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immune-related genes and 
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based on transcriptomic 
data and Mendelian 
randomization analysis 
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Yunpeng He1, Jian Wu1, Yuan Zhao1, Yuanjian Niu1 

and Lijun Wang1* 

1Department of Urinary Surgery, Anning First People’s Hospital Affiliated to Kunming University of 
Science and Technology, Anning, China, 2Faculty of Life Science and Technology, Kunming University 
of Science and Technology, Kunming, China 
Background: Despite advancements in clinical treatment modalities, immune-

related molecular mechanisms underlying bladder cancer remain unclear. 
Therefore, this study aimed to identify immune-related biomarkers and 
potential therapeutic targets for bladder cancer, thereby contributing to the 
development of novel therapeutic interventions. 

Methods: By integrating data from The Cancer Genome Atlas (TCGA), Gene 
Expression Omnibus (GEO), and genome-wide association study (GWAS) 
databases, combined with differential expression analysis, weighted gene co-
expression network analysis (WGCNA), and Mendelian randomization analysis, 
key immune-related genes in bladder cancer were identified. The correlation 
between these key genes and immune cell infiltration was also analyzed. The 
diagnostic efficacy of the key genes was evaluated using Receiver Operating 
Characteristic (ROC) curves and validated using independent public datasets. 
Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) was 
performed to confirm the potential value of these molecular markers in 
bladder cancer. 

Results: Differential expression analysis revealed 2,033 bladder cancer-related 
genes. WGCNA identified 1,391 immune-related genes and Mendelian 
randomization analysis identified 187 candidate genes with causal relationships. 
Eight significantly downregulated genes were identified: LIMS2, TP53INP2, 
IRAK3, STX2, CYP27A1, IL11RA, KCNMB1, and PDLM7. These genes were 
significantly associated with immune cell infiltration and exhibited good 
diagnostic efficacy, as demonstrated by ROC curve analysis and validated in 
independent public datasets. Furthermore, qRT-PCR experiments showed that 
LIMS2, IRAK3, STX2, IL11RA, KCNMB1, and PDLM7 were significantly 
downregulated in the tumor group, consistent with the bioinformatic analysis 
results, suggesting their potential clinical value. 
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Conclusion: This study identified six immunoregulatory genes that were 
significantly negatively associated with bladder cancer risk. These genes may 
serve not only as potential biomarkers for bladder cancer immunity but also 
contribute to a deeper understanding of the molecular mechanisms of 
bladder cancer. 
KEYWORDS 

bladder cancer, Mendelian randomization analysis, WGCNA, CIBERSORT, biomarkers, 
potential therapeutic targets 
1 Introduction 

Bladder cancer (BCa) is among the ten most common cancers 
globally, exhibiting high incidence and mortality rates worldwide 
and imposing a substantial burden on healthcare systems (1, 2). 
Globally, studies have reported a 5-year prevalence of 1.72 million 
cases, 573,000 new cases, and 213,000 deaths from bladder cancer 
(2). Non-muscle invasive bladder cancer (NMIBC; Ta, T1) and 
carcinoma in situ (CIS) generally have a favorable prognosis; 
however, up to 40% of cases progress to muscle-invasive bladder 
cancer (MIBC; T2+) depending on the clinical risk group (3). Most 
bladder cancers are urothelial carcinomas, with approximately 75% 
of newly diagnosed patients presenting with NMIBC and 25% 
presenting with MIBC or metastatic disease (4). Approximately 
50% of NMIBC cases are low-grade, whereas most MIBC or 
metastatic tumors are high-grade (5). In recent decades, rare 
variants of bladder cancer have been increasingly recognized, 
including micropapillary, plasmacytoid, nested, sarcomatoid, 
microcystic, neuroendocrine, squamous, and adenocarcinoma 
subtypes (6). Statistically, men are approximately three–four times 
more likely to develop bladder cancer than women; however, 
women often present with a poorer prognosis at later stages (7). 
Furthermore, owing to the lack of novel therapies and preventative 
measures, the detrimental impact of bladder cancer on human 
health significantly surpasses that of other cancers (8). 

Early diagnosis and aggressive treatment are crucial to maximize 
the delay or control of bladder cancer progression. Common 
treatments for bladder cancer include surgical resection, 
radiotherapy, and chemotherapy (9, 10). Although these methods 
can control bladder cancer progression to some extent, they have 
limitations. In recent years, immunotherapy has emerged as a novel 
treatment modality, particularly with the widespread use of immune 
checkpoint inhibitors (ICIs), which not only improve treatment 
efficacy but also reduce the risk of recurrence and metastasis (11), 
offering new hope for bladder cancer patients. In-depth research on 
the molecular mechanisms underlying bladder cancer has propelled 
targeted therapy to play an increasingly important role in treatment 
strategies. Compared with traditional chemotherapeutic agents, 
molecularly targeted drugs exhibit higher specificity, primarily 
affecting cancer cells, thus minimizing damage to normal tissues 
02 
(12). However, achieving effective immunotherapy or targeted 
therapy for bladder cancer requires identification of molecular 
markers and therapeutic targets. To date, PD-1/PD-L1 inhibitors, 
the FGFR inhibitor erdafitinib, and the nectin-4-targeted antibody-
drug conjugate enfortumab vedotin (Padcev) have been approved for 
the treatment of bladder cancer (13, 14). Despite significant 
advancements in cancer biology and treatment, the prognosis of 
patients with bladder cancer remains unsatisfactory (15). Therefore, a 
thorough understanding of the molecular characteristics of bladder 
cancer, particularly the key molecular pathways and genetic 
mutations that drive tumorigenesis and contribute to drug 
resistance, is essential for identifying novel therapeutic targets. 
Developing more effective drugs based on these new targets will 
bring new therapeutic hope to bladder cancer patients. 
2 Materials and methods 

2.1 Experimental design 

We downloaded bladder cancer-related datasets from The 
Cancer Genome Atlas (TCGA) database and extracted 
differentially expressed genes (DEGs). Next, we utilized weighted 
gene co-expression network analysis (WGCNA) to extract 2033 
immune-related genes from the bladder cancer dataset GSE13507. 
We then employed a two-sample Mendelian randomization (MR) 
analysis using data from the genome-wide association study 
(GWAS) database (ebi-a-GCST90018817) to explore the causal 
relationship between expression quantitative trait loci (eQTLs) 
and bladder cancer. By overlapping bladder cancer-associated 
genes, bladder cancer DEGs, and eQTLs that showed significant 
results in the MR analysis, we identified common genes (CGs) as 
key genes and prospective biomarkers. Subsequently, we analyzed 
the correlation between these key genes and immune cell 
infiltration, assessed the diagnostic efficacy of the key genes using 
receiver operating characteristic (ROC) curves, and validated the 
findings using an independent public dataset. Finally, we performed 
quantitative real-time polymerase chain reaction (qRT-PCR) using 
clinical samples and in vitro cell models to confirm the potential 
value of these molecular markers in bladder cancer diagnosis and 
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prognosis. The robustness of our findings was further confirmed 
through a sensitivity analysis. The workflow is illustrated 
in Figure 1. 
2.2 Data sources and preprocessing 

