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Background: Epidemiological evidence indicates that up to 50% of systemic lupus

erythematosus (SLE) patients exhibit cardiac involvement, suggesting a potential

strong association between SLE and dilated cardiomyopathy (DCM). This study

aims to identify SLE-related genes that may contribute to DCM development and

to discover potential biomarkers for early DCM diagnosis in SLE patients.

Methods: We obtained expression profile datasets for dilated cardiomyopathy

DCM and SLE from the Gene Expression Omnibus (GEO) database. Through

differential expression analysis and weighted gene co-expression network

analysis (WGCNA), we screened for candidate biomarkers shared between

DCM and SLE and constructed a diagnostic nomogram. The diagnostic

performance and effectiveness of the nomogram were evaluated using

external datasets and qPCR. Additionally, we performed single-gene set

enrichment analysis (GSEA) on key genes to elucidate their potential roles in

SLE-related DCM. Finally, we applied the CIBERSORT algorithm to assess

immune cell infiltration in both DCM and SLE patients.

Results: Through DEG and WGCNA in the DCM and SLE datasets, we identified a

total of 141 key module genes and 24 commonly expressed differentially

expressed genes. Enrichment analysis revealed that these 24 genes were

primarily involved in inflammation, cell apoptosis, and immune regulation.

Through machine learning algorithms and dataset validation, we further

identified the HERC6 and IFI44L genes as important diagnostic markers for

SLE-related DCM. Experimental validation supports the key role of HERC6,

IFI44L, and RSAD2 in SLE-related cardiac dysfunction. Additionally, we

developed a nomogram for DCM based on these two genes, and the results
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showed that both genes exhibited AUC values greater than 0.84. Simultaneously,

single-GSEA and immune infiltration analysis indicated immune dysfunction in

both DCM and SLE, with both HERC6 and IFI44L significantly associated with

immune cell infiltration. Furthermore, connectivity map (cMAP) analysis identified

a-linolenic acid as a potential therapeutic agent for treating DCM.

Conclusion: Our study identifies HERC6 and IFI44L as diagnostic markers for

DCM in SLE and suggests a-linolenic acid as a potential therapeutic agent.
KEYWORDS

systemic lupus erythematosus, immune cell infiltration, diagnostic model,
bioinformatics analysis, dilated cardiomyopathy
Introduction

Cardiac involvement in systemic lupus
erythematosus: clinical manifestations and
association with dilated cardiomyopathy

Systemic lupus erythematosus is a multi-system autoimmune

disease characterized by the production of autoantibodies, formation

of immune complexes, and inflammatory infiltration of multiple

organs. Clinically, SLE can affect one or more organs, including the

skin, kidneys, joints, nervous system, and heart (1, 2). According to

reports, the incidence of cardiac involvement in systemic lupus

erythematosus exceeds 50% (3–5). Cardiac involvement in systemic

lupus erythematosus can affect the pericardium, myocardium,

endocardium, heart valves, and coronary arteries, among others.

Pericarditis is the main manifestation of cardiac involvement in

SLE (6). Acute lupus myocarditis as the initial symptom is

extremely rare in some SLE patients. In most cases, cardiac

involvement in systemic lupus erythematosus may not exhibit

clinical symptoms, or the symptoms may be mild, atypical, and

progress slowly, which poses significant challenges in diagnosing the

disease (7). As the disease progresses, long-term myocardial

inflammatory infiltration and deposition of immune complexes can

lead to structural and functional changes in the heart. According to

Jain D, and Halushka MK in their study (8), late-stage SLE-related
SLE, Systemic lupus
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myocardial disease may present as dilated cardiomyopathy with

cardiac chamber enlargement and heart failure (9). Some

researchers believe that DCM is one of the most severe organ

involvements in SLE (3, 10, 11).
Pathogenic mechanisms of SLE-related
dilated cardiomyopathy: role of immune
complexes and inflammatory processes

The mechanisms underlying the combination of SLE and DCM

are currently not well understood. In studies where cardiac biopsies

were performed on patients with SLE and concurrent cardiac

dysfunction, histopathological examination revealed typical

manifestations of heart failure such as myocardial cell necrosis and

fibrosis. Additionally, immune complex and complement deposition

were observed in the perivascular and interstitial areas, along with

infiltration of mononuclear cells including lymphocytes,

macrophages, and plasma cells (12, 13). It is worth noting that

myocardial lesions characterized by myocardial cell necrosis and

fibrosis can progress to chronic active myocarditis or even dilated

cardiomyopathy (8). In this regard, immune response is believed to

be an important pathogenic mechanism in the development of

dilated cardiomyopathy in patients with SLE (14). Studies suggest

that myocardial damage caused by SLE is primarily an immune

complex-mediated vascular phenomenon, leading to complement

activation, inflammatory infiltration, and subsequent myocardial

injury, rather than direct involvement of the myocardium (7, 10, 15).
Filling the gap: identifying crosstalk genes
and developing diagnostic models for SLE-
related DCM

