under the curve (AUC) of ROC >0.5 was considered significant.
Correlations between EIGPS and clinical
features

We used the chi-square test to assess clinical features in the

HRG and LRG, and further conducted survival analysis to examine

the associations between clinical features and EIGPS.
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Clustering analysis

Based on the expression of EIGPS genes, we performed

clustering analysis to identify molecular subtypes using the

“ConsensusClusterPlus” R package with Partitioning Around

Medoids (PAM) algorithm and Euclidean distance; 80% of the

samples were resampled for 10 repetitions. The optimal number of

clusters (k) was determined by cumulative distribution function

(CDF) plot and average cluster consensus.
Functional and pathway enrichment
analysis

To further investigate the potential functional and pathway

differences between HRG and LRG, we used the “clusterprofiler” R

package for GO and KEGG enrichment analysis of DEGs. In

addition, gene set variation analysis (GSVA) was used to identify

differentially enriched pathways.
Construction of nomograms

For the sake of individualized prediction, we developed two

nomograms for HCC patients. The first nomogram combined risk

scores and clinical features, while the second utilized the signature

genes. The C-index value was calculated to evaluate the consistency

of the predicted values with the observed values.
Immune-related analyses

We employed CIBERSORT to assess differences in the

infiltration abundance of 22 immune cells between HRG and

LRG. We used single-sample gene set enrichment analysis

(ssGSEA) via “GSVA” R package to assess differences in

enrichment levels for 29 immune traits (16 immune cells, 13

immune functions) between HRG and LRG. Additionally,

TIMER, CIBERSORT−ABS, QUANTISEQ, MCPCOUNTER,

XCELL and EPIC were used as additional immune infiltration

algorithms to further validate the results.

Earlier research reported that all tumors could be divided into six

immune subtypes, namely, wound healing (C1), IFN-g dominant (C2),

inflammatory (C3), lymphocyte depleted (C4), immunologically quiet

(C5), and TGF-b dominant (C6) (7). Therefore, we performed survival

analysis based on different subtypes.

To evaluate the association of EIGPS with immunotherapy, we

used TISIDB (https://cis.hku.hk/TISIDB/index.php) to acquire

immune checkpoint genes and assess the differences between

HRG and LRG. The Tumor Immune Dysfunction and Exclusion

(TIDE) (http://tide.dfci.harvard.edu/) was used to score the

immune evasion ability of HRG and LRG, with higher scores

ind i ca t ing worse r e sponse to immunotherapy . The

immunophenoscore (IPS) of four immunotherapy regimens for

HCC were obtained from the TCIA database (https://tcia.at/
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home) , wi th h igher IPS ind ica t ing be t t e r re sponse

to immunotherapy.
Tumor mutational burden analysis

Macrophage-related genes were derived from Genecards

(Supplementary Table S3). TMB was quantified by the number of

mutations per megabase. Using the optimal cutoff obtained by

“survminer” algorithm, the samples were divided into high TMB

group and low TMB group, and were then combined with the risk

score for survival analysis.
Single cell analysis

The scRNA-seq data for HCC were obtained from the China

National Gene Bank Nucleotide Sequence Archive (CNSA:

CNP0000650; https://db.cngb.org/cnsa) and GEO (GSE162616),

including a total of 15 HCC cases.

We used “Seurat” R package to process scRNA-seq data and

obtained 34472 genes and 54982 cel ls . Subsequently,

PercentageFeatureSet and FeatureScatter functions were used to

calculate the percentage of mitochondrial genes and sequencing

depth. We excluded cells with fewer than 20 mitochondria, cells

with number of genes < 500 genes or > 10,000, and cells with UMI

counts < 500 or > 20,000. The “Harmony” package and PCA were

used for batch effect removal and dimension reduction, respectively.

