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Establishment of an anaplastic
stratification signature for gastric
cancer based on diverse
regulated cell-death

Shaofei Chen and Zhiyong Wang*

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China

Background: Gastric cancer is a common malignant tumor characterized by
poor prognosis and limited therapeutic options. The combination of Regulated
cell death inducers and enhancement of the immune therapeutic effect plays an
important role in cancer treatment.

Methods: We downloaded and analyzed data from gastric cancer samples,
collected 14 Regulated cell death-related genes and constructed a Regulated
Cell Death-Related Index (RCDRI) by various machine learning methods. Based
on the RCDRI, gastric cancer patients were divided into high RCDRI and low
RCDRI groups, and the clinical characteristics, immune cell infiltration,
chemotherapy response and immunotherapy response of gastric cancer
patients were analyzed based on the RCDRI.

Results: The newly constructed RCDRI consisted of four Regulated cell death-
related genes (CD36, SERPINEL, TRIML2, and GRP) and has been shown to be an
effective predictive marker for the survival of gastric cancer patients and was
trained with multiple external datasets. The high RCDRI group had a higher level
of immune cell infiltration and better response to immunotherapy than the low
RCDRI group. In addition, through pan-cancer analysis, we found that RCDRI can
also be used for prognosis and immunotherapy prediction in a variety of cancers.
Finally, in vitro experiments revealed that TRIML2 knockdown inhibited the
proliferation and migration of gastric cancer cells.

Conclusions: The RCDRI identified in this study can accurately assess the
prognosis and immunotherapy efficacy of gastric cancer patients, which lays a
valuable foundation for future clinical treatment of gastric cancer.

gastric cancer, regulated cell death, prognosis, immunotherapy efficacy, TRIML2

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1606789/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1606789/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1606789/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1606789/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1606789&domain=pdf&date_stamp=2025-09-10
mailto:wangzhiyong12345@126.com
https://doi.org/10.3389/fimmu.2025.1606789
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1606789
https://www.frontiersin.org/journals/immunology

Chen and Wang

Introduction

Gastric cancer (GC) is a prevalent kind of solid tumors that is
widespread around the globe (1). Individuals with advanced stages
of the illness continue to have a considerable risk of recurrence and
death. This is mostly because to the extensive diversity seen among
GC cells. Given the circumstances, it is crucial to promptly discover
first biomarkers and choose the therapeutic approach based on each
patient’s specific condition.

Cell death may occur via two primary mechanisms: accidental
cell death, which is an uncontrolled biological event, and regulated
cell death (RCD), which is a sophisticated death program. RCD, or
regulated cell death, encompasses several cellular processes (2).
Apoptosis is a natural, deliberate process of cell self-destruction.
Under certain internal and external circumstances, the process of cell
death is triggered without inducing inflammation (3). Pyroptosis is a
kind of controlled cell death that relies on caspase-1 and results in the
production of several pro-inflammatory substances, particularly in
response to microbial infections (4). Autophagy is a controlled
process of cell death where defective proteins or organelles are
enclosed by double-membrane autophagic vacuoles for the purpose
of breakdown and recycling (5). Lysosome-dependent cell death is
facilitated by hydrolases that are stored in lysosomes and transported
to the cytoplasm upon membrane permeabilization (6). Necroptosis
is a caspase-independent process that leads to the rupture of the cell
membrane, which is a specific morphological characteristic that may
trigger inflammation (5). Ferroptosis is a kind of controlled cell death
that relies on iron and leads to excessive lipid peroxidation and
consequent cell dysfunction (7). Copper death refers to a regulatory
process of cell death that occurs due to an excessive buildup of
copper. This phenomenon is strongly associated with several
disorders (8). Entotic cell death result in the destruction of the
intracellular cell structure (9). Parthanatos is a kind of regulated
cell death (RCD) that occurs as a result of DNA damage and the
activation of PARP-1 (10). Netotic cell death is triggered by the
liberation of neutrophil extracellular traps (NETs) (2). Alkaliptosis is
a newly discovered kind of regulated cell death (RCD) that is
triggered by an increase in intracellular pH (alkalinization) (11).
Oxeiptosis employs reactive oxygen species (ROS) to coordinate the
cellular death process (12). Apoptosis is a significant process that
protects against cancer. Nevertheless, there have been few
investigations on the effectiveness of tumor immunotherapy via the
regulation of cell death (13). While the majority of regulated cell
death routes in GC have been well investigated, the precise
involvement of regulated cell death integration in GC remains
uncertain (14). Thus, it is important to assess the prognosis and
therapy of GC patients by examining the genes associated with
controlled cell death pathways.