Currently, research on SLE complicated with DCM is relatively

scarce, and clinical diagnosis remains challenging. There is a need to

explore disease mechanisms and identify diagnostic biomarkers to

guide diagnosis and treatment, and to prevent the onset and
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progression of the disease. Therefore, we first utilized RNA-seq and

other biological techniques to identify potential crosstalk genes

between SLE and DCM, exploring their underlying cellular and

molecular mechanisms and assessing their interactions with

immune infi l tration. This approach enables a deeper

understanding of the pathogenic mechanisms of SLE complicated

with DCM. Additionally, we employed various machine learning

algorithms to further investigate potential diagnostic biomarkers,

establish diagnostic models, and evaluate and validate their

potential value in disease diagnosis across different cohorts,

aiming to fill the existing gaps in the literature. The strategy of

bioinformatics analysis is performed as shown in Figure 1.
Methods

Microarray data collection and processing

The two original expression profile datasets for DCM and control

groups, including GSE57338 and GSE5406, were downloaded from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/). In the same

way, the dataset for SLE and control groups is GSE81622. The

GSE57338 dataset (platform: GPL11532) includes 136 control

samples (73 male, 63 female) and 82 DCM samples (63 male, 19

female). The GSE5406 dataset (platform: GPL96) includes

16 control samples and 86 DCM samples (the original database

did not provide gender information). The GSE81622 dataset

(platform: GPL10558) includes 30 SLE samples (4 male, 26

female) and 25 healthy samples (5 male, 20 female). Inclusion

Criteria: Datasets must include gene expression data for both

SLE or DCM patients. Samples must have been obtained from

human subjects. Data must have been generated using high-

throughput sequencing technologies. Datasets must include

clinical information on the diagnosis of SLE or DCM. Exclusion

Criteria: Datasets with incomplete clinical information or missing
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gene expression data. Studies with a small sample size (less than 15

samples per group).
Weighted gene co-expression network
analysis and identification of key module
genes

The “WGCNA” package (16) was used to construct scale-free

gene co-expression networks for GSE57338 and GSE81622. The

median absolute deviation (MAD) of each gene in both datasets was

calculated, and the top 5000 genes with the highest MAD values

were selected. The “goodSamplesGenes” function was employed to

examine missing entries, low-weighted entries below a threshold,

and zero-variance genes in the data. It returned lists of samples and

genes with the largest missing values or low-weighted values. In this

experiment, the softPower for both datasets was set to 6 as the

weighting value. The correlation between the module eigengene

matrix and the sample information matrix was calculated. A

“labeledHeatmap” was used to visualize the correlation matrix

and p-values. The modules with the most significant positive or

negative correlation with the module-feature relationship were

selected. Finally, the key module genes from both datasets

were merged.
Differential expression gene analysis

DEG analysis was performed using the “Limma” package in R

software for the DCM dataset (GSE57338) and SLE dataset. The

cut-off criteria for DEGs were set as adj.P.Val < 0.05 and |log(FC)| >

0.5. Subsequently, the expression patterns of DEGs were visualized

using the “pheatmap” package and the “ggplot2” package in R

software. Heatmaps and volcano plots were generated to represent

the expression patterns of DEGs.
FIGURE 1

Flowchart of the study design.
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Gene set enrichment and variation analysis

GSEA (17) and Gene set variation analysis (GSVA) (18) can be

performed using the R packages “clusterProfi ler” and

“org.Hs.eg.db”. The “c2.cp.kegg.Hs.symbols.gmt” can be used as a

reference gene set. The permutation number can be set as 10,000,

and the significance threshold can be set as 10. Finally, the results

can be visualized using the R package “enrichplot”.
GeneMANIA database analysis

To explore the co-expression and interactions of DEGs between

SLE and DCM, we utilized the GeneMANIA database (http://

genemania.org/). We constructed networks based on co-

expression, physical interactions, shared protein domains, and

predicted interactions for the common genes (CGs). We

employed the “assigned based on query GeneMANIA” strategy to

maximize the connectivity among all input genes. Additionally, we

used linear regression to automatically select weights that optimize

the interaction of genes within the list while minimizing

interactions with genes not in the list.
Function enrichment analysis

To explore the biological functions and specific mechanisms of

the disease-related genes in SLE and DCM, we conducted GO and

KEGG pathway enrichment analysis on the input gene set (CGs)

using packages such as “org.Hs.eg.db”, “GOplot”, “enrichplot”, and

“clusterProfiler”. A significance threshold of p < 0.05 was used to

determine significant enrichment. To visualize the enrichment

analysis results, we utilized packages such as “ggplot2”, “circlize”,

“RColorBrewer”, and “ComplexHeatmap”. The results of the

functional enrichment analysis were presented using circular plots

and bubble plots.
Connectivity map analysis

CMAP (19) (https://clue.io) is a gene expression profile database

that is based on gene expression changes induced by perturbations.

It has a high predictive value in revealing the relationships between

genes and small molecule compounds. In this study, the DEGs

shared by DCM and SLE were included in the CMAP online

database to identify potential small-molecule drugs for DCM

treatment. Subsequently, the top 10 compounds with the highest

enrichment scores were identified. The compound descriptions

were used to create a Sankey diagram using the “ggalluvial” package.
Machine learning

To identify potential biomarkers and establish a diagnostic

model for DCM, we intersected the DEGs shared by DCM and
Frontiers in Immunology 04
SLE, as well as the key module genes obtained from the previous

WGCNA. Least absolute shrinkage and selection operator (LASSO),

a regression approach, facilitates variable selection to heighten the

interpretability and predictive precision of a statistical model (20).

In our study, LASSO regression was implemented using the

“glmnet” package in R, with the optimal regularization parameter

(l) selected through 10-fold cross-validation, aiming to minimize

the cross-validated error.