“FindNeighbors” and “FindClusters” functions were used for cell

clustering and determining the resolution, and Uniform Manifold

Approximation and Projection (UMAP) was then used for

visualization. Cell types were manually annotated using marker

genes. Finally, we performed cell-cell communication analysis using

the “CellChat” package, with ligands and receptors pairs from the

CellChat database (http://www.cellchat.org/).
Drug sensitivity analysis

Based on the GDSC database, we used the “oncoppredict” R

package to evaluate the sensitivity of HRG and LRG to 198 FDA-

approved drugs. Drug sensitivity was evaluated using half maximal

inhibitory concentration (IC50), with lower values indicating higher

drug sensitivity.
qRT-PCR and immunohistochemistry

The cell lines (L-O2, HepG2) were purchased from the Institute

of Cell Research, Chinese Academy of Sciences. Total RNA was

extracted using Trizol (Invitrogen, 1596-026) according to the

manufacturer’s protocols. cDNA was synthesized using reverse

transcription kit (Fermentas, #K1622). qRT-PCR was performed

using SYBR Green kit (Thermo, #K0223). Primers are shown in the

Supplementary Table S8.
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We obtained the immunohistochemical results of the

biomarkers in the normal population and HCC patients from the

HPA database (https://www.proteinatlas.org/).
Statistical analysis

All statistical analyses were performed using R software

(Version 4.3.2; the R Foundation, St. Louis, MO, USA). Chi-

square test was used for categorical data, while t-test or Wilcox

test was used for continuous data. Unless otherwise specified, p <

0.05 was the significance threshold.
Results

Identification of EIGs associated with HCC
prognosis

After acquiring exercise-related genes from Genecards, we

performed WGCNA using the training set to identify module

genes most associated with HCC prognosis. We identified 8 co-

expression modules using hierarchical clustering with an optimal

power value of 10 (Figures 2A, B, D; Supplementary Table S4).

Among these modules, the turquoise module (500 genes) had the

highest correlation with HCC. And the gene significance (GS) and

module membership (MM) for the turquoise module showed a

significant correlation (r=0.66, P=7.5e-64; Figure 2C). We then

performed differential gene expression analysis on 500 genes in the

turquoise module and identified 343 DEGs (Figure 2E;

Supplementary Table S5).

Subsequently, we assessed the correlation between the identified

DEGs and the infiltration abundance of 22 immune cells, and

obtained 59 EIGs (Supplementary Table S6).

We conducted univariate COX analysis to further identified 54

EIGs that were significantly associated with HCC prognosis

(Figure 2F; Supplementary Table S7).
Construction and validation of EIGPS
through machine learning

Among the 101 models constructed through machine learning,

the CoxBoost +SuperPC model had the highest average C-index

(0.742; Figure 3G), and incorporated 7 EIGs (UPF3B, G6PD, ENO1,

FARSB, CYP2C9, DLGAP5, SLC2A1). Low expression of CYP2C9

was associated with poor HCC prognosis, whereas the other genes

were the opposite (Supplementary Figures S1C–I). qRT-PCR and

immunohistochemical results also supported these findings

(Figure 3F; Supplementary Table S8; Supplementary Figures

S2A–G).

To comprehensively assess the robustness of the constructed

EIGPS, we calculated a risk score for each patient and divided

all patients into HRG and LRG. Univariate (HR=2.229, 95%CI=

1.773−2.803, P < 0.001; Supplementary Figure S1B) and
frontiersin.org
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multivariate (HR=1.978, 95%CI= 1.527−2.561, P < 0.001;

Supplementary Figure S1A) COX regression analyses showed that

the risk score was associated with HCC survival independent of

other clinical features.
Frontiers in Immunology 06
PCA suggested that the risk score could significantly distinguish

between HRG and LRG (Figure 3E). The K-M curves showed that

the survival of LRG was significantly higher than that of HRG

(Figure 3B). And the mortality gradually increased with the increase
FIGURE 2

Identification of EIGs. (A) Cluster dendrogram of WGCNA analysis of HCC. (B) Module-trait heatmap indicating the correlation between modules and
HCC. (C) Correlation between the gene significance (GS) and module membership (MM) in the turquoise module. (D) The selection of soft threshold
b. (E) Volcano plot of DEGs of HCC. (F) Univariate COX analyses associated with survival.
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of risk scores (Figure 3A). The area under the ROC curves and

decision curves suggested that the EIGPS had better predictive

performance (AUC=0.804) than other clinical features (Figure 3C).