This work included gathering genes associated with various
regulated cell death pathways and using several machine learning
techniques to create a novel metric, known as the regulated cell death-
related index (RCDRI). The purpose of this index was to predict the
prognosis and assess the efficacy of therapy for patients with gastric
cancer. Ultimately, in vitro investigations were used to confirm the
functional significance of TRIML2 in the advancement of gastric cancer.
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Materials and methods

Acquire genomic data from patients
diagnosed with stomach cancer

The major regulatory genes of 14 regulated cell death patterns were
compiled from the GSEA gene collection and several published studies
as genes associated to regulated cell death. The ultimate gene list consists
of a series of 14 regulatory genes with specific RCD patterns (2, 8-14).
These patterns are detailed in Supplementary Table S1. Furthermore,
the accuracy of the training set was confirmed by obtaining pertinent
data from the TCGA-STAD(N = 32, T = 375) (15) for patients with
stomach cancer and from the GEO database (ID: GSE84437, N = 433)
for gastric cancer as a validation group. General characteristics of the
two cohorts are outlined in Supplementary Table S2.

Development of the regulated cell death-
related index

We utilized differential analysis between gastric cancer tissue and
normal tissue, setting the threshold for differential logFC greater than 2
and p adj less than 0.01. Additionally, univariate Cox regression was
used to assess the association between RCD-related genes and survival
status in gastric cancer patients, with the cutoff p-value adjusted to 0.05.
Using the R package “glmnet,” these DEGs were subjected to a
minimum absolute shrinkage and selection operator (LASSO)
penalized Cox regression analysis to construct the most appropriate
signature by narrowing down the range of candidate genes. The
normalized expression levels of candidate DEGs and survival data
(time and status) served as the independent and dependent variables,
respectively, in the LASSO regression. The penalty parameter (1) was
determined using 10-fold cross-validation with the lowest standard. A
risk score was calculated for each patient based on the expression levels
of the DEGs and their corresponding coefficients. The Regulated Cell
Death-Related Index (RCDRI) for each patient is ultimately obtained
using the following formula: Regulated Cell Death-Related Index
(RCDRI) = Coef(Gene 1) x Expr(Gene 1) + Coef(Gene 2) x Expr
(Gene 2) +... + Coef(Gene n) x Expr(Gene n). Where Coef(Gene)
represents the risk regression coefficient of Gene, and Expr(Gene)
represents the expression level of Gene. Additionally, principal
component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) were performed to further visualize the spatial
dimensions between risk groups. PCA was performed using the
“prcomp” function in the ‘stats’ R package, and t-SNE was
performed using the “Rtsne” package in R. All steps were repeated in
the GEO cohort for validation. Gastric cancer patients(TCGA-STAD)
were divided into two groups based on the median RCDRI value: the
high RCDRI group and the low RCDRI group.

Analysis of the immune microenvironment

Using the expression profile as input, call the estimate R package
to score stromal cells (StromalScore), immune cells (ImmuneScore),
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comprehensive score (ESTIMATEScore, the sum of stromal cell score
and immune cell score), and tumor purity (TumorPurity) (16). The
CIBERSORT method was used to measure the ratio of various
immune invading cells. The ssGSEA method was used to measure
the relative abundance of immune cells and immunological-related
processes. The IMvigor210 study cohort evaluated the efficacy of
atezolizumab (a PD-L1 targeting antibody) in 210 patients with
locally advanced or metastatic uroepithelial cancer. The Kim study
cohort of patients with metastatic gastric cancer treated with
pembrolizumab (an anti-PD-1 inhibitor). In addition, we collected
genes that have been currently reported to be positively associated
with immuno-efficacy and negatively associated with immuno-
efficacy and analyzed them in association with RCDRI.

Pharmaceutical responsiveness and
immune-based treatment

The response of gastric cancer patients (TCGA-STAD, n=375) to
common chemotherapeutic agents was evaluated by calculating IC50
values using the R package “pRRophetic” to assess drug sensitivity to
chemotherapy in gastric cancer patients with high/low RCDRI.

The calculation of the TIDE score is mainly based on the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm, which first
obtains the gene expression data of the tumor samples, usually RNA
sequencing data and so on. The data are cleaned and normalized,
usually by mean normalization, i.e., the mean value is calculated by
rows, and then the mean value is subtracted from the expression of
each sample. The CTL (Cytotoxic T Lymphocytes) levels of the
patients were assessed using the average expression levels of the cell
type markers (CD8A, CD8B) for CD8+ T cells versus the cytotoxic
function markers (GZMA, GZMB, PRF1). Patients were categorized
into two groups of high and low CTL according to the median CTL
level. The Pearson correlation between the expression profile and T
cell inactivation signature for each patient was used as the TIDE score
for patients in the high CTL group. TIDE and IPS quantitation data
may be used to deduce the patient’s response to immunotherapy,
namely anti-PD-1 and anti-CTLA4 immunotherapy (17, 18).

