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in RIPI: pathophysiology
and translational potential
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Radiation-induced pulmonary injury (RIPI) is a common adverse effect following

thoracic radiotherapy (RT), and immune-related responses play a pivotal role in

the pathogenesis of RIPI. Chemokines are important components of the human

immune system which could modulate inflammatory responses. Their levels

fluctuate following radiation. These chemokines recruit relevant immune cells,

such as macrophages and lymphocytes, and induce lung inflammatory

responses. In addition to early-stage inflammation, chemokines are also

associated with radiation-induced pulmonary fibrosis (RIPF) at a late stage and

can augment the risk of post-radiation lung metastasis. Because of the

correlation between chemokines and RIPI, chemokines may be useful for RIPI

diagnosis and treatment. This review aims to summarize the alterations of the

levels of different chemokines after radiation, the regulatory mechanisms, and

the advancements of research on the diagnosis and treatment of RIPI by

chemokines, in order to provide references for the subsequent RIPI research.
KEYWORDS

radiation-induced pulmonary injury (RIPI), chemokines, biomarker, inflammatory

responses, macrophages
1 Introduction

1.1 The pathophysiological mechanism of RIPI

Radiation-induced pulmonary injury (RIPI) is a pathophysiological process after

thoracic irradiation, mainly consisting of radiation pneumonitis (RP) at the early stage

and radiation-induced pulmonary fibrosis (RIPF) at the late stage (1). It could be divided

into two types: non-tumor-associated RIPI and tumor-associated RIPI. The former may be

caused by accidental radiation exposure or thoracic radiotherapy (RT) for non-malignant

tumor-related diseases (2, 3). The latter mainly occurs after RT for malignant tumors. As

one of the most important treatments for malignant tumors, RT can control tumors locally

and sometimes exert an influence on distant lesions through the abscopal effect (4–6).
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Radiation-induced side effects in different organ systems, including

RIPI, limit the use of RT in the clinic (7). Although the

advancements in precision RT techniques have facilitated a

certain degree of reduction in radiation-induced toxicity through

the implementation of individualized treatment approaches, RIPI is

still inevitable for some patients (8, 9). Moreover, its underlying

mechanisms have not been fully clarified.

The complex pathophysiological process of RIPI is closely

related to the damage of lung cells caused by irradiation (10).

Irradiation can directly cause damage to cellular DNA, leading to

double-strand breaks. It can also cause indirect damage by ionizing

water molecules to generate reactive oxygen species (ROS), which

further damages biological macromolecules (11–15). Damaged cells

release a variety of inflammatory mediators. These mediators

recruit many immune cells, such as macrophages and neutrophils,

to migrate to the lungs, triggering inflammatory responses. This

process is accompanied by the activation of multiple signaling

pathways, which amplify the inflammatory response and

exacerbate lung injury (12, 16–18). And persistent chronic

inflammation can lead to the remodeling of the extracellular

matrix (ECM). It can induce epithelial-mesenchymal transition

(EMT) and activate fibroblasts to transform into myofibroblasts,

which secrete a large amount of collagen and fibronectin. These

results in the excessive deposition of the ECM, leading to the

formation of pulmonary fibrosis (19, 20).
1.2 Chemokines participate in the
development of RIPI

As important components of the immune system, chemokines

are involved in various pathophysiological processes such as

inflammatory responses, wound healing, and tumor progression

(21–23). And as early as 1998, Johnston et al. demonstrated that the

chemotaxis of inflammatory cells in response to different

chemokines was involved in the pathophysiological process of RP,

and some of them were also involved in advanced pulmonary

fibrosis (24). These suggest that the role of chemokines in RIPI

cannot be underestimated.