The time-ROC indicated that EIGPS had good predictive

performance in predicting survival at 1 (AUC=0.804), 3

(AUC=0.726), and 5 (AUC=0.696) years (Figure 3D).

We further validated the performance of EIGPS in the

validation set, and observed that the results were all consistent

with those in the training set (Supplementary Figures S3A–I).
Molecular subtyping based on EIGPS

Based on the expression of EIGPS, we divided HCC samples

into 2 subtypes (optimal k=2; Supplementary Figure S4A;

Supplementary Figures S4A, B). PCA showed a clear distinction

between the two subtypes (Figure 4C). The expression patterns of
Frontiers in Immunology 07
EIGPS in the two subtypes were similar to risk scores (Figure 4F).

The C2 subtype corresponded mainly to the LRG and had higher

survival rates than C1 (Figure 4E). As for tumor immune

microenvironment, C2 had significantly lower immune cell

infiltration abundance (Figure 4D; Supplementary Figure S4C),

whereas C1 showed a large number of immune tumor-promoting

phenotypes, especially higher macrophage (Mj) abundance across
7 immune infiltration algorithms (Figures 4B, G).
Correlations between EIGPS and clinical
features

We observed significant differences in T-stage, Stage, and Grade

between HRG and LRG (Supplementary Figure S5D). We

combined EIGPS with the significantly different features, and

found that LRG combined with any clinical feature in early or
FIGURE 3

Construction and evaluation of EIGPS. (A) Risk curves based on EIGPS. (B) K-M survival curves based on EIGPS. (C) ROC curves of risk scores and
clinical features. (D) ROC curves predicting 1-, 3-, and 5-year survival. (E) PCA based on EIGPS. (F) qRT-PCR of the signature genes (**=P < 0.01;
***=P < 0.001). (G) Construction of 101 EIGPS models using integrated machine learning based on 10-fold cross-validation.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1606711
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pu et al. 10.3389/fimmu.2025.1606711
late stages had better survival than HRG (Supplementary Figures

S5A–C).
Construction of nomograms based on
EIGPS

To optimize the clinical application of the risk model, we

developed a nomogram based on clinical features and risk scores
Frontiers in Immunology 08
(Figure 5H), which could effectively predict 1-year, 3-year, and 5-

year survival (C-index=0.754, 95%CI: 0.703-0.806; Figure 5G).

We also constructed a nomogram based on EIGPS gene

expression (C-index=0.711, 95%CI: 0.664-0.759; Figures 5C, D),

which may benefit HCC patients who did not have the sequencing

of all the 7 signature genes. Both nomograms showed

independent predictive ability (Figures 5A, E). The mortality

gradually increased with the increase of nomogram scores

(Figures 5B, F).
FIGURE 4

Molecular subtyping based on signature genes. (A) Two subtypes of HCC patients based on signature genes. (B) 7 immune infiltration algorithms for
the two subtypes. (C) PCA of the two subtypes. (D) Differences in the immune microenvironment between the two subtypes. (E) Survival analysis of
the two subtypes. (F) Heatmap of clinical features and signature gene expression in the two subtypes. (G) Differences in the infiltration abundance of
22 immune cells between the two subtypes (*= P < 0.05; **=P < 0.01; ***=P < 0.001).
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Immune infiltration-related analyses based
on EIGPS

Based on the immune subtypes identified by the previous study,

we found 4 immune subtypes for HCC patients (Supplementary
Frontiers in Immunology 09
Figure S6A), with the C1 and C2 subtypes mainly found in the

HRG (Supplementary Figure S6B). Patients with C1 and C2 had a

significantly worse prognosis compared to other subtypes (Figure 6F).