Random Forest (RF) offers advantages such as unconstrained

variable conditions and superior accuracy, sensitivity, and

specifcity, making it suitable for the prediction of continuous

variables and providing consistent forecasts (21). We employed

the “randomForest” package in R with 2000 decision trees (ntree =

2000) and default settings for mtry. RF assigns importance scores to

variables based on MeanDecreaseGini, which reflects the

contribution of each gene to model performance.

To ensure model robustness and mitigate overfitting, both

LASSO and RF were conducted independently on the same input

gene set, and only genes selected by both methods were retained.

Specifically, genes with non-zero coefficients in the optimal LASSO

model and MeanDecreaseGini > 6 in the RF model were considered

hub genes. These genes were subsequently used to construct a

diagnostic model for SLE-associated DCM.
Validation of the expression levels of key
genes in DCM and SLE

The key genes selected based on LASSO regression and RF

algorithm analysis were further evaluated for their diagnostic value.

A comparison and visualization analysis of the gene expression

levels was performed in both the DCM and SLE datasets using the

“rstatix,” “ggsignif,” “ggplot2,” and “ggpubr” packages. This analysis

aimed to identify genes that were commonly upregulated or

downregulated in both DCM and SLE patients.
Construction of nomograms and
evaluation of predictive models for
diagnostic markers

Further screening was conducted by performing logistic

regression analysis on HERC6, IFI44L, and RSAD2 genes, which

exhibited similar expression trends. These genes were identified as

common hub genes for both diseases. The “rms” package was used

to construct a column line plot. Receiver Operating Characteristic

(ROC) curve analysis was performed to evaluate the performance of

each hub gene and the column line plot in DCM diagnosis by

calculating the area under the curve (AUC). Additionally, ROC

curve analysis was conducted to determine if the decision based on

the column line plot was beneficial for DCM diagnosis. The

efficiency of the column line plot in predicting DCM associated

with SLE was evaluated using a calibration curve and decision curve

analysis (DCA). Finally, the predictive efficiency of the column line

plot was validated in an external DCM dataset, GSE5406.
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Single gene GSEA

GSEA and visualization of the model genes obtained from the

aforementioned methods were performed using the “org.Hs.eg.db,”

“ggsci,” “patchwork,” and “ggplot2” packages in the GSE57338

dataset. The genes were grouped based on their expression levels,

and the significant pathways that influenced the disease

were evaluated.
Immune infiltration analysis

The quantity of immune cell infiltration in the gene expression

profiles of DCM and SLE was assessed using the “CIBERSORT”

package. The abundance and proportion of immune infiltration for

each sample were visualized as bar plots using the “ggplot2”

package. The differences in the proportions of 22 immune cell

types between DCM and normal samples were compared using the

Wilcoxon test, and the results were displayed using a stacked

histogram generated by the “ggplot2” package. Furthermore, the

associations among the 22 infiltrating immune cell types were

visualized using the “corrplot” package, where a p-value < 0.05

was considered statistically significant.
qPCR validation

Total RNA was extracted from H9C2 cells following the

Doxorubicin intervention using a standard TRIzol method. The

purity and concentration of the RNA were assessed using a

NanoDrop spectrophotometer. cDNA was synthesized from 1 μg

of RNA using a reverse transcription kit according to the

manufacturer’s protocol. qPCR was performed using SYBR Green

Master Mix on an ABI 7500 real-time PCR system. The target genes

validated in this study included PIK3IP1, IFI44L, RSAD2, and

HERC6, with b-Actin used as an internal control. The primer

sequences are shown in Table 1.
Statistical analysis

Continuous variables are expressed as the mean ± SD.

Categorical variables are expressed in frequency and percentage

(%). Analysis of variance was applied to compare intergroup

mRNAs levels. To characterize the diagnostic performance of the
Frontiers in Immunology 05
mRNAs candidate, ROC curves were applied together with a logistic

regression model to determine the AUC and the specificity and

sensitivity of the optimal cutoffs. ROC curves were generated by

plotting sensitivity against 100-specificity. Data were presented as

the AUC and 95%CI. The statistical software package R (www.r-

project.org) was used for all analyses.
Results

Weighted gene co-expression network
analysis and identification of key module
genes

To explore the key genes in DCM and SLE, we conducted

WGCNA to identify the most relevant gene modules in DCM and

SLE samples. In the DCM-WGCNA analysis, a soft-thresholding

power (softPower) of 6 was selected based on the scale-free

topology criterion. Specifically, softPower = 6 was the lowest

power at which the scale-free topology fit index (R²) exceeded

0.85, indicating that the resulting network conformed to a scale-

free topology. This resulted in the generation of 6 modules.The

cluster dendrogram of the modules is presented in Figure 2A.

Additionally, we investigated the correlation between DCM and

gene modules (Figure 2B). The data revealed that the cyan module

exhibited the highest positive correlation with DCM (2541 genes, r

= 0.64, p = 1e−26). Based on this, the cyan module was considered

as the key module for subsequent analysis. We also obtained 5

modules through the SLE-WGCNA analysis (Figures 2C, D). The

black module exhibited the highest positive correlation with SLE

(1025 genes, r = 0.72, p = 1e−09) so it was considered the key

module for further analysis. Additionally, we identified the

intersection of module genes, resulting in 141 shared module

genes (Figure 2E).
Differentially expressed genes analysis

DEG analysis was performed using the “Limma” package in R

software for the DCM dataset (GSE57338) and SLE dataset. The

cut-off criteria for DEGs were set as adj.P.Val < 0.05 and |log(FC)| >

0.5. Differential analysis between DCM and normal samples

revealed a total of 489 DEGs, including 269 upregulated genes

and 220 downregulated genes. The expression patterns of these

DEGs in the DCM dataset were depicted using volcano plots and
TABLE 1 Primer sequences.