In recent years, there have been more studies on the relationship

between chemokines and RIPI. Levels of chemokines change in the

radiation-induced damage of multiple organs (25, 26). According to

Zhang et al., PTEN, AKT1, PT53, NOTCH1, and SIRT1 genes are

targets of sodium butyrate (NaB) that protect against RIPI in non-

small cell lung cancer (NSCLC) patients, with the former being

positively correlated with chemokines and their receptors and the

latter four being negatively correlated (27). And in the early stages

post-irradiation, damage was dominated by parenchymal cells, with

macrophages and lymphocytes being the main cell types recruited

by some pro-inflammatory cytokines and chemokines (28). These

illustrate the high probability that chemokines and their receptors

are involved in the development of RIPI. And the role of

chemokines may differ at different stages.

Most of the current studies have focused on observing changes

in chemokine levels after irradiation and investigating the
Frontiers in Immunology 02
correlation between changes in their levels and the development

of RIPI (29, 30). Researchers have observed the types of

inflammatory cells recruited by chemokines after irradiation and

the regulatory role of chemokines in this process (28, 31). In

addition, it has also been found that chemokine levels fluctuate

after RT and are associated with the pathophysiological processes of

tumors. Therefore, they are sometimes used as detection indicators

(32). In advanced NSCLC patients undergoing palliative thoracic

RT, chemokine levels change and correlate with tumor metabolic

burden (33). On this basis, some studies have also attempted to

apply chemokines to the diagnosis and treatment of RIPI (34, 35).

However, some studies did not conduct dynamic observations

on the levels of chemokines. Chemokines are involved in the entire

process of RIPI, and the lack of continuous dynamic observations

makes it impossible to clarify the characteristics of chemokines’

effects at different stages (36, 37). Meanwhile, the modeling

methods for RIPI animal models, the cell lines selected in cell

experiments, and the set detection time points are also significantly

different. This has increased the difficulty of conducting

comparative analyses of relevant studies. The limitation of clinical

samples also affects the progress of research.

Currently, there is a lack of reviews that deeply explore the

relationship between chemokines and RIPI and systematically

elaborate on the distinct roles of chemokines in tumor-related

RIPI and non-tumor-related RIPI. This review summarizes the

dynamic changes of chemokines at various stages of RIPI, the

relevant mechanisms, and potential future application directions,

aiming to provide references for the research on chemokines in the

field of RIPI.
2 Chemokines in RIPI: changes,
characteristics, and association with
RIPI

C-C motif chemokine ligand 2 (CCL2), a chemokine, primarily

recruits monocytes to participate in inflammatory responses (38,

39). Owing to its functional characteristics, it was designated as

monocyte chemoattractant protein 1 (MCP-1) in the early

stage (40).

During the inflammatory phase of RIPI, the expression of CCL2

is rapidly upregulated within a few days after IR. It recruits

monocytes/macrophages, promotes their polarization toward the

M1 (pro-inflammatory) phenotype, and enhances the inflammatory

response (16, 37, 41). During the fibrotic phase, CCL2 remains high

expression (42). This sustained high expression drives macrophages

to polarize toward the M2 (pro-fibrotic) phenotype, which then

secretes factors such as TGF-b. These factors activate fibroblasts,

thereby promoting collagen deposition and pulmonary fibrosis

(43, 44).

In tumor-associated RIPI, during the inflammatory phase,

CCL2 can upregulate inflammatory factors like IL-1b to activate

tumor-associated macrophages (TAMs), forming a pro-metastatic

inflammatory microenvironment (45, 46). During the fibrotic

phase, the CCL2-CCR2 axis further recruits immunosuppressive
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cells, inhibits anti-tumor immunity, and promotes tumor

progression and immune suppression (47–49).

Overall, the dynamic changes of CCL2 during the progression

of tumor-associated RIPI and non-tumor-associated RIPI are

similar, with both showing sustained high expression. However,

in tumor-associated RIPI, CCL2 additionally exerts a role in

promoting tumor progression.

The C-X-C motif chemokine ligand 12 (CXCL12)/CXCR4 axis

may be involved in post-radiation damage in several organs such as

radiation-induced brain necrosis. In this process, CXCL12 exerts its

function as a downstream factor of HIF-1a, which can regulate not

only the expression of CXCL12 but also the expression of CXCR4

(50). In RIPI, the level changes of CXCL12 exhibit a similar trend to

those of CCL2, and it also plays a role in promoting RIPI.