Subsequently, 7 immune infiltration algorithms all suggested a

positive correlation between risk scores and macrophage abundance
FIGURE 5

Construction of nomograms. (A) Multivariate COX analysis of signature gene nomogram. (B) Survival analysis of signature gene nomogram.
(C) C-index values of signature gene nomogram. (D) The signature gene nomogram. (E) Multivariate COX analysis of the nomogram based on
clinical features and risk scores. (F) Survival analysis of the nomogram based on clinical features and risk scores. (G) C-index values of the
nomogram based on clinical features and risk scores. (H) The nomogram based on clinical features and risk scores.
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(Figure 6B). CIBERSORT results showed that macrophages M0 (Mj)
had significantly higher abundance in HRG than in LRG, while

monocytes were the opposite (Figures 6A, D). Additionally, the

additional 6 immune infiltration algorithms also noted the
Frontiers in Immunology 10
significant differences in macrophage abundance between HRG and

LRG (Figure 6E). Similar results were obtained by ssGSEA that the

macrophage abundance as well as a number of immune tumor-

promoting functions was significantly elevated in HRG (Figure 6C).
FIGURE 6

Immune-related analyses based on EIGPS. (A) Heatmap of immune infiltration in HRG and LRG. (B) Correlation between risk scores and immune
infiltration abundance based on 7 immune infiltration algorithms. (C) Differences in 16 immune cells and 13 immune functions in HRG and LRG.
(D) Differences in infiltration abundance of 22 immune cells between HRG and LRG. (E) Heatmap of the differences in the immune infiltration
abundance between HRG and LRG based on 7 immune infiltration algorithms. (F) Survival analysis of immune subtypes.
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Single cell analysis based on EIGPS

Based on PCA, the elbow method (selecting the top 10 principal

components), and a resolution of 0.8, we obtained 25,664 genes and

50,016 cells, identifying 17 clusters. (Supplementary Figures S7A, D;

Figure 7F; Supplementary Figures S7B, C). Subsequently, based on the

expression of marker genes, we identified 5 cell types, including B cells,
Frontiers in Immunology 11
epithelial cells, macrophages, NK cells, plasma cells, and T cells

(Figures 7D, E). EIGPS were mainly expressed in macrophages

(Figure 7A). Furthermore, the interaction between macrophages and

epithelial cells exhibited the highest interaction number and strength

(Figures 7B, C). Macrophages mainly functioned as ligand-secreting

cells to send signals to epithelial cells, a process potentially mediated

by PPIA-BSG ligand-receptor pairs (Supplementary Figure S8).
FIGURE 7

Single cell analysis. (A) The expression of signature genes in cells. (B) Circle plots of interaction number in cell-cell communication. (C) Circle plots
of interaction strength in cell-cell communication. (D) Annotated cell types using UMAP. (E) Marker genes of cell types. (F) The selection of
clustering resolution.
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Immunotherapy-related and drug
sensitivity analyses

As expected, the expression of immune checkpoint-related

genes and chemokine-related genes in the HRG was significantly

higher than those in the LRG (Figures 8A, B). Among them, we

selected immune checkpoint-related genes that were closely

associated with clinical treatment, and found that all of them

were positively correlated with risk scores (Figure 8E). The HRG
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had a significantly higher TIDE score than LRG, indicating its

higher immune evasion ability and poorer response to

immunotherapy (Figure 8C). The IPS results revealed that LRG

had a higher IPS for CTLA4-/PD-1- treatment (Figure 8D). Drug

sensitivity analysis showed that the HRG was more sensitive to

Afatinib and Alpelisib (Figure 8F), whereas the LRG was more

sensitive to Irinotecan and Oxaliplatin (Figure 8G), which

provides reference for preferable choices of drugs for

different patients.
FIGURE 8

Immunotherapy-related analyses. (A) Differential expression of chemokines in HRG and LRG. (B) Differential expression of immune checkpoint genes
in HRG and LRG. (C) TIDE scores in HRG and LRG (***= P < 0.001). (D) IPS scores in HRG and LRG. (E) Correlation of risk scores with clinically
common immune checkpoints. (F) Drugs that are more sensitive in the HRG. (G) Drugs that are more sensitive in the LRG.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1606711
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pu et al. 10.3389/fimmu.2025.1606711
Immune-related biological functions and
pathways

We further revealed differences in potential biological functions

and pathways between the HRG and LRG. GO-BP analysis revealed

that DEGs of HRG and LRG were mainly enriched in leukocyte

mediated immunity and positive regulation of leukocyte activation

(top 2; Supplementary Table S9; Supplementary Figure S9A).