The inclusion criteria for bladder cancer microarray datasets 
were as follows: (1) each dataset contained at least six samples (with 
at least three bladder cancer tissue samples and three normal tissue 
samples), (2) high-quality RNA-seq or microarray data were 
available, and (3) the dataset did not include any chemically 
treated or transgenic samples. Based on these criteria, seven 
independent bladder cancer datasets from the TCGA, Gene 
Expression Omnibus (GEO), and GWAS databases were 
integrated. RNA sequencing data and corresponding clinical 
information for bladder cancer were obtained from TCGA public 
database. Due to the sufficient sample size and rich clinical 
information in TCGA, which provides adequate statistical power 
for detecting differentially expressed genes, TCGA data were used 
Frontiers in Immunology 03 
for differential expression analysis. Five microarray datasets were 
downloaded from the GEO database (GSE13507, GSE31189, 
GSE31684, GSE37815, and GSE7476). These datasets contain 
gene expression profiles of bladder cancer and normal tissues. 
Considering that WGCNA requires a relatively large sample size 
to improve the statistical power for detecting correlations and is 
sensitive to outliers, ensuring the completeness and consistency of 
gene expression data is essential. Therefore, the GSE13507 dataset, 
which included 196 samples, was used for WGCNA to identify 
immune-related genes in bladder cancer. For CIBERSORT analysis, 
the GSE31189, GSE31684, and GSE37815 datasets were 
standardized to reduce batch effects and then merged, resulting in 
a dataset containing 163 bladder cancer and 46 normal tissue 
samples. To ensure the reliability of the study results, the 
GSE7476 dataset, with no overlapping samples, was used for 
validation. The eQTL data used in this study were obtained from 
the IEU Open GWAS database (https://gwas.mrcieu.ac.uk/), from 
which we collected data from 5,430 eQTL datasets as exposure 
variables. Additionally, we searched the GWAS database using 
“bladder cancer” as the keyword and obtained dataset ieu-b-4874 
FIGURE 1 

Schematic presentation of the analysis process. 
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as the outcome data, which included information from 373,295 
individuals of European ancestry (1,279 cases and 372,016 
controls). As all the data used in this study were publicly 
available and freely downloadable, no separate ethical approval 
was required. Table 1 presents the data sources and the 
grouping information. 
 

2.3 Data processing and differential 
expression gene identification 

Following the annotation files, data preprocessing and 
differential expression gene (DEG) identification began by 
converting the probe matrix to a gene matrix using a Perl script. 
Probes associated with multiple genes were excluded and the 
average number of multiple probes representing the same gene 
was calculated to determine the final gene expression level. 
Differential expression analysis  between bladder cancer and

normal tissues in TCGA dataset was performed using the 
DESeq2, limma, and Wilcoxon packages. Genes were selected 
based on an adjusted P-value < 0.05 and an absolute log2 fold 
change (|log2FC|) greater than 0.585. Heatmaps and volcano plots 
were generated using the “pheatmap” and “ggplot2” R packages, 
respectively, to visualize the DEGs (16). 
2.4 Identification of bladder cancer 
immune-related genes using WGCNA 

A weighted gene co-expression network was constructed using 
the “WGCNA” package in R (17). First, sample clustering was 
conducted to screen outlier samples. Next, the gene expression 
matrix was converted into a similarity matrix by calculating the 
Pearson’s correlation values between every two genes. Moreover, the 
similarity matrix was transformed into an adjacency matrix by setting 
amn = |cmn| b, where cmn represents the Pearson’s correlation 
values between every two genes, amn is the adjacency between every 
two genes, and b is a soft threshold that can regulate the correlations 
Frontiers in Immunology 04
among genes. Furthermore, the soft thresholding power was set to 
five (b = 5, R2 = 0.85) based on scale independence and mean 
connectivity, and the adjacency matrix was transformed into a 
topological overlap matrix, where gene interactions maximally 
conformed to the scale-free distribution. Moreover, the modules 
were identified by hierarchical clustering using dynamic tree-
cutting algorithms, using unsigned as the network construction 
type, and deepSplit was set to two to divide the number of modules 
and a minimum module size of 30 for the gene dendrogram. Finally, 
the dissimilarity of the module eigengenes (MES) was calculated for 
the module dendrogram and some modules (dissimilarity of module 
eigengenes < 0.3) were merged to obtain the ultimate network. 
2.5 Instrumental variable selection 

To enhance the accuracy and validity of the analysis of the 
causal relationship between eQTLs and bladder cancer risk, 
stringent quality control steps were implemented for IV selection: 
(1) Single nucleotide polymorphisms (SNPs) significantly 
associated with eQTLs were selected using a P-value threshold of 
<5×10−8 (18); (2) Linkage disequilibrium (LD) was controlled by 
setting R²= 0.001 and an LD region width of 10,000 kb to maintain 
SNP independence (19); (3) SNPs directly associated with bladder 
cancer (P < 5×10-8) were excluded (20); (4) The F-statistic for each 
SNP was calculated using the formula. 

R2(n − 2)
F = 

1 − R2 

where n is the sample size, R² is the proportion of variance in 
the exposure explained by the SNP, MAF is the minor allele 
frequency, and b is the allele effect size. SNPs with weak 
instrumental variables (F < 10) were excluded (21). (5) A 
harmonization process aligned effect directions and alleles, 
ensuring that SNPs had a minor allele frequency (MAF) > 0.01, 
and removed palindromic and ambiguous SNPs (22). 
2.6 Mendelian randomization analysis 

In this study, the “TwoSampleMR” package in R was used to 
perform a Mendelian Randomization (MR) analysis between 
instrumental variables (IVs) and outcome variables. Five different 
methods—Inverse Variance Weighted (IVW), Weighted Median 
(WM), MR-Egger, Simple Mode, and Weighted Mode—were 
employed to evaluate the causal relationship between 5,430 eQTLs 
and bladder cancer. The IVW method, which combines the Wald 
estimates of each SNP through meta-analysis and does not assume 
pleiotropy, was considered the most effective approach for causal 
inference in this study (23). The MR-Egger method, which is robust 
against potential horizontal pleiotropy (indicated by an MR-Egger 
intercept of P< 0.05), provides a robust estimate (24). The WM 
method derives a median estimate from the distribution of individual 
SNP effect sizes weighted by their precision and provides reliable 
causal estimates, particularly when valid IVs account for > 50% of the 
data (25). The simple model can tolerate pleiotropic effects but may be 
TABLE 1 Data sources and grouping information. 

Databases Datasets 

Grouping 
information Purpose 

Tumour Normal 

TCGA 431 samples 412 19 DEGs 

GSE13507 187 9 WGCNA 

GSE31189 52 40 

CIBEROST 
GEO 

GSE31684 93 / 

GSE37815 18 6 

GSE7476 9 3 
Validation 

set 

GWAS 
ebi­

GCST90018817 
1279 372, 016 MR 
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less efficient than IVW (26). The weighted model adjusts for scenarios 
where the pleiotropy assumption may be violated (27). Based on the 
results of the MR analysis, genes were selected according to the 
following criteria: (1) the IVW method showed a P-value < 0.05; (2) 
the results of all five analytical methods met the directional 
consistency criterion [that is, the odds ratios (ORs) were in the 
same direction]; (3) the IVW results were corrected using the false 
discovery rate method with an adjusted P-value < 0.05; and (4) 
pleiotropy analysis indicated no evidence of pleiotropy (P > 0.05). 
2.7 Sensitivity analysis 

A series of sensitivity analyses was performed to validate the 
robustness of our findings: (1) Cochran’s Q test using IVW and 
MR-Egger assessed heterogeneity among IVs, and funnel plots 
revealed significant heterogeneity (P< 0.05) in the selected SNPs 
(28); (2) horizontal pleiotropy in the MR study was assessed using 
MR-Egger regression, where an MR-Egger intercept (P< 0.05) 
indicated substantial horizontal pleiotropy (29); and (3) leave-
one-out analysis sequentially excluded one SNP at a time and 
recalculated the MR estimates from the remaining SNPs to 
determine the influence of individual SNPs on the collective 
results (30, 31). These procedures were performed using the 
“TwoSampleMR” and “MendelianRandomization” R packages in 
the R software (version 4.3.2). 
2.8 Gene ontology enrichment analysis of 
eight genes 

To further explore the biological functions of the key genes, 
Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses were 
conducted. Gene ontology (GO) enrichment analysis was 
performed using GO terms for molecular function (MF), 
biological process (BP), and cellular component (CC) using the 
“clusterProfiler,” “org.Hs.eg.db,” and “enrichplot” R packages (32). 
The results were visualized using the “ggplot2” R package with a 
significance threshold of P < 0.05. 
2.9 Immune infiltration analysis 