Species Forward Reverse

HERC6 Rattus norvegicus TGGAGGCAGGAACTGGTCTT CCTGAATTGGTTCTGGCCGT

IFI44L Rattus norvegicus AGCATCACCACGCAGTACAA ATTGGCTCACGTGGGTTGAA

RSAD2 Rattus norvegicus GCCTCCTGATTGAGGGTGAG CAGTTCAGAAAGCGCATATATTCAT

PIK3IP1 Rattus norvegicus ACACTGGCTGTTCAGTCACC CCCAGAAGCAGCCTCCAGAT
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heatmaps (Figures 3A, B). Similarly, there are 401 DEGs between

SLE and normal samples, including 213 upregulated genes and 188

downregulated genes (Figures 3C, D).To identify the Common

genes (CGs) expressed differentially in both DCM and SLE, the

VennDiagram package was utilized, revealing 24 CGs (Figure 3E).

Furthermore, by intersecting the CGs with the Module genes, we

identified 4 Hub genes (Figure 3F).
Expression direction of CGs in DCM or SLE
datasets

The expression patterns of CGs were visualized using the

“pheatmap” package in R software. The expression patterns of

CGs in DCM patients and normal subjects were shown in

Figure 4A. The expression pattern of CGs in SLE patients and

normal controls is shown in Figure 4B.
Frontiers in Immunology 06
Gene set enrichment and variation analysis

The GSEA indicated that the DEGs in the DCM dataset were

mainly involved in pathways related to cell apoptosis and immunity,

including “Graft Versus Host Disease,” “Complement And

Coagulation Cascades,” “lograft Rejection,” “Apoptosis,” “Antigen

Processing And Presentation,” and “Sphingolipid Metabolism.”

Additionally, enrichment was observed in pathways such as “B

Receptor Signaling Pathway” and “Mapkaling Pathway” (Figures 4C,

D). In the SLE dataset, the DEGs were primarily associated with

pathways related to cell cycle and immunity, including “Natural Killer

Cell Mediated Cytotoxicity”, “Graft Versus Host Disease”, “Antigen

Processing And Presentation,” “T Cell Receptor Signaling Pathway,”

“Oxidative Phosphorylation,” and “Cell Cycle” (Figures 4E, F). Among

them, “Graft Versus Host Disease”, “Antigen Processing And

Presentation Autoimmune”, “Thyroid Disease Parkinsons Disease”

are pathways shared by both datasets.
FIGURE 2

Identification of key module genes in the integrated DCM and SLE datasets using WGCNA. (A, C) Hierarchical clustering dendrogram of DCM/SLE
gene modules, with different colors representing different modules. (B, D) Correlation between module eigengenes and DCM/SLE, where blue
indicates a negative correlation and red indicates a positive correlation. (E) Venn diagram showing that the cyan module is identified as the key
module in the DCM dataset, the black module in the SLE dataset. The intersection of these two modules yields the key module genes termed
Modules genes.
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The GSVA showed that the DCM dataset was predominantly

involved in pathways such as “Vegf Signaling Pathway,” “Sphingolipid

Metabolism,” “Apoptosis,” “Graft Versus Host Disease,” “Renin

Angiotensin System,” and “Antigen Processing And Presentation”

(Supplementary Figure 1A). In the SLE dataset, the main pathways
Frontiers in Immunology 07
included “Glycine Serine And Threonine Metabolism,” “T Cell

Receptor Signaling Pathway,” “Antigen Processing And Presentation,”

“Graft Versus Host Disease,” “Natural Killer Cell Mediated Cytotoxicity,”

“Amino Sugar And Nucleotide Sugar Metabolism,” “Citrate Cycle TCA

Cycle,” and “Glycolysis Gluconeogenesis” (Supplementary Figure 1B).
FIGURE 3

DEG analysis of DCM and SLE datasets. (A, C) Heatmap of the top 25 upregulated and 25 downregulated DEGs in the DCM/SLE dataset. (B, D)
Volcano plot displaying DEGs in the DCM/SLE dataset, with green indicating downregulation and red indicating upregulation. (E) Venn diagram
intersection of DEGs in DCM and SLE datasets, named CGs. (F) Venn diagram intersection of CGs and Module genes, named Hub genes.
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GeneMANIA database analysis

To uncover potential pathogenic genes and mechanisms in SLE-

related DCM, we utilized the GeneMANIA database to analyze the

interactions among the co-expressed DEGs shared between SLE and

DCM. The nodes represent our uploaded genes as well as genes

associated with our genes obtained from the GeneMANIA database

search. The lines represent different network categories between

them. In our network, there are a total of 44 genes, including 24

uploaded genes and 20 related genes, with a total of 1148 connections,
Frontiers in Immunology 08
including co-expression, physical interaction, shared protein

domains, and predicted networks (Supplementary Figure 1C).
Function enrichment analysis