Preparation of cell lines and lentivirus
infection

The cell lines MKN45 and HGC27 used in this experiment were
acquired from ATCC. The aforementioned cell lines have been
authenticated and preserved in the laboratory’s liquid nitrogen tank.
GeneChem, located in Shanghai, China, manufactured the negative
(shNC) and lentivirus-delivered shRNAs targeting TRIML2
(ShTRIML2). The target sequences for shTRIML2 may be found in
Supplementary Table S3.

qRT-PCR

The RNA was isolated from the cells using the TRIzol
technique, and the concentration and purity of the RNA were
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assessed. Following the conversion of RNA to complementary DNA
(cDNA), quantitative polymerase chain reaction (PCR) was
conducted. The primer sequences used in the study are shown in
Supplementary Table S3.

Experiments on cellular functions

This research conducted a CCK8 test, EAU assay, cell scratch
assay, and Transwell migration invasion assay. The CCK8
experiment included the addition of MKN45 and HGC27 cells to
a 96-well plate. Following a 4-hour period of cell attachment, CCK8
was introduced. The cells were then incubated at a temperature of
37°C for 1 hour, after which the absorbance was measured using a
microplate reader. An experiment was conducted using logarithmic
growth group cells. EdU was introduced into the culture media to
facilitate EAU labeling. Following the washing of the cells with PBS,
the cells were subsequently fixed, stained with fluorescent, and then
photographed. Cell scratch experiment: Transfer cells from the
logarithmic growth phase and introduce them into a six-well
plate. Once the cell density reaches 90%, use a sterile 10 pL
pipette to create a perpendicular scratch in each well, crossing the
horizontal line made by the marker pen. Continue to incubate the
cells in a 37 °C, 5% CO2 environment, and then at the designated
time, remove the cells and capture photographs. In the Transwell
experiment, the cells were deprived of food for a whole night. Then,
the concentration of the cells was modified, and the Transwell
chamber was immersed in a culture medium that included 10% fetal
bovine serum. Finally, the cell suspension was introduced into the
top chamber of the Transwell chamber. Following a period of 36-48
hours, the chamber underwent repairs, was subjected to staining,
photographed using a microscope, and the documentation process
was completed.

Statistical analysis

The Kaplan-Meier survival curves were used to assess the
disparities in survival rates between the two groups. The
prognostic value was assessed using both univariate and
multivariate Cox regression analysis. The Spearman correlation
analysis was used to evaluate the correlation. R was used to
conduct all statistical analyses.

Results

Unsupervised clustering of genes
associated to regulated cell death

A collection of 1628 genes associated with regulated cell death
was gathered to investigate the subtypes of gastric cancer. The
research revealed that when k = 2, the disparities between the
subgroups were very significant, suggesting that gastric cancer
patients (TCGA-STAD n= 375) may be effectively classified into
two subgroups based on regulated cell death-related genes
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(Figure 1A). The survival curve demonstrated a notable disparity in
the overall duration of survival between the two groupings. Patients
with gastric cancer in Cluster C1 had a negative prognosis, but those
in Cluster C2 had a positive prognosis (Figure 1B). Through a
comparison of clinical and pathological features, namely the T, N,
and M stages, we observed that C2 had lower T, N, and M stages
compared to Cl. This suggests that patients in C1 had a greater

10.3389/fimmu.2025.1606789

malignant phenotype (Figure 1C). Subsequently, we conducted
gene set enrichment analysis to examine the enriched pathways
between the two clusters. The analysis revealed that Cluster 1
exhibited enrichment in pathways such as CELL CYCLE, G2M
CHECKPOINT, and OXIDATIVE PHOSPHORYLATION,
whereas Cluster 2 showed enrichment in pathways such as
NOTCH and ANGIOGENESIS (Figures 1D, E). Subsequently, we

A

consensus matrix k=2

-

°

°

Survival probabilty

025 p<0.001 |

Cluster.