CXCL12 exhibits a significant increase in expression during the

progression of both RP and RIPF. It can initiate inflammatory

responses and promote fibrosis by facilitating the migration of

CXCR4+ bone marrow-derived mesenchymal stem cells (MSCs),

fibroblasts, inflammatory cells, and other such cells to the damaged

lung tissue (51, 52). In tumor-associated RIPI, the upregulation of

CXCL12 can promote peritumoral tissue fibrosis, enhance the

survival and immune escape of tumor cells, and reduce the

infiltration of CD8+ T cells, ultimately leading to the impairment

of antitumor immunity (53, 54).

In RIPI, the expression of CCL22 in alveolar epithelial cells is

elevated. This promotes the migration of CCR4+ dendritic cells

(DCs) to damaged tissues, induces the formation of immune-

tolerant DCs, and facilitates the proliferation of Tregs, inhibiting

the early inflammatory response. Currently, there is no definitive

research on the level of CCL22 during the RIPF stage. However, if

CCL22 continuously participates in immune regulation, maintains

Tregs’ activity and immune suppression, it may potentially promote

the progression of fibrosis (55). Furthermore, unlike non-tumor-

associated RIPI, TAMs in TME can also secrete CCL22 to regulate

immune tolerance in tumor-associated RIPI, which may potentially

promote tumor escape (56).

Currently, there is limited research on the expression level and

role of CCL3 in RIPI. Existing studies support that the level of CCL3

is increased in both RP and RIPF stages. Moreover, CCL3 recruits

immune cells via the CCL3/CCR1 axis, enhances inflammatory

responses, promotes fibroblast activation and collagen deposition,

and drives the progression of pulmonary fibrosis (29, 57).

CXCL8, as a chemokine which can regulate neutrophils, has

also been studied in RIPI. Its level is upregulated during the RP

stage and remains highly expressed during the RIPF stage (12).

CXCL8 can promote pulmonary fibrosis together with cytokines

such as TGF-b, and may also be associated with processes like

tumor immune escape in tumor-related RIPI (58).

The expression of CCL5 increases in the RP stage and becomes

even stronger in the RIPF stage. In the RP stage, CCL5 can recruit

immune cells to enhance the inflammatory response and tissue

damage (59). In the RIPF stage, it can promote EMT and promote

the progression of lung fibrosis (60). In tumor-related RIPI, the

increased expression of CCL5 may promote tumor colonization and

metastasis (61).
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Chemokine KC increases rapidly in the early stage of post-

radiation lung injury and then gradually decreases, and is involved

in the early acute inflammatory response. It may increase again in

the RIPF stage, but there is currently no sufficient evidence to

indicate its relationship with RIPF. In tumor-related RIPI, its level is

affected by the TME and the use of combination therapy (62–64).

CXCL10 increases significantly in the RP stage, recruits

immune cells, and participates in the acute inflammatory

response. In the RIPF stage, CXCL10 maintains chronic

inflammation and may be associated with RIPF, but this still

requires further research (10, 65). In tumor-related RIPI, while

participating in the inflammatory response and causing tissue

damage, CXCL10 can also recruit CD8+ T cells and participate in

anti-tumor immunity (66).

Generally, these chemokines mentioned above are mostly

upregulated in the RP stage and persistently highly expressed in

the RIPF stage, with their core functions involving the recruitment

of immune cells, regulation of inflammation, and progression of

pulmonary fibrosis. It also points out that in tumor-associated RIPI,

most chemokines additionally exert a role in promoting tumor

progression, while a few can be involved in anti-tumor immunity.