To gain a better understanding of the functions and specific

mechanisms of these pathogenic genes, we performed functional

enrichment and KEGG pathway analyses on the 14 co-expressed

DEGs. Biological Process (BP) analysis of GO revealed that the
FIGURE 4

Results of GSEA in the DCM and SLE datasets. (A, B) Heatmap displaying the differential analysis of CGs in the DCM dataset (GSE57338) and SLE
dataset (GSE81622). (C, D) GSEA was performed on the DCM dataset (GSE57338). (E, F) GSEA was conducted on the SLE dataset (GSE81622).
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pathogenic genes in SLE-related DCM are mainly enriched in

processes such as “mononuclear cell migration,” “leukocyte

chemotaxis,” “T cell differentiation,” and “T cell mediated

immunity.” In the Cellular Component (CC) analysis, these

genes were mainly located in the “external side of the plasma

membrane” and “secretory granule membrane.” In terms of

Molecular Function (MF) analysis, the results indicated that

“immune receptor activity,” “chemokine receptor binding,” and

“complement receptor activity”were the most relevant items among

the pathogenic genes (Supplementary Figure 1D). KEGG

pathway analysis showed that the pathogenic genes in SLE-

related DCM are closely associated with pathways such

as “Complement and coagulation cascades,” “Viral protein

interaction with cytokine and cytokine receptor,” “TNF signaling

pathway,” “Cytokine-cytokine receptor interaction,” and “Chemokine

signaling pathway” (Supplementary Figure 1E).
Finding candidate small molecule
compounds for DCM treatment

To explore potential small-molecule drugs that may have

therapeutic effects on SLE-related DCM patients, we input the

DEGs shared between SLE and DCM into the CMAP database to

predict small-molecule compounds that can reverse the expression
Frontiers in Immunology 09
changes of pathogenic genes in DCM. Using the CMAP website

(https://clue.io/query) and conducting predictions with CGs, a total

of 8559 results were obtained, with 2429 compounds. After

excluding drugs without targets, the top ten compounds with the

lowest negative scores based on the median tau score were selected.

These compounds include tadalafil, alpha-linolenic-acid, SJ-172550,

diethylstilbestrol, latrepirdine, equilin, clofibrate, PKCbeta-

inhibitor, alpha-estradiol, and chloroquine. They are considered

potential therapeutic agents for SLE-related DCM treatment

(Figure 5A). The targeted pathways and chemical structures of

these ten compounds are described in Figures 5B, C, respectively.
Identification of key genes with diagnostic
value through machine learning

Due to the potentially crucial role of DEGs shared between

DCM and SLE in SLE-related DCM patients, four core genes were

identified at the intersection of key module genes in WGCNA for

both diseases and the DEGs. The LASSO regression algorithm was

applied to these four genes, revealing their significance as potential

candidate genes for diagnosing SLE-related DCM patients

(Figures 6A, B). To further narrow down the scope of diagnostic

biomarkers, the RF machine learning algorithm was also employed.

The variable importance of each gene was used to rank the four core
FIGURE 5

Screening of potential small molecule compounds for the treatment of DCM using CMAP analysis. (A) Heatmap displaying the top 10 compounds
with the highest enrichment scores based on CMAP analysis in 9 cell lines. (B) Description of the top 10 compounds. (C) Illustration of the chemical
structures of these 10 compounds.
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genes, and genes with MeanDecreaseGini > 6 were selected

(Figures 6C, D). Interestingly, these four genes remained

influential in diagnosing SLE-related DCM according to the

RF model.
Validation of the expression levels of key
genes in DCM and SLE

As shown in Figure 6E, in the DCM dataset GSE57338, the

expression levels of HERC6, IFI44L, PIK3IP1, and RSAD2 were

significantly higher in DCM patients compared to the control

group (P<0.05). In Figure 6F, in the SLE dataset GSE81622,
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the expression levels of HERC6, IFI44L, and RSAD2 were

significantly higher in SLE patients compared to the control

group (P<0.05); whereas the gene expression level of PIK3IP1

was significantly lower in SLE patients compared to the control

group (P<0.05). Therefore, the expression levels of HERC6,

IFI44L, and RSAD2 were upregulated in both DCM and

SLE patients.

Furthermore, we validated the expression of the aforementioned

genes in doxorubicin-induced H9C2 cardiomyocytes. Compared to

the control group, the model group showed significantly elevated

expression levels of HERC6, IFI44L, and RSAD2 (P<0.05), with

HERC6 being the most pronounced, while PIK3IP1 expression

exhibited no significant difference (Figures 6G–J).
FIGURE 6

Screening of potential diagnostic biomarkers for SLE-associated DCM using machine learning methods. (A, B) Lasso regression analysis was
performed on four hub genes to calculate the minimum value (A) and l value (B) of diagnostic biomarkers. (C, D) The RF algorithm was applied to
analyze the four hub genes and a random forest plot was generated. Diagnostic biomarkers were selected based on MeanDecreaseGini scores
greater than 6. (E, F) Expression profiles of the four hub genes in the DCM dataset GSE57338 and SLE dataset GSE81622. (G–J). Relatively mRNA
expression levels of HERC6, IFI44L, PIK3IP1 and RSAD2 in doxorubicin-induced H9C2 cardiomyocytes (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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Construction of the nomogram and
evaluation of the diagnostic biomarker
prediction model

To better facilitate diagnosis and prediction, we conducted

logistic regression analysis on HERC6, IFI44L, and RSAD2, which

exhibited similar expression trends. After further screening, we

identified two key core genes, namely HERC6 and IFI44L. Based on

this, we constructed a Nomogram (Figure 7A). The calibration

curve of the constructed nomogram diagnostic model showed that

the predicted probabilities were nearly identical to those of the ideal

model, with a C-index of 0.900 (95% CI: 0.862-0.939) (Figure 7B).