C

T (p=0.004) N (p=0.017)

B Oz e e D o v 2 e

M (p=0.029)

W vo [l v Il mx

et
c2

Time(years)

HALLMARK_NOTCH_SIGNALING
HALLMARK_COAGULATION
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
HALLMARK_ANGIOGENESIS
HALLMARK_MYOGENESIS
HALLMARK_APICAL_JUNCTION
HALLMARK_MITOTIC_SPINDLE

HALLMARK_SPERMATOGENESIS

)
J'

HALLMARK_GZM_CHECKPOINT
HALLMARK_E2F_TARGETS
HALLMARK_GLYCOLYSIS
HALLMARK_MTORC1_SIGNALING
HALLMARK_UNFOLDED_PROTEIN_RESPONSE
HALLMARK_MYC_TARGETS_V1
HALLMARK_MYC_TARGETS V2

HALLMARK_DNA_REPAIR

HALLMARK_OXIDATIVE_PHOSPHORYLATION
HALLMARK_ESTROGEN_RESPONSE_EARLY

i

HALLMARK_PROTEIN_SECRETION

C2n=188).

012345678 910111213141516171819202122232425

¢ c2

Cluster

¢ 2

Cluster Cluster

cllls(.r
KEGG_CIRCADIAN_RHYTHM_MANMAL

0H

\‘ M
H
i

|)

i

Il“,l n’

N |( fiil

i

A\

'; i

ol

Ll i v

\ LTl W“

M\ | n

’ (

i

It \’I ‘\
| H

H\
| =

KEGG_NOTCH_SIGNALING_PATHWAY
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION
KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM
KEGG_DILATED_CARDIOMYOPATHY
KEGG_ETHER_LIPID_METABOLISM
KEGG_ARACHIDONIC_ACID_METABOLISM
KEGG_ALPHA_LINOLENIC_ACID_METABOLISM
KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS
KEGG_TAURINE_AND_HYPOTAURINE_METABOLISM
KEGG_SPLICEOSOME
KEGG_PYRIMIDINE_METABOLISM
KEGG_RNA_POLYMERASE
KEGG_PROTEASOME
KEGG_PENTOSE_PHOSPHATE_PATHWAY
KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION
GG_CELL_CYCLE
KEGG_OOCYTE_MEIOSIS.
KEGG_CYSTEINE_AND_METHIONINE_METABOLISM.
KEGG_ONE_CAREON_POOL_BY_FOLATE
KEGG_MISMATCH_REPAIR
KEGG_HOMOLOGOUS_RECOMBINATION
KEGG_DNA_REPLICATION
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS
KEGG_RNA_DEGRADATION
KEGG_BASAL_TRANSCRIPTION_FACTORS
KEGG_NON_HOMOLOGOUS_END_JOINING
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS

F G Cluster E3 c1 B8 c2
8000 12 ok * wwk wx Kk RRR KRR kAR ks wwn wwk
§
: : :
8am z
E H s 0.75 .
H H
£ H . o
w 0. . H .
a0 5050 o !l ! .
‘g . . .
y g5 it . ! “ :
G e 2 [ w .! !' Sg s : . . M
. . ‘
028 l .: .l H $ee " i Ik '; .' .
- - - i . ._.u i gl :
2000
. I ] il
8 2000 g 0.00
P 8
o 124
: . e’ R P S
E & ¢ L Ly E& S P TS S S TF O
B- ¥ ISR & &L P& P o & &S
= TS S S S ST S
) P ESCTEY FEEEEE T
AP ER P TS TN IENE
S cuser 2 St Custer [OFd ,\00 ACEN & 0&’
@ O & IS
OQ \\’.) A
A E
N
FIGURE 1

Unsupervised cluster analysis of regulated cell death genes in gastric cancer. (A) When k = 2, gastric cancer patients (n=375) are divided into two
clusters based on regulated cell death-related genes (C1n=187, C2n=188). (B) Kaplan-Meier curves show the prognosis of gastric cancer patients in
the two clusters (C1n=187, C2n=188). (C) The proportion of clinical and pathological characteristics between the two clusters (C1n=187, C2n=188).
(D, E) Heat maps of HALLMARK pathways and KEGG pathways enriched between the two clusters through enrichment analysis. (F) Differences in
tumor purity, ESTIMATEScore (Sum of stromal cell scores and immune cell scores ), immune score and stromal score between the two clusters
(C1n=187, C2n=188). (G) The CIBERSORT algorithm was used to analyze differences in common immune cells between the two clusters (C1n=187,
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conducted an analysis of the immunological features shown by the
two clusters. The tumor purity of C2 was markedly reduced
compared to Cl. This suggests that the amount of immune
infiltration in C2 was greater than in C1 (Figure 1F). Ultimately,
the CIBERSORT algorithm was used to assess the number of
immune cells that had infiltrated. The findings indicated that the
infiltration level of immune cells was greater in C2 (Figure 1G).