KEGG results showed that the top 2 most involved pathways

were cytokine−cytokine receptor interaction and human T−cell

leukemia virus 1 infection (Supplementary Table S10;

Supplementary Figure S9B). GSVA enrichment analysis showed

that the HRG and LRG had significant differences in complement

and coagulation cascades, Fcg receptor mediated phagocytosis and

other immune-related pathways (Supplementary Figure S9C).
Tumor mutational burden analysis based
on EIGPS

HCC patients were divided into high TMB and low TMB

groups using the best cutoff value (cutoff = 1.316). The K-M

curves showed that high TMB group had significantly lower

survival rate than low TMB group (Supplementary Figure S10A).

Furthermore, LRG combined with either low or high TMB had

better survival than the HRG (Supplementary Figure S10B).

Since EIGPS was mainly expressed in macrophages, we further

analyzed 1528 macrophage-related genes, and found that TP53 had

highest mutation frequency in the HRG, while the mutation

frequency of CTNNB1 was highest in the LRG (Supplementary

Figures S10C, D).
Discussion

The incidence and mortality of liver cancer are increasing year

by year. Recently, exercise has shown promising therapeutic effects

in several cancers. In this study, we used WGCNA to obtain 500

exercise-related genes significantly associated with HCC prognosis.

Subsequent differential gene expression analysis, immune

infiltration analysis, and univariate COX regression analysis

further identified 54 EIGs. 101 combinations of 10 machine

learning algorithms were used to construct EIGPS based on 7

EIGs. EIGPS showed better predictive performance than clinical

features. Furthermore, EIGPS was closely related to molecular

subtyping, immune cell function and level, scRNA, drug

sensitivity, and tumor mutational burden.

To the best of our knowledge, this study is the first to construct

and apply EIGPS to HCC patients. HCC patients were divided into

HRG and LRG based on EIGPS, and HRG had a poorer prognosis.

The area under the ROC curve of EIGPS was higher than that of

other clinical features, indicating that EIGPS may have better

performance and independent predictive ability. The external

dataset further validated the results and enhanced the

generalizability of the model. Additionally, based on the
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expression of signature genes, we identified 2 subtypes, of which

C2 was mainly found in LRG and had a better prognosis. This also

implies that EIGPS can reflect the prognostic differences of different

molecular subtypes and provide more precise targeted therapy.

Considering the specificity of HCC patients in clinical practice,

we constructed nomograms, which contained clinically accessible

features that can be used to accurately predict the prognosis

of patients.

EIGPS consisted of 6 prognostic risk genes and 1 protective gene.

The expression of EIGPS was verified by qRT-PCR, which was

consistent with the results of previous findings. UPF3B is

significantly highly expressed both in vivo and in vitro, and is

associated with poor prognosis of patients. It may promote HCC

progression by binding to PPP2R2C and further activating the PI3K/

AKT/mTOR pathway (8). In addition, UPF3B knockdown

significantly increases the number of CD45+ immune cells and

CD45+CD3+ immune cells (9). G6PD is the rate-limiting enzyme in

the pentose phosphate pathway (PPP). Studies have reported that in T

cells, inhibition of G6PD activity can block the PPP, deplete NADPH,

and reduce the production of inflammatory factors (e.g., IFN-g and
TNF-a) without affecting the proliferation and early activation of T

cells. Also, inhibition of G6PD also inhibits respiratory burst in

neutrophils by reducing NADPH supply (10). And after G6PD

knockdown, the tumor volume and weight in vivo were significantly

reduced (11). It is well known that ENO1 and SLC2A1 promote HCC

progression through glycolysis and mediation of immune escape.