Besides, another important aspect is the sources of these

chemokines in RIPI, and we have also made a brief summary of

this part (Table 1).
3 Regulatory mechanisms of
chemokines in RIPI

Chemokines, as one of the key factors involved in RIPI, undergo

regulation of multiple mechanisms. Initially, radiation induces

pathological damage to tissue cells, thereby upregulating

chemokine expression levels. Alveolar epithelial cells, one of the

main sources of chemokines, significantly upregulate chemokine

expression after sustaining radiation-induced injury. They secrete

large amounts of chemokines, including CCL2 and those of the

CXC family, and then recruit inflammatory cells such as dendritic

cells and T cells to infiltrate (67, 68). Damaged monocytes/

macrophages can also secrete chemokines such as CCL2 and

CCL3. Meanwhile, they are not only chemokine-producing cells

but also effector cells in the inflammatory response, and can amplify

the inflammatory response by synergizing with chemokines and

cytokines like IL-1b (17, 37). Even tumor cells after being irradiated

can increase the release of chemokines (69). In-depth studies have

revealed that this phenomenon is regulated by multiple

signaling pathways.

Angiotensin-Converting Enzyme (ACE) may be involved in the

pathogenesis of RIPI by regulating the ACE/type 1 angiotensin

receptor (AGTR1)/NADPH oxidase 2 (NOX2) pathway and the

formation of reactive oxygen species (ROS). Since with ACE

inhibitor treatment, the levels of CCL2 and CCL3 in the

bronchoalveolar lavage fluid(BALF) of rats with RP returned to

baseline levels, and the mRNA and protein expression of CCL2 in

THP-1 cells were both reduced, it is considered that ACE is highly

likely an upstream regulator of CCL2 and CCL3 in RIPI (70).
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Moreover, the levels of Angiopoietin II (AngII) and aldosterone,

downstream effector molecules of ACE, were also significantly

increased in rats with RIPI and persisted high levels (71). As an

upstream regulatory factor of CCL7, P21 can also regulate the

expression of CCL7, but has no impact on the expression of other

chemokines such as CCL2 (31).

Thrombopoietin mimetic (TPOm) exerts a protective effect by

regulating pulmonary capillary endothelial cells (CapECs). It can

direct CapECs to shift from radiation-induced highly activated

phenotypes to homeostatic regulatory phenotypes. Meanwhile,

TPOm upregulates pro-vascular homeostasis pathways such as PI

and GTPase, downregulates pro-inflammatory pathways including

TNF superfamily and leukocyte adhesion, and inhibits the

expression of heat shock protein Hsp70, thereby alleviating

endothelial cell stress injury. During this process, TPOm

significantly inhibits the expression of CCL2 and KC, reducing

neutrophil infiltration. This further indicates that CCL2 and KC are

involved in the inflammatory phase of RIPI (15).

Although relevant research on chemokines participating in RIPI

as SASP factors is few, it is known that IL-1b, which is involved in

RIPI as a SASP factor, can further promote RIPF by regulating

CCL2. Radiation induces bone marrow-derived immune cells to

produce IL-1b, which binds to IL-1 receptors (IL-1R) on the surface

of lung-resident cells. It induces the production of CCL2, recruits

CCR2+ monocytes to migrate to lung tissue and differentiate into

macrophages (36). Moreover, as the upstream factor of IL-1b, the
activated NOD-like receptor pyrin domain-containing protein 3

(NLRP3) after radiation can promote the expression of IL-1b,
facilitating pyroptosis. And the increased heat shock protein 27

(HSP27) after RT can act on inhibitor of nuclear factor kappa-B

alpha (IkBa), activating the NF-kB pathway. This activation can

promote the expression of certain cytokines, such as IL-1b,
Frontiers in Immunology 04
enhances EMT, and contributes to the progression of RIPF (20,

72, 73).

Additionally, the cGAS-STING signaling pathway is associated

with the occurrence and development of RIPI. After radiation, the

increased amount of double-stranded DNA (dsDNA) activates the

cGAS-STING pathway. Once activated, STING recruits TANK-

binding kinase 1 (TBK1), which promotes the activation of

interferon regulatory factor 3 (IRF3) and nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB). This stimulates

macrophages to secrete a variety of cytokines, including CCL2

(16, 70).