We evaluated the AUC values of each core gene and the nomogram

using ROC to determine their sensitivity and specificity in

diagnosing SLE-related DCM. As expected, the AUC values of

both core genes were greater than 0.84, while the AUC value of

the nomogram was higher than that of each individual core gene,

suggesting that the nomogram may have a strong diagnostic value

for SLE-related DCM (Figure 7C). Additionally, decision curve

analysis (DCA) was performed to assess the clinical utility of the

nomogram. The results showed that decision-making based on the

nomogram model may contribute to the diagnosis of SLE-related

DCM (Figure 7D).

To validate the nomogram, we used the GSE5406 dataset from

the GEO database, which also included DCM patients, as an

external validation set. The ROC curve, DCA, and calibration

curve of the nomogram all indicated good diagnostic performance

for SLE patients with DCM (Figures 7E–G).
Single gene GSEA

In the GSEA analysis on the DCM dataset, 81 pathways,

including “B cell receptor signaling pathway,” “Complement and

coagulation cascades,” “Apoptosis,” “Neutrophil extracellular trap

formation,” “Ferroptosis,” “Th17 cell differentiation,” and “Cellular

senescence,” were identified as regulatory targets of IFI44L

(Figures 8A–F). In the single-gene GSEA analysis of MID1IP1,

114 pathways were determined as regulatory targets of HERC6,

which also included “B cell receptor signaling pathway,”

“Complement and coagulation cascades,” “Apoptosis,”

“Neutrophil extracellular trap formation,” “Ferroptosis,” “Th17

cell differentiation,” and “Cellular senescence” (Figures 8G–L).
Infiltration of immune cells in DCM and its
correlation with invasive immune cells
analysis

Functional and pathway analysis of DCM and SLE-related

pathogenic genes revealed a close association with inflammation

and immune processes. To investigate the result, we utilized the

CIBERSORT algorithm to infer the characteristics of immune cells

and explore the correlation between immune cell infiltration and

immune regulation as well as diagnostic biomarkers in DCM and
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SLE. Figure 9A exhibits the proportions of 22 immune cell types in

DCM and normal samples from the GSE57338 dataset, showing

significant differences in 10 immune cell subtypes. Compared to the

control group, DCM exhibited higher proportions of Plasma cells, T

cells CD8, T cells CD4 naive, NK cells activated, Macrophages M0,

and Mast cells resting, while lower proportions of B cells naive, T

cells regulatory (Tregs), Macrophages M2, and Neutrophils.

Similarly, we found significant differences between SLE and

normal samples across 10 immune cell subtypes (Figure 9C).

Compared to the control group, SLE exhibited higher proportions

of B cells naive, Plasma cells, T cells regulatory (Tregs), Monocytes,

Macrophages M0, Macrophages M1, Dendritic cells activated, and

Mast cells activated, while lower proportions of T cells CD4

memory resting and NK cells resting. Finally, we discovered that

both key genes, IFI44L and HERC6, were significantly correlated

with immune cell accumulation in both DCM and SLE

(Figures 9B, D).
Discussion

Cardiac involvement is one of the three major causes of

mortality in SLE (22). SLE can invade the myocardium, leading to

long-term inflammatory infiltration and deposition of immune

complexes, which can result in dilated cardiomyopathy (23).

However, early myocardial damage is often insidious and difficult

to identify based on clinical symptoms alone, despite the use of

endomyocardial biopsy, which still has low sensitivity (24, 25).

When patients seek medical attention due to the appearance of

symptoms, myocardial damage has often already progressed to

dilated cardiomyopathy, subsequently leading to heart failure.

Clinical studies have conducted follow-ups on patients with lupus

myocarditis and reported a mortality rate of 10% after a 3-year

follow-up period (26). Early identification and diagnosis of SLE

with concurrent dilated cardiomyopathy are crucial steps in halting

disease progression and improving prognosis. Our study utilized

various bioinformatics techniques to uncover the potential

pathogenic mechanisms of inflammation and immune response

in SLE-associated DCM. It also developed a diagnostic nomogram

based on IFI44L/HERC6 and identified alpha-linolenic acid as a

potential therapeutic drug for SLE-associated DCM.

In this study, we conducted a comprehensive analysis of

transcriptional data from cardiac tissue of patients with DCM

and peripheral blood mononuclear cells (PBMCs) from patients

with SLE. DCM is considered an organic lesion, thus tissue samples

offer greater accuracy in predicting transcriptional variations

associated with lesions compared to circulating samples. While

SLE is marked by abnormal immune activation and circulating

organ damage. Blood PBMCs, comprising diverse immune cells,

provide crucial transcriptional insights into SLE’s effects on target

organs. Using the expression matrix of SLE and DCM genes, we

identified a total of 24 potential interacting genes (CG). Functional

analysis revealed that these CGs were primarily enriched in immune

and inflammatory-related pathways, closely associated with

immune cell migration and chemotaxis, immune complement
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1606920
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1606920
and receptor activity, as well as inflammatory infiltration. Previous

studies suggest that autoimmune reactions and inflammation

contribute to myocarditis and its progression to dilated

cardiomyopathy, with persistent autoimmune activity underlying

its development (27). SLE, as a systemic autoimmune disease, is

characterized by tissue-specific alterations that lead to T-cell-

dependent production of anti-nuclear antibodies. These

alterations are accompanied by immune complex deposition,

expression of chemotactic factors, and activation of T
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lymphocytes, resulting in the production of cytokines (28). In

SLE-induced myocardial damage, T cells, particularly CD4+ T

cells, play a key role by releasing inflammatory mediators like

TNF-a and IFN-g, causing cardiac inflammation and injury (29).