SLC2A1 provides substrates for glycolysis by regulating glucose

uptake, while ENO1 catalyzes the conversion of 2-phosphoglycerate

to phosphoenolpyruvate at the late stage of glycolysis. Their high

expression synergistically enhances the Warburg effect (12–14).

Furthermore, the overexpression of SLC2A1 seems to be necessary

for the drug-resistant target HER2 to promote tumor drug resistance;

ENO1 further affects cancer metabolism microenvironment through

the crosstalk between glycolytic and phospholipid-synthesizing

enzymes, promoting drug resistance and tumor cell proliferation

(15, 16). The association between Warburg effect and immunity has

been extensively reported. At present, few studies report the

association between FARSB and immune infiltration. FARSB is

primary responsible for attaching L-phenylalanine to the terminal

adenosine of the corresponding tRNA. FARSB knockdown in vitro

induces G1 phase arrest and impairs the migration ability of HCC cells

(17). It may promote HCC progression through the mTORC1

signaling pathway (18). DLGAP5 has been reported to be highly

expressed in HCC and associated with poor prognosis.

Overexpression of DLGAP5 reduced the infiltration of CD8T cells

by inhibiting the TP53 pathway (19). Silencing of DLGAP5

significantly inhibits the growth, migration and colony formation of

HCC cells (20). Consistent with the results of earlier studies, low

expression of CYP2C9 was found to be associated with better HCC

prognosis (21). CYP2C9 is mainly involved in drug absorption,

distribution and metabolism, and is closely related to drug

resistance in HCC. Its low expression may be caused by the

dedifferentiation of cancer cells (22, 23).

The immune features determine the phenotype, prognosis and

treatment of HCC. We found that signature genes were highly
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expressed mainly in Mj and that Mj abundance differed

significantly between HRG and LRG. In molecular subtyping, C1

and C2 also showed differences in Mj infiltration abundance. Mj in

HCC are usually classified into two groups: tissue-resident

macrophages and monocyte-derived macrophages. Tumor-

infiltrating macrophages are negatively correlated with survival

rates and exhibit high plasticity. M1 macrophages exert pro-

inflammatory and anti-tumor effects, whereas M2 macrophages

have the opposite functions. Mj can activate the NF‐kB signaling

pathway by secreting factors such as S100A9 and IL-6, which

promotes the stemness of HCC cells and the self-renewal of cancer

stem cells (CSCs), thus providing a pro‐tumorigenic niche for early

HCC. Meanwhile, HCC cells induce macrophage polarization from

M1 to M2 via exosomes and paracrine signals, exacerbating HCC

progression (24). In this process, although M1 macrophages can

secrete pro-inflammatory factors TNF-a, NO, and IL-12 to activate T
cells and NK cells and exert anti-tumor effects, the metabolic

reprogramming of tumor cells and macrophages in HCC can

reshape tumor microenvironment and promote macrophage

polarization to M2 (25). However, it is noteworthy that M1 also

seems to have pro-tumor effects, such as promoting HCC cell motility

via NF-kB pathway and inducing PD-L1 expression in HCC (26, 27);

such pro-tumor effects warrant further investigation. In addition, we

found that Mjmay communicate with epithelial cells via PPIA-BSG.

PPIA can be secreted from activated Mj and interact with CD147

(28). CD147 promotes tumor growth, invasion and immune

resistance by inducing epithelial-mesenchymal transition and the

production and release of matrix metalloproteinases (29). Mutation

analysis of macrophage-related genes revealed that TP53 had the

highest mutation frequency in the HRG, while CTNNB1 had the

highest mutation frequency in the LRG. TP53 mutant cancer cells

have been shown to promote macrophage polarization to M2 by

secreting factors such as CSF-1, IL-10 and TGF-b (30). Compared

with TP53 mutation, CTNNB1 mutation has a better prognosis, but

CTNNB1mutation seems to be a double-edged sword (31). CTNNB1

mutation may induce CCL5 low expression, while CCL5

overexpression has been shown to limit liver regeneration by

inhibiting the secretion of hepatocyte growth factor by repair

macrophages (32).