Immune cell infiltration was assessed using the CIBERSORT 
algorithm (33), implemented in R using the “CIBERSORT” 
package. This algorithm estimated the proportions of the 22 
immune cell types in the dataset by estimating the relative subsets 
of RNA transcripts. Samples with CIBERSORT scores (P > 0.05) 
were excluded to ensure the accuracy of the algorithm. The 
deconvolution algorithm was then applied to the gene expression 
profiles of the remaining samples for CIBERSORT analysis. 
Frontiers in Immunology 05 
2.10 Assessment of diagnostic value of hub 
genes 

To further analyze the ability of the five hub genes to 
discriminate between tumor and non-tumor samples, receiver 
operating characteristic (ROC) analysis was performed using the 
“survivalROC” R package (34) on TCGA data to investigate the 
diagnostic value of these key genes. 
2.11 Validation of hub genes in training and 
validation sets 

To further validate the potential value of the eight key genes, 
their expression levels were compared between bladder tumors and 
normal tissues in both the TCGA and GSE7476 datasets. Wilcoxon 
rank-sum test was used to assess the significance of any 
observed differences. 
2.12 Quantitative real-time polymerase 
chain reaction 

The human uroepithelial cell line SV-HUC-1 and bladder 
cancer cell lines 5637, T24, and HT1376 (Yunnan Tengyue 
Biotech Co. E2112) were cultured in RPMI-1640 medium (Gibco, 
cat. no. C11875500BT; SV-HUC-1, 5637, HT1376) or McCoy’s 5A  
medium (EvaCell, cat. no. E2110; T24). All cultures were 
maintained at 37°C with 5% CO2, supplemented with 10% fetal 
bovine serum (FBS; Gibco, cat. no. A5256701), and 1% penicillin-
streptomycin (Gibco, cat. no. 15140122). Total RNA extraction was 
performed using either the RNAfast200 kit (Shanghai Feijie 
Biotechnology Co., Ltd.) or TRIzol-A+ reagent. Reverse 
transcription was performed using Evo M-MLV Reverse 
Transcription Reagent Premix (Hunan Acres Bio; cat. no. 
AG11706) or a commercial reverse transcription kit. Gene 
expression analysis was performed using the SYBR Green Pro 
Taq Hs Pre-mixed qRT-PCR Kit (Hunan Acres Bio, cat. no. 
AG11701), or SYBR Green PCR Master Mix on an Applied 
Biosystems 7500 real-time PCR system. Relative gene expression 
levels were calculated using the 2-DDCt method, normalized to 
GAPDH. The primer sequences used are listed in Table 2. 
2.13 Statistical analysis 

Statistical analysis was performed using the Statistical Analysis 
R software (version 4.4.3) and GraphPad Prism 9.0 (GraphPad 
Software, USA). The Wilcoxon rank-sum test was used to assess the 
differences between the groups. Pearson’s correlation analysis was 
used to evaluate the correlation between the hub genes and immune 
cell infiltration. Statistical significance was set at P< 0.05. 
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3 Results 

3.1 Resource identification initiative 

To identify bladder cancer-associated genes, we performed 
differential expression analysis using three methods: edgeR, 
limma, and Wilcoxon test, comparing bladder cancer tissues with 
adjacent noncancerous control tissues. EdgeR identified 3104 
differentially expressed genes (DEGs), comprising 1559 
upregulated and 1545 downregulated genes. Limma identified 
2563 DEGs (1084 upregulated and 1479 downregulated genes), 
whereas Wilcoxon test identified 2836 DEGs (1560 upregulated and 
1276 downregulated genes). To enhance the reliability of DEG 
identification, we selected only genes identified by all three 
methods, resulting in a set of 2033 genes (Figure 2A). Of these, 
881 genes were upregulated and 1152 were downregulated 
(Figure 2B). The top 30 upregulated and downregulated genes are 
shown in Table 3 and Figure 2C, respectively. All identified DEGs 
exhibited a statistically significant adjusted P-value (adj.P-val) < 
0.01, indicating statistically significant differences in expression. 
These DEGs provided a foundation for further functional and 
mechanistic studies. 
3.2 Identification of bladder cancer 
immune-related genes using WGCNA 

To identify genes associated with infiltrating immune cells 
within the bladder tumor microenvironment, we performed 
WGCNA analysis on the GSE13507 dataset. First, sample 
clustering analysis demonstrated that all 197 samples in the 
GSE21374 dataset were suitable for constructing a weighted gene 
co-expression network (Figure 3A). Subsequently, we set b = 8 (R² = 
0.9) and merged modules with similarity < 0.6, resulting in a 
weighted gene co-expression network comprising eight modules 
(Figures 3B, C). Further analysis revealed correlations between 
these eight modules and StromalScore, ImmuneScore, ESTIMATE 
score, and Tumor Purity score (Figure 3D). The red module 
(MEred) exhibited the strongest positive correlation with the 
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immune-related metrics. Furthermore, we calculated the 
correlation between genes in the MEred module and the four 
scores. Applying a threshold of correlation coefficient > 0.8 and 
P< 0.05, we identified 1391 genes associated with immune cells in 
the tumor immune microenvironment. 
3.3 Causal Effects of genetically predicted 
eQTLs on bladder cancer and identification 
of candidate genes 

This study investigated the causal relationship between 5,430 
expression quantitative trait loci (eQTLs) and bladder cancer risk. 
Based on the selection criteria of MR analysis, 187 eQTLs were 
causally associated with the development of bladder cancer. 
Integrating these 187 eQTLs with 2033 differentially expressed 
genes (DEGs) and 1391 immune-related genes, we identified 10 
key genes (Figure 4A). Applying a filtering strategy—intersecting 
bladder cancer upregulated genes with genes exhibiting odds ratios 
(OR) > 1 in Mendelian randomization analysis, and bladder cancer 
downregulated genes with genes exhibiting OR < 1–we obtained 
two co-expressed upregulated genes and 13 co-expressed 
downregulated genes (Figure 4B). Finally, intersecting these key 
genes with risk-consistent genes yielded eight immune-related 
genes that were negatively associated with bladder cancer risk: 
LIMS2, TP53INP2, IRAK3, STX2, CYP27A1, IL11RA, KCNMB1, 
and PDLIM7 (Figure 4C). 
3.4 Mendelian randomization analysis 

Mendelian randomization analysis revealed that eight genes 
were negatively associated with bladder cancer risk (Figure 5). 
According to the IVW analysis, these genes and their associations 
were as follows: LIMS2 (OR = 0.9992; 95% CI, 0.9985-0.9999; P = 
0.029); TP53INP2 (OR = 0.9989; 95% CI, 0.9980-0.9998; P = 0.015); 
IRAK3 (OR = 0.9991; 95% CI, 0.9986-0.9997; P = 0.001); STX2 (OR 
= 0.9995; 95% CI, 0.9991-0.9999; P = 0.015); CYP27A1 (OR = 
0.9994; 95% CI, 0.9990-0.9999; P = 0.024); IL11RA (OR = 0.9995; 
TABLE 2 Primers of hub genes. 