Development of RCDRI in individuals with
gastric cancer

Through the application of diverse machine learning techniques,
including univariate Cox regression, lasso, and multivariate Cox
regression analysis, we have successfully identified four genes
(CD36, SERPINE1, TRIML2, and GRP) that are associated with
regulated cell death (RCD). Additionally, we have developed the
Regulated cell death index (RCDRI) and its derivatives, which are
directly linked to RCD. The Regulated cell death index (RCDRI) for
each patient was calculated by our model using the following formula:
RCDRI = (0.0820*CD36 exp.) + (0.0247*SERPINEL exp.) +
(0.2835*TRIML2 exp.) + (0.0698*GRP exp.).

Validation of the external data set and
assessment of the clinical significance of
RCDRI

Our analysis revealed a significant correlation between high
RCDRI and unfavorable prognosis (p<0.05, Figures 2A-D) as
shown by the Kaplan-Meier survival curves. These curves were
generated using several statistical techniques to calculate patient
survival time, including Overall Survival, Disease Specific Survival,
Disease Free Interval, and Progression Free Interval. Afterwards, we
used the GEO dataset (GSE84437) as a validation cohort. The
Kaplan-Meier curve demonstrated that gastric cancer patients with
high RCDRI had a significantly worse overall survival rate,
comparable to the findings seen in the training group.
Conversely, individuals with low RCDRI levels had a potentially
favorable prognosis (Figure 2E). The results of both univariate and
multivariate Cox regression analyses indicate that RCDRI may serve
as an independent predictive factor in patients with gastric cancer
(Figures 2F, G). We conducted an analysis to examine the variations
in RCDRI across various clinical variables. Our findings indicate
that the high/low RCDRI groups exhibit substantial differences in
terms of distinct clusters, gender, grade, M, N, and survival status
(Figure 2H). The findings indicated that RCDRI outperformed
other clinical features in predicting the survival rate of gastric
cancer patients, as shown by assessing the area under the curve
values (Figures 21, J). Ultimately, a nomogram was created to assess
the prognosis of patients (Figure 2K). This indicates that the
developed nomogram is very accurate in predicting patient
prognosis (Figure 2L).
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RCDRI provides prognostic predictions for
several types of cancer, including gastric
cancer

In order to investigate the frequency of RCDRI in different
forms of cancer, we used the aforementioned RCDRI model
formula to determine the RCDRI values of patients with various
cancer types across several cancers. We then graphed the Kaplan-
Meier survival curves for the groups with high and low RCDRI
values. Patients in the high RCDRI group showed a worse prognosis
for Overall Survival (OS) in the following cancer types: BLCA,
BRCA, COAD, GBM, KIRP, LUSC, and MESO (Figure 3A). In
terms of DSS, patients belonging to the high RCDRI group
exhibited worse DSS in the cases of BLCA, COAD, GBM, KIRP,
MESO, and UVM. Conversely, individuals in the low RCDRI group
showed worse DSS only in the case of PCPG (Figure 3B). Regarding
the DFI, patients classified in the high RCDRI group had a more
unfavorable Disease Free Interval in cases of BLCA, CHOL, and
KIRP (Figure 3C). In terms of the PFI, patients in the high RCDRI
group had a more unfavorable Progression Free Interval in the cases
of BLCA, COAD, KIRP, MESO, and UVM (Figure 3D). The
aforementioned findings demonstrate that RCDRI not only has a
favorable impact in prognosticating the outcome of gastric cancer,
but also possesses prognostic significance in other types of cancer.

Tumor microenvironment in gastric cancer
was conducted using RCDRI

We then performed GSEA analysis on gastric cancer patients
(TCGA-STAD n= 375)to discover the association between RCDRI
and signaling pathways. The results of the GSEA analysis revealed
that the high RCDRI group had a substantial enrichment in the
signaling pathways related to Cytolysis, Necrotic cell death,
Pyroptosis, Cell killing, and Apoptosis (Figure 4A). Furthermore,
it was observed that tumors in the high RCDRI group exhibited a
significant enrichment in immune function pathways, including the
regulation of cytokine activity, natural killer cell activation, B cell
mediated immunity, regulatory T cell differentiation, T cell
mediated immunity, and regulation of T cell activation. This
suggests a strong association between the high RCDRI group and
the tumor immune microenvironment (Figure 4B).