This study found CD4+, CD8+ T cells, and activated macrophages

in the hearts of dilated cardiomyopathy (DCM) patients, consistent

with previous findings. Dysregulated B cells increase autoantibody

and cytokine production, activating complement and forming

immune complexes that damage cardiac tissue (30). Reduced CR1
FIGURE 7

Development and efficacy evaluation of a diagnostic line graph model. (A) After performing logistic regression on three genes (HERC6, IFI44L, and RSAD2),
further screening identified HERC6 and IFI44L as the two key genes for constructing the diagnostic line graph. (B) Calibration curves of the column line
graph model predicted in SLE-associated DCM. The dashed line labeled “Ideal” represents the standard curve. The dotted line labeled “Apparent” represents
the uncalibrated prediction curve, while the solid line labeled “Bias-corrected” represents the calibrated prediction curve. (C) ROC of the diagnostic
performance of the two candidate biomarkers (HERC6 and IFI44L). (D) DCA for the nomogram model. The black line is marked as “None”, which stands for
the net benefit of the assumption that no patients have DCM. The grey line is marked as “All”, which indicates the net benefit of the assumption that all
patients have DCM, and the purple line is marked as “Nomogram”, and represents the net benefit of the assumption that SLE-related DCM is identified
according to the diagnostic value of DCM predicted by the nomogram model. (E–G) Validation of the calibration curve, ROC curve, and decision curve
analysis (DCA) of the column line graph in the external validation set GSE5406 for DCM.
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in SLE impairs immune complex clearance, leading to sustained

inflammation (31). The dysregulation of immune complex

dissolution and clearance further exacerbates the accumulation of

immune complexes in the myocardium, leading to sustained

myocardial inflammation. Through signaling from chemokine

receptors, monocyte macrophages can be guided to myocardial

tissue, participating in the regulation of inflammatory responses

and cellular engulfment, clearing damaged cells and immune

complexes. In a spontaneous SLE mouse model, infiltration of

monocytes in the myocardium and focal necrosis of muscle fibers

can be observed (32). In SLE cardiac pathology, lymphocytes,

macrophages, plasma cells, and immune complexes (IgG, C1q)
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infiltrate the myocardium, intensifying inflammation and

worsening cardiac function. This process can eventually lead to

dilated cardiomyopathy and heart failure (33).

Using CIBERSORT, we further analyzed the immunological

patterns of SLE and DCM. The results revealed a higher proportion

of Plasma cells and macrophage M0 infiltration in both DCM and

SLE samples. Additionally, there was a disruption in the balance

between macrophage subtypes in both SLE and DCM. In SLE, there

was a significant increase in the infiltration of pro-inflammatory M1

macrophages, while in DCM samples, there was a notable decrease

in the infiltration of anti-inflammatory M2 macrophages.

Furthermore, the results indicated a decrease in the proportion of
FIGURE 8

Single gene GSEA. (A–F) GSEA results of IFI44L in the DCM dataset GSE57338. (G–L) GSEA results of HERC6 in the DCM dataset GSE57338.
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regulatory T cells (Tregs) in DCM samples. Interestingly, an

elevated proportion of Tregs was observed in SLE samples. Tregs

are crucial for suppressing pathological immune responses and

maintaining immune homeostasis (34). A low number of Tregs can

lead to immune hyperactivation (35), which aligns with the reduced

infiltration of Tregs in DCM. However, the increase in SLE Tregs is

puzzling, as studies show inconsistent Treg levels in SLE patients

across different populations. These discrepancies may stem from

the lack of specific Treg markers and the functional complexity of

various Treg subtypes (36).

To ensure the robustness of our results, we applied We apply a

variety of machine learning algorithms to screen for core genes. The

results identified HERC6 and IFI44L as key genes for developing a

diagnostic model. HERC6, an E3 ubiquitin ligase, is crucial in immune

regulation and antiviral defense, with its abnormal expression linked to

immune hyperactivation in SLE with DCM (37) (38),. IFI44L, an

interferon-regulated gene, plays a role in regulating viral replication

and dissemination (39). In addition to its antiviral role, IFI44L is also

associated with biological processes such as cell apoptosis and immune

regulation (40, 41). Both genes correlate with immune cell

accumulation in SLE. Notably, HERC6 and IFI44L may

synergistically contribute to immune dysregulation in SLE-DCM.

HERC6 can enhance the degradation or modification of key

immune signaling molecules via ubiquitination, thereby influencing

the interferon pathway. IFI44L, as an interferon-stimulated gene,

amplifies type I interferon signaling and downstream immune
Frontiers in Immunology 14
responses. Their concurrent upregulation may form a positive

feedback loop, promoting sustained immune activation, excessive

cytokine release, and tissue inflammation in cardiac tissue. This

interaction potentially drives the chronic inflammatory environment

observed in SLE-associated cardiomyopathy.

Current diagnostic paradigms for SLE-related cardiac involvement

primarily depend on imaging techniques including echocardiography

and cardiac MRI, supplemented by nonspecific biomarkers such as

troponin and NT-proBNP (42, 43). These conventional approaches

exhibit notable constraints in early disease detection. Echocardiographic

abnormalities typically manifest only after considerable myocardial

damage has already ensued. Although cardiac MRI demonstrates

greater sensitivity, its high cost precludes widespread use as a

screening tool. While serological markers offer clinical accessibility,

their limited disease specificity and weak correlation with subclinical

myocardial injury reduce diagnostic reliability.