Genes Forword Reverse 

LIMS2 TGTGTGAGCTGCTTCTCCTG CACCTCTTACACACGGGCTT 

TP53INP2 CACCATAGTGCTAGAGCCCG CAATTCCCCTTCGCTGAGGT 

IRAK3 ACCATGCTCGGTCATCTGTG ATGTTCTAGGTGGGACCGGA 

STX2 GAGTGGGAACCGGACTTCAG GTCTGTGGTGGTTCTCCCAG 

CYP27A1 CCAGGATCCAGCACCCATTT CCACACTCTTCAACTCCCCC 

IL11RA CAGGCAGACAGCACTGATGA TGGATGGACTCCTCCTCTGG 

KCNMB1 TGTGTGCCGTCATCACCTAC CCTGGTCCCTGATGTTGGTC 

PDLIM7 GTAGCCAGTGTGGGAAGGTC ACGTGCCAGGTCATCTTCAG 

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG 
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FIGURE 2 

Identification of Differentially Expressed Genes (DEGs) in Bladder Cancer using Wilcoxon, edgeR, and limma Tests. (A) Venn diagram illustrating the 
overlap of DEGs identified by Wilcoxon rank-sum test, edgeR, and limma analysis in bladder cancer. (B) Volcano plot depicting bladder cancer DEGs 
and sample hierarchical clustering. (C) Heatmap of the top 30 up- and down-regulated DEGs. 
TABLE 3 Top 30 upregulated and downregulated differentially expressed genes. 

Top 30 Upregulated and Downregulated 

Upregulated Downregulated 

SCARA5, PI16, ADH1B, C16orf89, CLEC3B, MYOC, KLHL41, TMEM252, PGM5, 
MYOM1, SLC2A4, RBFOX3, PYGM, MYOCD, ECRG4, ATP1A2, GLP2R, VIT, HLF, 

FLNC, ASB5, P2RX1, ACTC1, CNN1, SYNM, CASQ2, MYH11, SYNPO2, 
PDZRN4, OGN 

IL37, HSD3B1, HAVCR1, APOA2, PRSS1, PRSS2, SERPINA6, CST1, CST4, 
NLRP7, PSG5, ERVV−2, SLC1A6, ALPP, H2BC14, H2AC12, H1−5, H3C2, KLK2, 

NKX2−5, COL2A1, CGB3, CGB8, CGB5, IGFL2, COL10A1, PAEP, KRT81, 
KRT79, ROS1 
F
rontiers in Immunology 07 
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95% CI, 0.9990-0.9999; P = 0.023); KCNMB1 (OR = 0.9989; 95% CI, 
0.9984-0.9995; P = 0.001); and PDLIM7 (OR = 0.9986; 95% CI, 
0.9972-1.0000; P = 0.044). The directionality of these associations 
was further supported by the results of the Weighted Median 
(WM), MR-Egger, Simple Mode, and Weighted Mode analyses. 
Notably, the odds ratios (ORs) of these genes were very close to 1. In 
Mendelian randomization analysis, OR values close to 1 are 
expected, as continuous variables, such as gene expression (e.g., 
per-allele increase), typically have small effects on complex traits. In 
genetic studies of complex diseases, the effect size of a single-gene 
variant on disease risk is often minimal, making an OR close to 1 
biologically plausible. 
3.5 Sensitivity analyses 

The sensitivity analyses revealed no evidence of significant 
heterogeneity or horizontal pleiotropy (Table 4). Cochran’s Q test 
was used to assess the heterogeneity among instrumental variable 
estimates derived from individual genetic variants. The use of a 
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random-effects inverse variance-weighted (IVW) model mitigated 
the influence of heterogeneity on the results. The dispersion of 
causal associations presented in the funnel plot suggests the absence 
of confounding bias in the causal effects of eQTL expression levels 
on bladder cancer (Supplementary Figure S1). Furthermore, an 
MR-Egger intercept test with a P-value > 0.05 confirmed the 
absence of horizontal pleiotropy (Supplementary Figure S2). The 
leave-one-out sensitivity analysis demonstrated that excluding a 
single SNP did not significantly alter the MR analysis results, 
thereby ensuring the robustness of the findings (Supplementary 
Figure S3). A forest plot showed the risk associations between these 
eight genes and bladder cancer (Figure 6). 
3.6 GO and KEGG enrichment analysis of 
shared genes 

The chromosomal locations of eight key genes were mapped and 
visualized (Supplementary Figure S4A). Subsequently, GO and 
KEGG enrichment analyses were performed on these eight genes to 
FIGURE 3 

Identification of Modules Associated with Infiltrating Immune Cells using Weighted Gene Co-expression Network Analysis (WGCNA). (A) Sample 
clustering dendrogram. (B) Analysis of scale-free topology and mean connectivity for various soft-thresholding powers. (C) Dendrogram of all 
differentially expressed genes based on 1-Topological Overlap Matrix (TOM) dissimilarity measure. The color bands represent the results from 
dynamic tree cut analysis. (D) Heatmap showing the correlation between module eigengenes and infiltrating immune cell characteristics. The 
MEpurple module was selected for further analysis. TOM, topological overlap matrix; ME, module eigengene. 
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elucidate their associated biological processes and pathways. In terms 
of biological processes, these genes are primarily involved in vitamin 
D biosynthesis and the Toll signaling pathways. Cellular component 
analysis localized the genes in the focal adhesion, leading edge, and 
cell-substrate junction. Molecular function analysis primarily 
highlighted calcium-activated potassium channel activity and 
muscle alpha-actinin binding (Supplementary Figures S4B–D). 
KEGG pathway analysis showed a significant involvement in 
primary bile acid biosynthesis (Supplementary Figures S4E, F). 
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3.7 Immune infiltration analysis 

The merged GEO datasets (GSE31189, GSE31684, and 
GSE37815) were used for CIBERSORT analysis of bladder cancer, 
and the results were further supported by xCell analysis. First, 
samples with a CIBERSORT P-value < 0.05 were excluded, resulting 
in 163 tumor tissue samples and 45 normal tissue samples. The 
composition and proportion of infiltrating immune cells in each 
sample were visualized using bar plots and heat maps (Figures 7A, 
FIGURE 4 

Selection of Key Genes in Bladder Cancer. (A) Venn diagram showing the overlap of 187 causally associated genes, 2033 differentially expressed 
genes (DEGs), and 1391 immune-related genes in bladder cancer. (B) Venn diagram showing the overlap between bladder cancer upregulated genes 
and genes with odds ratios (OR) > 1 from Mendelian randomization analysis. (C) Venn diagram showing the overlap between bladder cancer 
downregulated genes and genes with odds ratios (OR) < 1 from Mendelian randomization analysis. (D) Venn diagram showing the overlap between 
genes identified by Mendelian randomization causal analysis and immune-related genes in bladder cancer. 
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B). Analysis of the infiltration landscape of 22 immune cell types 
revealed that six immune cells showed significantly different 
expression between bladder cancer and normal tissues. Among 
them, eosinophils showed low infiltration abundance in both the 
tumor and normal groups (P < 0.05) and were excluded from 
further analysis (Figure 7C). Naive B cells, resting dendritic cells, 
and activated dendritic cells were upregulated in tumor tissues, 
whereas CD8+ T cells and resting mast cells were downregulated 
Frontiers in Immunology 10 
(Figures 7D–H). The immune infiltration landscape of 64 immune 
cell types in bladder cancer and normal tissues analyzed by the xCell 
method is shown in Supplementary Figures S5A, B. Although the 
xCell results did not show statistically significant differences (P < 
0.05), they demonstrated the same trends as the CIBERSORT 
analysis: upregulation of naive B cells, resting dendritic cells, and 
activated dendritic cells and downregulation of CD8+ T cells and 
resting mast cells in tumor tissues (Supplementary Figure S5C). 
FIGURE 5 

Forest plot of Mendelian randomization results for key gene. 
TABLE 4 Tests for heterogeneity and pleiotropy between crossover genes and bladder cancer. 