We determined that the tumors in the high RCDRI group had
decreased purity (Figure 4C). The ssGSEA algorithm revealed that
the high RCDRI group exhibited superior immune cell infiltration
and immune-related activities compared to the low RCDRI group.
Specifically, the high RCDRI group had substantially elevated levels
of immunological checkpoint compared to the low RCDRI group
(Figure 4D). According to the CIBERSORT algorithm, the high
RCDRI group exhibited considerably elevated numbers of immune-
stimulating CD8 T cells compared to the low RCDRI group. This
indicates that the high RCDRI group had strong immune
infiltration features, as seen in Figure 4E.
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External data set validation and clinical relevance of Regulated Cell Death-Related Index (RCDRI). Kaplan-Meier survival curves for high/low RCDRI in
TCGA data sets (A=D) and GEO external data sets (E). Univariate (F) and multivariate (G) Cox regression analysis of RCDRI and other clinical traits.
(H) Differences in RCDRI between common clinical characteristics. () ROC curves of RCDRI at 1 year, 3 years and 5 years. (J) The three ROC curves
for RCDRI represent its comparison with other clinical characteristics at 1, 3 and 5 years, respectively. (K) Line plot predicting the prognosis of gastric
cancer patients. (L) Calibration curves of the line plot for 1-, 3- and 5-year overall survival probability in the TCGA cohort.

The effectiveness of RCDRI in predicting groups. The findings indicated that the levels of immunological
the effectiveness of immunotherapy checkpoints were notably elevated in patients with high RCDRI
compared to those with low RCDRI (Figure 5A). A lower TIDE

In order to investigate the connection between RCDRI and the  score was correlated with an increased probability of responding
immunological milieu, we analyzed the variations in the expression  positively to immunotherapy and experiencing extended longevity
levels of typical immune checkpoints between the high/low RCDRI  (18). Patients with high RCDRI had lower TIDE scores and greater
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FIGURE 3

Predictive value of RCDRI in other cancers. Kaplan-Meier survival curves were used to compare the OS (A), DSS (B), DFI (C) and PFI (D) of patients

with high/low RCDRI in pan-cancer.

MSI compared to patients with low RCDRI. This suggests that
patients with high RCDRI may have more favorable responses to
immune checkpoint blockade treatment than those with low RCDRI
(Figures 5B, C). Subsequently, we used external immunotherapy
datasets (IMvigor 210 dataset and Kim dataset) to predict
immunotherapy response in high/low RCDRI groups. The results
showed that the RCDRI scores of the immunotherapy response group
were significantly higher than those of the immunotherapy non-
response group. This suggests that high RCDRI scores may be closely
associated with improved immunotherapy efficacy in gastric cancer
patients. (Figures 5D, E). Subsequently, we investigated the
correlation between the RCDRI group and the immunological
phenotype score (IPS), which serves as a measure of patients’
response to anti-PD1 and/or anti-CTLA4 treatment. Our analysis
revealed that the IPS score was significantly elevated in the high
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RCDRI group, suggesting that patients in this group may have a more
favorable response to immunotherapy (Figure 5F). Ultimately, we
assessed the predictive capability of the RCDRI score in determining
the effectiveness of immunotherapy by assigning RCDRI scores to
individuals with various types of cancer. The study found significant
variations in TIDE scores between the low and high RCDRI score
groups in multiple cancer types. The TIDE scores of the low and high
RCDRI score groups differed significantly, suggesting that the RCDRI
score can be used to assess the effectiveness of immunotherapy across
various cancers. Furthermore, the high RCDRI group exhibited a
more favorable response to immunotherapy (Figure 5G). These
findings indicate that RCDRI may serve as a predictive tool for
assessing the effectiveness of immunotherapy. Moreover, individuals
in the high RCDRI group are more inclined to exhibit positive
responses to immunotherapy.
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FIGURE 4

Evaluation of the tumor microenvironment based on the regulated cell death-related index. (A, B) GSEA analysis of patients in the high RCDRI group.

(C) Differences in ESTIMATEScore, tumor purity, immune score, and stromal score between the high/low RCDRI groups. (D) ssGSEA algorithm to
evaluate differences in immune cells and immune function between patients in the high/low RCDRI groups. (E) Immune cell differences between

high/low RCDRI groups assessed by the CIBERSORT algorithm.

The effectiveness of RCDRI in predicting

the sensitivity of drugs

exhibited a considerably lower value compared to the high RCDRI

group. This suggests that patients in the low RCDRI group shown a

more favorable response to targeted treatment with Saracatinib.