GO and KEGG analyses further revealed significant differences

between HRG and LRG in leukocyte-mediated immune function and

cytokine-cytokine receptor interaction pathway, which are closely

linked to each other. Cytokines can regulate migration, activation,

differentiation and effector functions of leukocyte subsets by

activating downstream pathways such as Jak-STAT; cytokine

signals can also be negatively regulated by ubiquitin/proteasome-

mediated STAT degradation or by inhibitory proteins, such as PIAS

and SOCS, to maintain immune environment homeostasis (33).

However, aberrant promoter methylation and modifications in

HCC reprogram this regulation and mediate cell proliferation and

infiltration of immune pro-tumor phenotypes (34). Furthermore,

GSVA found a significantly reduced expression of complement

system in the HRG. Almost all leukocyte subsets express receptors

for complement activation fragments, yet the complement is double-

edged sword. C3b and the anaphylatoxins play a role in activating T
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cells, and simultaneous binding of C3d fragments on the

immunogenic surface to B cells lowers the threshold for B‐cell

receptor activation (35). Meanwhile, anaphylatoxins regulate the

accumulation and migration of myeloid-derived suppressor cells

(MDSCs) and recruit immunosuppressive factors such as TGF-b,
IL-10, PDL-1, and CD46, forming an immunosuppressive

microenvironment (36, 37). GSVA also suggested a possible over-

activation of the immune system in the HRG. For example, the

enhancement of Fcg receptor-mediated phagocytosis and chemokine

signaling may cause extensive macrophage infiltration (38).

Moreover, activation of T- and B- cell receptor and antigen

presentation signaling pathways may be accompanied by T cell

depletion, thus creating a niche for immune escape and HCC

growth (39, 40). This explains our finding that HRG had

significantly higher PD-1/CTLA-4 expression and poorer response

to immune checkpoint inhibitors. Finally, we found that the HRG

was more sensitive to Afatinib and Alpelisib, whereas the LRG was

more sensitive to Irinotecan and Oxaliplatin. These drugs show

promising potential for treating HCC independently or in

combination with PD-1, CDK4/6 inhibitors (41–44).

To the best of our knowledge, we first identified key EIGs,

constructed an HCC prognostic signature based on them, and

further revealed the underlying mechanisms. However, our study

also has some limitations. Notably, although current evidence

supports the involvement of EIGPS in HCC progression, the

regulation of EIGPS by exercise may be heterogeneous across

different HCC patients, and therefore our results must be

interpreted with caution. Additionally, our current results were

based on public databases, and validation was restricted to qRT-

PCR and immunohistochemistry. Future studies could strengthen

these findings through target gene knockdown/knockout in vitro/in

vivo or exercise intervention in HCCmodels. Furthermore, we must

emphasize that our analyses were based on EIGs, but the complexity

of exercise determines the specific expression patterns of related

genes, resulting in disparities between exercise-responsive and non-

responsive populations. The clinical translation rate of exercise

therapy in cancer treatment remains low; a major concern is that

the effects of exercise-induced acute immune responses on immune

phenotypes and functions remain unclear. Although we have

identified a significant correlation between EIGPS and

macrophages, it remains challenging to predict the direction of

macrophage polarization (M1/M2 switch) in actual exercise

interventions. Therefore, it is necessary to further validate

signature genes using HCC exercise models in future studies.
Conclusions

Our study identified 7 EIGs to construct an EIGPS with good

predictive performance and accuracy, contributing to the

prognostic management and treatment of HCC. In future studies,

CCK-8, Western blotting, immunofluorescence, flow cytometry,

transfection, and transwell assays can be utilize to further validate

the invasive ability, immune responses, and underlying mechanisms

of signature genes. Furthermore, integrating spatial transcriptomics
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and single cell analysis will further elucidate the distribution of

signature genes and their changes in the microenvironment.
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