exposure 

Heterogeneity testing pleiotropy 

Inverse variance-weighted MR-Egger MR-Egger 

Q Q_df Q_P Q Q_df Q_P intercept/x-4 SE/x-4 P 

LIMS2 0.105 2 0.949 0.010 1 0.921 -0.559 1.807 0.809 

TP53INP2 6.771 6 0.343 6.771 5 0.238 -0.016 1.492 0.992 

IRAK3 7.009 7 0.428 5.780 6 0.448 1.000 0.906 0.310 

STX2 1.052 2 0.591 0.934 1 0.334 0.634 1.849 0.790 

CYP27A1 13.022 19 0.837 12.158 18 0.839 0.5.95 0.640 0.365 

IL11RA 4.290 4 0.368 4.014 3 0.260 -0.179 3.934 0.681 

KCNMB1 1.218 4 0.875 1.152 3 0.765 -0.393 1.520 0.813 

PDLIM7 1.786 2 0.409 1.785 1 0.182 -0.156 6.108 0.984 
fronti
Q, heterogeneity statistic; Q_df, degrees of freedom; MR, Mendelian randomization; SE, standard deviation; Q_P>0.05, no heterogeneity; P>0.05, no level of multivariate validity. 
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Therefore, naïve B cells, resting dendritic cells, activated dendritic 
cells, CD8+ T cells, and resting mast cells may play key roles in 
bladder cancer pathogenesis. 
3.8 Correlation between immune-related 
genes and immune cells 

To investigate the association between eight key genes 
(TP53INP2, STX2, PDLIM7, LIMS2, KCNMB1, IRAK3, IL11RA, 
CYP27A1) and immune cells, Spearman rank correlation analysis 
was used to examine their correlation with different immune cell 
Frontiers in Immunology 11 
subsets (Figures 8A, B). The results showed that: TP53INP2 gene 
expression was positively correlated with M0 macrophages and 
negatively correlated with plasma cells; STX2 gene expression was 
positively correlated with memory B cells, M0 and M1 
macrophages, and activated NK cells, and negatively correlated 
with naive B cells, activated dendritic cells, activated mast cells, 
monocytes, resting NK cells, plasma cells, and naive CD4+ T cells; 
PDLIM7 gene expression was positively correlated with M1 and M2 
macrophages and resting mast cells, and negatively correlated with 
naive B cells, naive dendritic cells, eosinophils, monocytes, plasma 
cells, and naive CD4+ T cells; LIMS2 gene expression was positively 
correlated with B cells memory, M0/M1/M2 macrophages, resting 
FIGURE 6
 

Forest plot of genes causally associated with bladder cancer. (A-H) MR effect size of key genes on bladder cancer; (A) LIMS2; (B) TP53INP2; (C) IRAK3; (D)
 
STX2; (E) CYP27A1; (F) IL11RA; (G); (H) PDLIM7.
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mast cells, and CD8+ T cells, and negatively correlated with 
activated and resting dendritic cells, eosinophils, and monocytes; 
KCNMB1 gene expression was positively correlated with memory B 
cells, M0 and M1 macrophages, and negatively correlated with 
Frontiers in Immunology 12 
naive B cells, activated dendritic cells, activated mast cells, 
monocytes, plasma cells, and naive CD4+ T cells; IRAK3 gene 
expression was positively correlated with M0 macrophages and 
negatively correlated with naive B cells, plasma cells, and naive CD4 
FIGURE 7 

Immune cell infiltration landscape in bladder cancer. (A) Bar chart showing the distribution of 22 immune cell types in each sample. (B) Heatmap 
showing the expression of 22 immune cell types in bladder cancer and normal samples. (C) Box plot showing the expression of 22 immune cell 
types in bladder cancer and normal samples. (D-H) Box plots showing the differential infiltration landscape of six immune cell types in bladder 
cancer and normal samples: (D) Naive B cells; (E) CD8+ T cells; (F) Resting dendritic cells; (G) Activated dendritic cells; (H) Resting mast cells. Each 
p-value is shown above the corresponding box plot (NS: p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01;****:p ≤ 0.0001). 
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+ T cells; IL11RA gene expression was positively correlated with 
activated CD4+ memory T cells and CD8+ T cells, and negatively 
correlated with naive B cells, activated dendritic cells, eosinophils, 
activated mast cells, neutrophils, and naive CD4+ T cells; CYP27A1 
gene expression was positively correlated with resting dendritic 
cells, M0 macrophages, neutrophils, and gd T cells, and negatively 
correlated with naive B cells, resting NK cells, plasma cells, and 
regulatory T cells (Tregs). The results showed that STX2, PDLIM7, 
LIMS2, and KCNMB1 were positively correlated with the 
infiltration levels of memory B cells, macrophages M0/M1/M2, 
resting mast cells, and CD8+ T cells, with M0 macrophages 
exhibiting the strongest correlation with these four genes. In 
contrast, the infiltration levels of naive B cells, activated dendritic 
cells, monocytes, plasma cells, and naive CD4+ T cells were 
significantly negatively correlated with STX2, PDLIM7, LIMS2, 
KCNMB1, and IRAK3. Naive CD4+ T cells showed the most 
pronounced negative correlations with all five genes. These 
Frontiers in Immunology 13 
findings suggest that STX2, PDLIM7, LIMS2, KCNMB1, and 
IRAK3 may influence tumor progression and patient prognosis 
by modulating immunosuppressive infiltration and immune 
evasion within the tumor microenvironment. 
3.9 Evaluation and validation of the 
potential value of key genes 

To evaluate the diagnostic potential of the eight key genes in 
distinguishing tumor from non-tumor samples, receiver operating 
characteristic (ROC) curve analysis was performed using TCGA 
and GSE13507 bladder cancer datasets. TCGA analysis showed that 
all eight genes had an area under the curve (AUC) greater than 0.7 
(Figure 9A), indicating good diagnostic potential for distinguishing 
between normal and tumor tissues. Furthermore, analysis of the 
GSE13507 dataset revealed that six genes, LIMS2, IRAK3, STX2, 
FIGURE 8 

(A, B): These figures present heatmaps illustrating the correlation analysis between 22 immune cell types and the eight key genes. Figure 9A likely 
shows correlations between the immune cells themselves, and Figure 9B likely shows the correlations between the immune cells and the eight key 
genes, providing a visual representation of the described relationships. 
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CYP27A1, IL11RA, and KCNMB1, had AUC values greater than 
0.7 (Figure 9B), demonstrating good diagnostic potential in 
differentiating healthy adjacent tissues from tumor samples. These 
results indicate that all eight genes exhibit strong discriminatory 
ability between bladder cancer and normal tissues, with LIMS2, 
Frontiers in Immunology 14 
IRAK3, STX2, CYP27A1, IL11RA, and KCNMB1 showing greater 
potential diagnostic value. To validate the expression levels of the 
eight key genes (LIMS2, TP53INP2, IRAK3, STX2, CYP27A1, 
IL11RA, KCNMB1, and PDLIM7) in tumor and non-tumor 
samples, we analyzed their expression in TCGA and GSE7476 
FIGURE 9 

ROC curves for key genes. (A) Receiver Operating Characteristic (ROC) curves of hub genes in the TCGA; (B) ROC curves of hub genes in the GSE13507; (C) 
TCGA Characterized Gene Intersection Single Gene Expression Boxplot; (D) GSE7476 Characterized Gene Intersection Single Gene Expression Boxplot. Each 
p-value is shown above the corresponding box plot (NS: p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001). 
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datasets. We observed that in both TCGA (training) and GSE7476 
(validation) datasets, these eight key genes were significantly 
downregulated in tumor samples, consistent with Mendelian 
randomization results (Figures 9C, D). Therefore, LIMS2, 
TP53INP2, IRAK3, STX2, CYP27A1, IL11RA, KCNMB1, and 
PDLIM7 have been proposed as potential biomarkers of 
bladder cancer. 
3.10 Validation of key genes by real-time 
quantitative PCR 