The relationship between RCDRI and drug sensitivity was
investigated by determining the IC50 values of commonly used
chemotherapeutic medicines and targeted therapeutic medications,
and comparing them with the RCDRI group. We observed
significant disparities in the efficacy of several chemotherapeutic
and targeted medications for gastric cancer when comparing the
high and low RCDRI groups. For instance, the IC50 value of
cisplatin was notably lower in the high RCDRI group compared
to the low RCDRI group. This suggests that patients in the high
RCDRI group may exhibit a more favorable response to cisplatin
treatment. The IC50 value of Saracatinib in the low RCDRI group

Frontiers in Immunology

(See Figures 6A, B).

Suppression of TRIML2 hampers the
growth and movement of gastric cancer
cell lines

Initially, we created stable cell lines in vitro by suppressing the
expression of TRIML2 in MKN45 and HGC27 gastric cancer cell
lines. The cell count in the TRIML2-silenced group was consistently
lower than that in the NC group at 0 h, 24 h, 48 h, 72 h, and 96 h in
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The efficacy of RCDRI in predicting immunotherapy efficacy. (A) Differences in common immune checkpoint expression levels between high/low
RCDRI groups. (B, C) Differences in TIDE score and MSI score between high/low RCDRI groups. (D, E) Differences in RCDRI score between
mmunotherapy response and non-response groups in the IMvigor 210 dataset and the Kim dataset. (F) Difference in IPS score between high/low
RCDRI groups. (G) RCDRI score for evaluating immunotherapy efficacy in pan-cancer from TCGA databases. TIDE, Tumor immune dysfunction

and exclusion.

the CCK8 experiment. This suggests that the cells’ capacity to
proliferate was diminished after TRIML2 was suppressed
(Figures 7A, B). The TRIML2-silenced strain exhibited a
reduction in clonogenic capacity relative to the sh-NC strain in
the EAU experiment (Figures 7C, D). In both the cell scratch
experiment and Transwell experiment, the strain with silenced
TRIML2 exhibited a reduction in the quantity of cells that
migrated and invaded, in comparison to the NC strain. This
suggests a decline in the capacity to migrate and invade
(Figures 7E-H).
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Discussion

Targeting regulated cell death in tumors is presently a crucial
method in cancer therapy research. Potential pharmacological
targets include many regulated cell death processes (19).
Consequently, investigating the mechanisms and roles of different
regulated cell death pathways might provide crucial groundwork for
cancer therapy (20, 21). This work included the creation of a
regulated Cell Death-Related Index (RCDRI) using the essential
genes CD36, SERPINE1, TRIML2, and GRP, which are associated
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The value of RCDRI in predicting drug sensitivity. (A) The difference in IC50 values of common chemotherapeutic drugs between the high/low
RCDRI groups. (B) The difference in IC50 values of common targeted therapeutic drugs between the high/low RCDRI groups.

with the four different types of regulated cell death. Our findings
indicate that RCDRI serves as a reliable marker for classifying
gastric cancer. Additionally, it has a strong ability to accurately
predict the prognosis and effectiveness of immunotherapy in gastric
cancer patients. Ultimately, we confirmed via laboratory testing that
suppressing TRIML2 hinders the growth and infiltration of
stomach cancer cells.

Tumors have the capacity to modify their surrounding tumor
microenvironment, enabling them to evade immune monitoring,
which is directly linked to the formation and progression of tumors
(22-24). This conclusion was reached through the utilization of the
ESTIMATE algorithm, GSEA enrichment analysis, and ssGSEA
algorithm. Subsequently, we conducted a comparison of the
expression levels of immune checkpoints between the high and
low RCDRI groups. Our findings revealed that patients in the high
RCDRI group exhibited significantly elevated levels of immune
checkpoints compared to those in the low RCDRI group. This
observation suggests that tumor cells in the high RCDRI group may
possess a highly active tumor immune microenvironment. We used
the IPS score and TIDE score of anti-PD-1 and anti-CTLA-4 to
forecast the effectiveness of immunotherapy in gastric cancer
patients categorized as high or low RCDRI group. Our findings
suggest that patients in the high RCDRI group may have superior
immunotherapy efficacy compared to those in the low RCDRI
group. Conversely, we assessed the correlation between RCDRI
and drug sensitivity by analyzing the IC50 values of commonly used
chemotherapeutic and targeted medicines. Our research revealed
that RCDRI has the ability to differentiate the responsiveness of
gastric cancer to widely used chemotherapeutic and targeted
medications. The findings indicate that RCDRI has the potential
to assess the effectiveness of immunotherapy and chemotherapy
medications in individuals diagnosed with gastric cancer. This has
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significant implications for improving the treatment of gastric
cancer patients in the future.