Our nomogram demonstrated strong diagnostic performance for

SLE-induced DCM, confirmed through validation with external

datasets. Moreover, experimental validation supported the

involvement of HERC6, IFI44L, and RSAD2 in SLE-related cardiac

dysfunction, with HERC6 showing the most pronounced upregulation

in doxorubicin-treated H9C2 cardiomyocytes. In contrast, the

expression of PI3K3IP1 remained unchanged, suggesting its role

may be limited or context-dependent in this pathological process.

This study also screened potential small molecule drugs with

therapeutic effects on SLE-associated DCM. The results showed that
FIGURE 9

Immune cell infiltration analysis in DCM and SLE (A, C) The box plot displays a comparison of 22 immune cell types between the DCM/SLE group
and the control group. (B, D) At a threshold of p < 0.05, it indicates the association between differentially infiltrating immune cells in DCM/SLE and
two hub genes. (*p < 0.05, **p < 0.01, ***p < 0.001).
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tadalafil, alpha-linolenic acid, SJ-172550, diethylstilbestrol,

latrepirdine, equilin, clofibrate, PKCbeta-inhibitor, alpha-

estradiol, and chloroquine are potential therapeutic drugs. Among

them, alpha-linolenic acid exhibited a significant negative score in

cMAP analysis, indicating its potential efficacy in reversing the

expression changes of SLE-associated pathogenic genes in DCM.

Alpha-linolenic acid is an omega-3 polyunsaturated fatty acid

(PUFA) belonging to the linolenic acid family. It can be

converted into other longer-chain omega-3 fatty acids in the

human body. Numerous studies have shown that alpha-linolenic

acid, as a precursor of omega-3 fatty acids, can reduce the risk of

cardiovascular diseases and exert various anti-inflammatory and

antiplatelet aggregation effects in conditions like atherosclerosis,

viral myocarditis, and systemic lupus erythematosus (44–46).

Mechanistically, alpha-linolenic acid has been reported to inhibit

the NF-kB signaling pathway and reduce the expression of pro-

inflammatory cytokines such as IL-6 and TNF-a (47). It may also

modulate the activity of peroxisome proliferator-activated receptors

(PPARs), which play a critical role in suppressing inflammation and

improving endothelial function (48). These pathways are highly

relevant to the inflammatory and immune dysregulation observed

in SLE-associated cardiac injury. Therefore, as a precursor of

omega-3 fatty acids, alpha-linolenic acid may exert a positive

impact on the treatment of SLE-associated DCM by regulating

cardiac inflammation responses and cellular signaling pathways.

However, further experimental validation and clinical research are

needed to elucidate its specific mechanisms and effectiveness in the

treatment of SLE-associated DCM.

Despite the valuable findings of this study, there are some

limitations to consider: (1) Data sources and sample size: This

study primarily relied on RNA-seq data from public databases,

which may affect data quality and reliability. The relatively small

sample size and the significant gender imbalance in the GSE57338

dataset may introduce sex-related bias in gene expression analysis

and limit the generalizability of the findings. Moreover, although we

applied standard normalization and batch effect correction methods,

residual batch effects from different datasets may still confound the

results. (2) Validation of biomarkers: HERC6 and IFI44L were

selected as candidate biomarkers in this study, but their validation

and application in clinical practice require further support from

clinical experiments. (3) Limitations of cMAP analysis: While CMAP

analysis provides clues for potential therapeutic drugs, its results are

solely based on existing datasets and require further validation in

laboratory and clinical settings. (4) Insufficient mechanistic insights:

This study did not delve into the mechanisms underlying SLE

complicated with DCM. And The use of transcriptional data from

different tissue sources, cardiac tissue for DCM and PBMCs for SLE,

may introduce bias and limit the direct comparability of the results.

Further research is needed to explore the cellular and molecular

mechanisms in the future. (5) Model limitations: Functional

validation was conducted using H9C2 cells, a rat cardiomyoblast

cell line that does not fully replicate the physiological characteristics

of adult human cardiomyocytes (49). Therefore, findings from this

model should be interpreted with caution and further verified in

more clinically relevant human-derived systems.
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In future research, efforts should focus on increasing sample

sizes, performing systematic experimental validations, and further

investigating the molecular mechanisms underlying SLE-associated

DCM. In addition, the clinical applicability of the proposed

diagnostic model based on immune-related gene expression

profiles should be evaluated in prospective studies. Compared

with conventional diagnostic approaches such as imaging

techniques and nonspecific serological markers, which often lack

sensitivity in early-stage disease, this transcriptomic model may

provide a complementary tool for the early detection of SLE-related

cardiac involvement. Potential clinical applications include the

development of a blood-based PCR assay or incorporation of the

model into artificial intelligence–driven risk assessment systems.

However, these strategies require further validation across diverse

clinical cohorts to ensure their feasibility and reliability.
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(A) Venn diagram of GSEA results for DCM and SLE datasets. (B) GSVA were

performed on the DCM dataset (GSE57338). (C)GSVA were performed on the
SLE dataset (GSE81622). (D) GeneMANIA database analysis resulted in a

network consisting of 44 genes and 1148 connections, including Co-
expression, Physical Interaction, Shared protein domains, and Predicted

networks. (E) The circular plot illustrated the GO enrichment analysis. (F)
The chord diagram represented the KEGG enrichment analysis.
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