To further investigate the potential roles of the eight key genes 
(LIMS2, TP53INP2, IRAK3, STX2, CYP27A1, IL11RA, KCNMB1, 
and PDLIM7) in bladder tumorigenesis, we performed qRT-PCR to 
quantify their expression levels in the bladder normal cell line SV 
and bladder cancer cell lines 5637, T24, and HT1376. Differential 
expression analysis revealed that, compared to the normal bladder 
cell line SV, the expression levels of LIMS2, IL11RA, KCNMB1, and 
PDLIM7 were significantly downregulated in all three bladder 
cancer cell lines (5637, T24, and HT1376). Furthermore, IRAK3 
expression was significantly downregulated in HT1376 cells, 
Frontiers in Immunology 15 
whereas STX2 was significantly downregulated in 5637 and 
HT1376 cells (Figure 10). Subsequent box plot analysis further 
demonstrated significantly lower expression of six genes (LIMS2, 
IRAK3, STX2, IL11RA, KCNMB1, and PDLIM7) in bladder cancer 
cell lines (Supplementary Figure S7), consistent with bioinformatics 
analysis. This strongly supports the conclusion that these genes play 
crucial regulatory roles in bladder cancer development. These 
findings provide important experimental evidence for further 
investigation of the specific mechanisms of these genes in the 
immune microenvironment of bladder cancer and their potential 
as diagnostic and therapeutic targets for bladder cancer. 
4 Discussion 

Seven independent datasets were integrated from TCGA, GEO, 
and GWAS databases, and a multi-source transcriptomic combined 
Mendelian randomization analysis strategy was employed to 
identify eight immune-related key genes: LIMS2, TP53INP2, 
IRAK3, STX2, CYP27A1, IL11RA, KCNMB1, and PDLIM7. This 
study confirmed that these eight genes were significantly 
downregulated in bladder cancer tissues and their expression 
FIGURE 10
 

Bar graphs showing qRT-PCR expression and differential analysis of key genes. (A-F) Bar graphs showing differential expression analysis of eight key
 
genes (A) LIMS2; (B) IRAK3; (C) STX2; (D) IL11RA; (E) KCNMB1; and (F) PDLIM7 in bladder normal cell line SV and bladder cancer cell lines 5637, T24,
 
and HT1376. Differences between groups were assessed using the Wilcoxon rank-sum test. Each p-value is shown above the corresponding bar (NS:
 
P > 0.05; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001).
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levels were significantly negatively correlated with bladder cancer 
risk, suggesting that these genes may participate in the development 
of bladder cancer by regulating immune pathways. Immune 
infiltration analysis using the CIBERSORT algorithm revealed 
that the proportions of naive B cells, resting dendritic cells, and 
activated dendritic cells were significantly increased in tumor 
tissues, whereas the infiltration levels of CD8+ T cells and resting 
mast cells were significantly decreased. Correlation analysis showed 
that M0 macrophages had the strongest positive correlation with 
the expression of STX2, PDLIM7, LIMS2, and KCNMB1 (P < 0.05), 
whereas the infiltration levels of naive CD4+ T cells were 
significantly negatively correlated with the expression of STX2, 
PDLIM7, LIMS2, KCNMB1, and IRAK3 (P < 0.05). Diagnostic 
performance evaluation demonstrated that all eight genes exhibited 
a high diagnostic discrimination ability (AUC > 0.7). The consistent 
downregulation of these genes in bladder cancer tissues was further 
validated using independent public datasets, and qRT-PCR 
experiments confirmed the differential expression of the following 
six genes: LIMS2, IRAK3, STX2, IL11RA, KCNMB1, and PDLIM7. 
Importantly, these findings provide candidate biomarkers for early 
diagnosis and treatment of bladder cancer, which may help improve 
patient prognosis and guide personalized therapeutic strategies. 

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses revealed that the eight key 
genes were significantly enriched in signaling pathways such as 
focal adhesion. Notably, focal adhesion kinase (FAK) plays a critical 
role in regulating tumor growth, immune suppression, metastasis, 
and therapeutic resistance. Its mechanism of promoting tumor 
progression by modulating crosstalk within the tumor immune 
microenvironment (TME) makes it a potential target for anticancer 
therapy (35). The involvement of bile acid metabolic pathways in 
tumor immune regulation (36) aligns with our KEGG results, 
suggesting that bile acid signaling may represent a novel direction 
for tumor immunotherapy. Additionally, the gene set was enriched 
in cellular structure-related pathways, such as the cell leading edge 
and cell–substrate junction, further supporting the regulatory roles 
of the identified genes in tumor-immune interactions. By 
integrating the CIBERSORT and xCell algorithms, this study 
systematically characterized the immune cell infiltration landscape 
in bladder cancer tissues. The proportions of naive B cells and 
resting/activated dendritic cells (DCs) were significantly increased 
in tumor tissues, whereas infiltration of CD8+ T cells and resting 
mast cells was decreased. It is noteworthy that although some 
comparisons in the xCell analysis did not reach statistical 
significance (P > 0.05), their trends were consistent with the 
CIBERSORT results, providing important clues for the regulatory 
mechanisms of the immune microenvironment (33, 37). Of 
particular importance, this study found significant enrichment of 
naive B cells in the tumor microenvironment. As a B cell subset that 
has not undergone antigen stimulation, these cells can differentiate into 
various functional subtypes such as regulatory B cells (Bregs) (37), 
which play important roles in the TME. These subtypes exhibit diverse 
biological functions and influence tumor prognosis (38). The observed 
enrichment of naive B cells suggests that they may promote bladder 
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cancer progression by inducing immunosuppressive Breg 
differentiation, a mechanism that warrants further functional validation. 

The characteristics of immune cell infiltration observed in this 
study have significant pathological implications. As the most 
effective antigen-presenting cells (39), dendritic cells (DCs) 
exhibit notable changes in bladder tumors, with both resting DCs 
(immature state) and activated DCs (mature state) showing 
significantly increased proportions. This observation is consistent 
with the results of previous studies (40). The underlying mechanism 
may involve tumor-associated DCs secreting immunosuppressive 
factors such as IL-10 and TGF-b1, which inhibit T cell activation 
and promote tumor growth (41), suggesting that DC dysfunction 
may be a key component of immune evasion. Meanwhile, the core 
effector T cell subset, CD8+ T cells, was significantly reduced in the 
tumor tissues. This finding has important pathological significance, 
as CD8+ T cells are the primary effector immune cells responsible 
for tumor immune surveillance (42), and their reduction directly 
weakens the antitumor immune response. Notably, this study also 
observed a decrease in resting mast cells, which can actively 
eliminate tumor cells and prevent tumorigenesis through 
cytokines, such as IL-1, IL-4, IL-6, and TNF-a. A reduction in 
resting mast cells may disrupt stromal homeostasis and antitumor 
balance (43). It is worth emphasizing that although the upregulation 
of activated DCs and naive B cells may reflect a compensatory 
enhancement of antigen presentation, the exhaustion of CD8+ T 
cells and loss of mast cells together shape an immunosuppressive 
microenvironment. This immunosuppressive milieu is closely 
associated with resistance to PD-1 inhibitors and poor prognosis 
in bladder cancer patients (44). 

This study systematically revealed the potential regulatory roles 
of naive B cells, resting dendritic cells, activated dendritic cells, CD8 
+ T cells, and resting mast cells in the immune microenvironment 
of bladder cancer. To overcome the current technical limitations, 
future research should integrate genome-wide association studies 
(GWAS) with single-cell RNA sequencing (scRNA-seq) of immune 
cells to precisely identify the specific immune cell types that mediate 
the genetic risk of bladder cancer. This approach has shown 
significant advantages in the study of complex diseases, and 
previous studies have successfully identified the key immune cell 
types associated with COVID-19 by integrating GWAS and scRNA­
seq data (45, 46). Similarly, Li et al. applied this strategy to identify 
genetic regulatory cell types associated with the gut microbiome 
(47). Although this study delineated the immune infiltration 
landscape in bladder cancer, subsequent research should combine 
GWAS, single-cell sequencing technologies, and experimental 
validation to elucidate the potential for deeper investigation of the 
causal links between immune-related genes, pathways, and immune 
cell types in bladder cancer. 