The Regulated Cell Death-Related Index (RCDRI) consists of
four genes associated with regulated cell death: CD36, SERPINEI,
TRIML2, and GRP. Recent studies have shown that fatty acids
promote the metastatic potential of GC cells by upregulating CD36
through increased O-GlcNAcylation levels. The increase in O-
GlcNAcylation levels promotes CD36 transcription by activating
the NF-kB pathway and enhances its fatty acid uptake activity by
directly modifying CD36 at positions S468 and T470 (25).
Additionally, multiple studies have shown that CD36 can influence
various pathological processes, such as ovarian cancer and fatty liver
disease, through ferroptosis (26, 27). CD36 promotes iron
accumulation and dysfunction in CD8+ T cells via the
p38-CEBPB-TfR1 axis (28). Serpin Family E Member 1
(SERPINEL) is highly expressed in GC tissues and metastatic
lesions. CEBPb activates SERPINE1 transcription through an
autocrine mechanism, triggering the PI3K/AKT and EMT signaling
pathways, thereby enhancing GC cells’ resistance to anoikis and
metastatic potential. Additionally, SERPINE1 binds to lipoprotein
receptor-related protein 1 (LRP1) via a paracrine mechanism,
inhibiting CD8+ T cell infiltration and function in the tumor
microenvironment (TME) and promoting M2 macrophage
polarization (29). Wang et al. found that TRIML2 regulates the
occurrence and progression of GC tumors (30). In addition, TRIML2
also enhances p53 SUMOylation and regulates the transactivation of
pro-apoptotic genes (31).Research has shown that after Gastrin
Releasing Peptide (GRP) binds to its receptor GRPR, GRPR can
interact with Toll-like receptor 4 to activate STAT1, which binds to
the promoters of MLKL and CCL2, inducing processes such as
necrotic apoptosis, necrotic inflammation, and macrophage

recruitment (32).The above literature indicates that the proteins
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and invasion abilities of TRIML2-knockdown cells compared to NC cells.

encoded by the four genes that constitute the RCDRI index jointly
influence gastric cancer progression and cell death pathways through
different pathways. For example, CD36 mainly influences fatty acid
metabolism through metabolic pathways, SERPINEL1 influences the
PI3K/AKT and EMT signaling pathways, TRIML2 is crucial for p53-
mediated apoptosis, and GRP binds to its receptor to activate
downstream pathways.

In our study, the high RCDRI group exhibited higher tumor
invasiveness and greater immune infiltration activity. However, some
current studies suggest that metastatic tumors may not respond
effectively to immunotherapy (33). Therefore, it is necessary to
explain why invasive tumors demonstrate better responses to
immunotherapy, which may be attributed to the following factors:
(1) Tumor cell characteristics: Invasive tumor cells typically exhibit
higher mutation rates, leading to the production of more tumor-
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specific antigens. These antigens can be recognized by the immune
system as “non-self” components, thereby activating immune cells to
more effectively identify and attack tumor cells. Additionally, invasive
tumor cells may undergo phenotypic and functional changes during
growth and metastasis, enhancing their immunogenicity (34-38). (2)
Tumor microenvironment: Aggressive tumors often lead to increased
infiltration of immune cells in the tumor microenvironment, and as
aggressive tumors develop, they may gradually disrupt immune-
suppressive factors in the tumor microenvironment (39-41). (3)
Mechanism of action of immunotherapy: For aggressive tumors,
due to their stronger immunogenicity, immune checkpoint inhibitors
can more effectively activate immune cells to kill tumor cells (42-45).

This study has certain limitations. First, our analysis data was
obtained from public databases, which may lead to case selection
bias. In addition, it is still necessary to collect a large amount of
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clinical case data for evaluation to further verify the accuracy of our
research results. Finally, further in vivo and in vitro experiments are
needed to verify the functional roles of the three genes (CD36,
SERPINEI, and GRP) in gastric cancer that were used to construct
the RCDRI index.

Conclusion

To summarize, our thorough examination of gastric cancer,
using the RCDRI derived from genes associated with regulated cell
death, has shown that the RCDRI is a reliable tool for predicting the
prognosis and effectiveness of immunotherapy in gastric cancer
patients. This conclusion has been confirmed by external datasets.
From the standpoint of regulated cell death, we have identified
novel prognostic and therapeutic biomarkers as well as targeted
small molecule medications for gastric cancer. These findings
provide valuable insights for the future development of precise
treatments for gastric cancer. During a time when immunotherapy
shows significant potential for treating cancer, RCDRI offers
direction for the clinical identification and personalized complete
therapy of gastric cancer.
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