LIM zinc finger domain-containing 2 (LIMS2) is a focal 
adhesion protein containing five LIM domains (48) that interacts 
with integrins and various other proteins, and plays a crucial role in 
cell signaling pathways (49). Its homolog, LIMS1, forms a LIMS1­

ILK-Parvin complex with integrin-linked kinase (ILK) and Parvin 
proteins and participates in the critical regulation of various 
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cancers. Notably, studies have shown that LIMS2 can bind to ILK, 
forming a LIMS2-ILK-Parvin complex, and competitively inhibits 
the binding of LIMS1 to ILK (48), thereby affecting its function in 
tumorigenesis. Previous studies have observed that LIMS2 silencing 
significantly enhances the migratory ability of gastric cancer cells 
(50), In this study, by integrating transcriptomic data with 
Mendelian randomization (MR) analysis, we found that LIMS2 
expression was significantly downregulated in bladder cancer 
tissues, consistent with the expression pattern reported in gastric 
cancer. Notably, the MR results suggested a causal association 
between LIMS2 expression and bladder cancer risk. Combined 
with the immune infiltration analysis showing a significant 
positive correlation between LIMS2 and CD8+ T cell infiltration, 
this  indicates  that  LIMS2  may  regulate  the  immune  
microenvironment of bladder tumors. Although there are 
currently no clinical trials directly targeting LIMS2, its binding 
partner ILK has been identified as a potential therapeutic target in 
ovarian cancer (51). Notably, LIMS2 loss may lead to an imbalance 
in the ILK/Parvin complex, a pathological state that could 
potentially be functionally compensated by CRISPR-Cas9– 
mediated gene replacement therapy or synthetic LIM domain-

mimicking peptides, providing a theoretical basis for developing 
novel targeted strategies. 

The tumor protein p53 inducible nuclear protein 2 (TP53INP2) 
encodes a protein involved in regulating autophagy, which is crucial 
for maintaining normal autophagosome formation and maturation 
(52). TP53INP2 not only plays a key role in cellular metabolism but 
also regulates tumor cell invasiveness and migration (53). 
Furthermore, TP53INP2 has been identified as a potential 
biomarker for thyroid cancer (54). In bladder cancer, TP53INP2 
influences cell migration, invasion, and epithelial-mesenchymal 
transition (EMT) by regulating the GSK-3b/b-catenin/Snail1 
pathway (55). Previous studies have shown that TP53INP2 
expression is significantly decreased in colorectal cancer tissues, 
and its silencing promotes tumor cell proliferation (56). Mendelian 
randomization (MR) analysis revealed a negative causal association 
between TP53INP2 expression levels and bladder cancer risk. 
Combined with immune infiltration analysis showing a positive 
correlation between TP53INP2 expression and M0 macrophage 
infiltration, these findings suggested that this gene may influence 
the tumor immune microenvironment by regulating tumor-

associated macrophages (TAMs). Notably, autophagy can prevent 
tumor proliferation and metastasis in early stage cancers, and 
autophagy deficiency has been shown to disrupts T-cell 
homeostasis and anti-tumor immune responses (57). Given that 
TAMs are the most abundant immune cell population in the tumor 
microenvironment (58), and that autophagy regulates their 
polarization toward the M2 phenotype (59), this study proposes 
that downregulation of TP53INP2 may modulate bladder cancer 
development by influencing macrophage polarization. Although no 
clinical interventions targeting TP53INP2 have yet been established, 
its unique mechanism of regulating bladder cancer progression via 
the autophagy–macrophage axis makes it a potential target 
for immunotherapy. 
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Interleukin-1 receptor-associated kinase 3 (IRAK3) is a key 
regulatory molecule in the inflammatory response of the innate 
immune system that plays a crucial role in maintaining immune 
homeostasis (60). This study found that IRAK3 expression was 
downregulated in bladder cancer tissues, a pattern highly consistent 
with that observed in prostate cancer (61). Mechanistic studies have 
shown that promoter methylation of IRAK3 is a key epigenetic 
mechanism underlying its silencing, a phenomenon not only 
observed in hepatocellular carcinoma (62), but also reflected by 
increased methylation levels negatively correlated with gene 
expression in gliomas (63). Notably, Mendelian randomization 
(MR) analysis in this study confirmed a significant negative 
association between IRAK3 expression and bladder cancer risk, 
and its expression level was positively correlated with M0 
macrophage infiltration in the tumor microenvironment, 
suggesting that IRAK3 may regulate the bladder tumor immune 
microenvironment. Accumulating evidence supports that IRAK3 
expression in tumor-associated macrophages impairs cancer cell 
immune surveillance while effectively preventing excessive 
inflammation that drives cancer progression. Enhancing the host 
immune response in IRAK3-deficient mice can inhibit the growth 
of transplanted cancer cells (64), highlighting the critical role of 
IRAK3 in tumor immune regulation. Although no direct clinical 
interventions targeting IRAK3 currently exist, its potential value in 
bladder cancer should not be overlooked, and the gene remains a 
promising candidate for therapeutic development in bladder 
cancer treatment. 

Syntaxin 2 (STX2), a highly conserved member of the syntaxin 
family (65), exerts its function through distinct domains: a C-
terminal domain responsible for membrane anchoring, and an N-
terminal domain mediating molecular interactions and signal 
transduction (66). The synaptosome-associated protein family 
plays an important role as membrane vesicle transport receptors 
in intracellular vesicle trafficking and secretion (67). Previous 
studies demonstrated that STX2 participates in the occurrence, 
development, and metastasis of various cancers by regulating the 
expression of key oncogenes such as b-catenin and MMP9 (68–70). 
The results of this study indicate that STX2 is significantly 
downregulated in bladder cancer tissues, and its expression level 
is negatively correlated with disease risk, suggesting that STX2 may 
function as a tumor suppressor gene. As a key regulator of 
membrane vesicle transport and secretion, STX2’s biological role 
is closely related to that of the exosomes. Previous studies have 
confirmed that exosomes play important regulatory roles in tumor 
initiation, invasion, and metastasis, and exosome-mediated 
immune modulation has garnered increasing attention (71). An 
integrated analysis revealed a significant positive correlation 
between STX2 expression and M0 macrophage infiltration. 
Combined with its role in exosome regulation, STX2 may 
influence the immune microenvironment of bladder cancer by 
modulating exosome secretion. Notably, prior research has 
identified STX2 as a potential therapeutic target and biomarker in 
colorectal cancer (72), Building on these findings, this study further 
elucidates its immunoregulatory role in bladder cancer. Although 
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there are currently no direct clinical interventions targeting STX2, 
this gene still holds the potential for development as a bladder 
cancer–related biomarker. 

Cytochrome P450 family 27 subfamily A member 1 (CYP27A1) 
belongs to the cytochrome P450 superfamily of enzymes and 
catalyzes 27-hydroxylation of cholesterol to produce 27­
hydroxycholesterol (27-HC) (73). 27-HC can influence tumor cell 
proliferation, differentiation, and apoptosis by regulating cellular 
cholesterol homeostasis (74, 75). Studies have shown that CYP27A1 
is downregulated in prostate cancer tissues, and restoration of its 
expression inhibits prostate cancer cell growth by increasing 27-HC 
production (76). The results of this study showed that CYP27A1 is 
significantly downregulated in bladder cancer tissues,  and  its
expression level is negatively correlated with disease risk, which is 
consistent with the findings reported in prostate cancer. Previous 
studies confirmed that CYP27A1 catalyzes the production of 27­
hydroxycholesterol (27-HC) from cholesterol and exhibits a 
significant growth inhibitory effect in renal cancer cells (77). 
Research indicates that CYP27A1 overexpression promotes 27­
HC production and significantly suppresses bladder cancer cell 
growth (78), suggesting that CYP27A1 overexpression may 
represent a potential therapeutic strategy for bladder cancer. 
Combined with the immune infiltration analysis, CYP27A1 
expression was significantly positively correlated with the 
infiltration level of resting dendritic cells (r = 0.42, P = 0.001), 
implying that this gene may influence disease progression by 
modulating the tumor immune microenvironment. Based on the 
findings of this study and the existing literature, we speculated that 
CYP27A1 might affect the development of bladder cancer by 
regulating 27-HC levels. Although no clinical therapies directly 
targeting CYP27A1 currently exist, its regulatory role in the tumor 
microenvironment suggests its potential value as a predictive 
biomarker for targeted therapy efficacy in bladder cancer. 

Interleukin 11 receptor subunit alpha (IL11RA) encodes a 
cytokine receptor produced by stromal cells. As a member of the 
pleiotropic and redundant cytokine family, signal transduction 
depends on high-affinity binding to the gp130 signaling subunit 
(79). Extensive research indicates that IL-11 and its receptor 
IL11RA are involved in crucial processes such as cell proliferation, 
differentiation, invasion, and metastasis in various cancers, 
significantly influencing tumorigenesis and progression (80). In 
lung adenocarcinoma, studies using transcriptomic analysis and 
Mendelian randomization have revealed that IL11RA expression is 
downregulated in tumor tissues and exhibits a significant negative 
correlation with lung adenocarcinoma risk, suggesting a potential 
tumor suppressor role (81). This study confirmed a negative 
association between IL11RA expression and bladder cancer risk, 
consistent with previous findings in lung adenocarcinoma. This 
causal relationship provides genetic evidence to support the 
development of targeted therapeutic strategies. Similar findings 
have been reported in non-small cell lung cancer (NSCLC), where 
IL11RA also demonstrated tumor-suppressor activity, and its 
expression level was negatively correlated with NSCLC risk (82). 
Combined with immune infiltration analysis, IL11RA expression was 
found to be significantly negatively correlated with the increased 
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infiltration of naive B cells and activated dendritic cells in tumor 
tissues, suggesting that IL11RA may regulate the bladder tumor 
immune microenvironment. Based on existing studies and the 
results of this study, we speculate that IL11RA may influence the 
development of bladder cancer. Although there are currently no 
direct clinical interventions targeting IL11RA, its potential value in 
predicting the efficacy of targeted therapy for bladder cancer warrants 
further investigation. 

This study is the first to report that KCNMB1 (potassium 
calcium-activated channel subfamily M regulatory beta subunit 1) 
is significantly downregulated in bladder cancer and is negatively 
correlated with disease risk, suggesting tumor suppressor gene 
characteristics. KCNMB1 encodes the b subunit of the large-
conductance calcium-activated potassium channel (BK channel), 
which plays a key role in regulating cellular membrane potential 
homeostasis, excitability, and contractility by integrating voltage 
and calcium signals in fundamental physiological processes (83). 
Notably, BK channels have been shown to regulate synovial cell 
migration and proliferation (84) and dermal fibroblast proliferation 
(85), indicating their potential roles in cell proliferation-related 
diseases. Through multi-omics analysis combined with 
experimental validation, this study revealed the expression profile 
of KCNMB1 in bladder cancer tissues and established its association 
with tumor-associated immune cells for the first time. Furthermore, 
KCNMB1 expression levels were significantly negatively correlated 
with the infiltration of naive B cells and activated dendritic cells in 
tumor tissues, suggesting that this gene may participate in 
regulating the bladder cancer immune microenvironment. 
Although research on KCNMB1 in tumors remains limited, the 
gene expression features and their links to the immune 
microenvironment discovered in this study provide important 
clues for further exploration of its potential value as a biomarker 
for bladder cancer. It should be noted that the molecular 
mechanisms of KCNMB1 in bladder cancer, particularly the 
relationship between BK channel function mediated by KCNMB1 
and tumor development, require further experimental elucidation. 

This study revealed the key role of PDLIM7 (PDZ and LIM 
domain protein 7) as an immune-related gene in bladder cancer. 
This gene encodes a non-secretory intracellular protein that 
contains a PDZ domain and three LIM domains. The PDZ 
domain interacts with actin-binding proteins, such as b-myosin, 
and participates in the regulation of cytoskeletal dynamics and 
signal transduction (86–88). Notably, PDLIM7 may serve as a novel 
regulator of the p53 pathway by forming a ternary complex with 
Enigma and MDM2 proteins (89), As the “guardian of the genome,” 
p53 is a critical tumor suppressor gene playing central roles in cell 
cycle regulation, DNA damage repair, and apoptosis (90). Studies 
have indicated that over 50% of tumors exhibit p53 dysfunction, 
and loss of the p53 pathway is common in human cancers. Thus, 
targeting the p53 pathway has become a crucial strategy for cancer 
therapy (91). This study is the first to show that PDLIM7 is 
significantly downregulated in bladder cancer tissues and that its 
expression is negatively correlated with disease risk. Previous 
research has shown that PDLIM7 participates directly or 
indirectly in the development of various cancers (92), further 
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suggesting that it may exert tumor-suppressive effects through 
regulation of the p53 signaling pathway. Although this study 
revealed an important regulatory role of PDLIM7 in bladder 
cancer, its specific  molecular  mechanisms  and  clinical  
translational potential require systematic validation through in 
vitro and in vivo functional experiments. 

This study conducted an integrative analysis of multiple 
databases, with potential heterogeneity effectively controlled 
through standardized analytical procedures and cross-platform 
validation (TCGA/GEO validation). Additionally, biological 
experimental validation was performed using qRT-PCR to ensure 
reliability of the results. Although immune-related biomarkers for 
bladder cancer have been identified by integrating multi-source 
transcriptomic data and GWAS databases, several limitations 
remain that need to be addressed in future research. Notably, Yan 
et al. incorporated machine learning algorithms and drug sensitivity 
analyses in transcriptomic studies, highlighting their significant 
potential for clinical application through integration with clinical 
features (93). Liu et al. employed single-cell transcriptomics to 
precisely dissect tumor microenvironment heterogeneity, thereby 
providing a new paradigm for immune-related gene research (94). 
Although this study strengthened the Mendelian randomization 
validation of GWAS data, further enhancement is needed to 
integrate multi-omics analytical techniques. Future research will 
combine machine learning, drug sensitivity prediction, and single-
cell transcriptomic technologies to focus on the characteristics of 
immune cells within the tumor microenvironment and the clinical 
application potential of the key marker genes identified in this 
study. As GWAS databases continue to be updated and improved, 
Mendelian randomization results may change. To explore potential 
molecular markers associated with bladder cancer pathogenesis, we 
conducted comprehensive correlation analyses. Nonetheless, 
further mechanistic studies, including in vitro and in vivo 
experiments, are essential to fully elucidate the roles of key genes 
in bladder cancer development and progression. 
5 Conclusion 

This study used multi-source transcriptomic data combined 
with Mendelian randomization analyses, including differential gene 
expression analysis, weighted gene co-expression network analysis 
(WGCNA), and Mendelian randomization, to identify eight 
candidate genes that were significantly negatively associated with 
bladder cancer risk: LIMS2, TP53INP2, IRAK3, STX2, CYP27A1, 
IL11RA, KCNMB1, and PDLIM7. ROC curve analysis and 
validation using independent datasets confirmed the strong 
potential of these eight genes as diagnostic biomarkers for bladder 
cancer. In vitro qRT-PCR validation in bladder cancer cell lines 
showed downregulation of LIMS2, IRAK3, STX2, IL11RA, 
KCNMB1, and PDLIM7, consistent with bioinformatics findings, 
suggesting that these genes may serve as potential therapeutic 
targets.  Through  integrated  multi-omics  analysis  and  
experimental validation, six genes, LIMS2, IRAK3, STX2, IL11RA, 
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KCNMB1, and PDLIM7, were selected as potential immune-related 
biomarkers for bladder cancer, providing promising biomarkers 
and therapeutic targets for personalized treatment. 
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