Besides these, radiation can induce changes in the expression of

circular RNAs (circRNAs) and microRNAs (miRNAs). These non-

coding RNAs can regulate the transcription and translation of

chemokines and their receptors, affecting subsequent

inflammatory responses and immune cell migration (74).

Meanwhile, research on downstream regulators in RIPI has also

been reported to a certain extent at present. Chemokines primarily

exert their function in RIPI by recruiting various types of immune

cells. CCL2 can recruit macrophages, participate in forming the

signals of the microenvironment, and regulates the phenotypes of

relevant immune cells after RT. It gradually stimulates the

expression of fibrosis-related proteins, leading to RIPF (16, 70). In

addition to macrophages, CD45+ leukocytes can also be recruited by

CCL2 after RT, accompanied by a significant increase in the

percentage of myelomonocytes (75). In lung epithelial cells after

radiation, the released chemokine CCL7 exerts a chemotactic effect

on macrophages, and this effect is positively correlated with the

concentration of CCL7 (31).

In addition, during this process, some other factors are also

involved in the regulation. Radiation can induce fibroblasts,

macrophages, and other cells to secrete osteopontin (OPN). OPN
TABLE 1 The sources and roles of chemokines in non-tumor related RIPI.

Chemokine Cell source Method Sample Role Reference

CCL2 macrophages, lung
epithelial cells,
endothelial cells

10x Genomics scRNA-
seq, q-PCR, ELISA, IHC

lung tissue, BALF,
peripheral blood

regulate macrophage polarization, participate in
the inflammatory response, and promote RIPI

(16, 18, 133)

CXCL12 fibroblasts,
mesenchymal stem
cells

ELISA, flow cytometry,
RNA-seq, IHC

serum, lung tissue,
BALF

promote the migration of inflammatory cells and
mesenchymal stem cells, exacerbate lung fibrosis,
and regulate the immune microenvironment

(78, 134, 135)

CXCL8 macrophages, lung
epithelial cells,
endothelial cells

q-PCR, ELISA, IHC serum, lung tissue,
BALF

promote neutrophil infiltration, Amplify
inflammation, and Exacerbate lung injury

(2, 136, 137)

CCL22 macrophages, lung
epithelial cells

q-PCR, ELISA, IHC lung tissue, BALF recruit immune cells, regulate immune tolerance,
and promote fibrosis

(67, 138, 139)

CCL3 monocytes/
macrophages

q-PCR, ELISA, IHC serum, lung tissue,
BALF

recruit inflammatory cells and promote pulmonary
fibrosis

(29, 57)

CCL5 mesenchymal stem
cells, lung epithelial
cells, T cells, and B
cells

10x Genomics scRNA-
seq, q-PCR, ELISA, IHC

lung tissue, BALF recruit immune cells, promote T cell activation,
and promote pulmonary fibrosis

(45, 59–61, 140)

CXCL10 lung epithelial cells,
endothelial cells,
dendritic cells

q-PCR, ELISA, IHC serum, lung tissue,
BALF

promote immune cell recruitment and
inflammatory response, and exacerbate lung injury

(65, 66, 141)
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can activate the proliferation of fibroblasts, promote collagen

deposition, and exacerbate fibrosis (76, 77). Silencing CXCL12

can downregulate OPN expression, thereby alleviating the degree

of fibrosis, which suggests that OPN may be a downstream factor of

CXCL12 in the regulation of RIPI. Meanwhile, OPN also exerts pro-

tumor effects such as recruiting immunosuppressive cells,

promoting angiogenesis, and facilitating tumor metastasis. This

further implies that CXCL12, which is presumably upstream of

OPN, may also have a pro-tumor role in tumor-associated

RIPI (78).

For human fibroblasts, CXCL12 can activate the mitogen-

activated protein kinase kinase kinase 1/c-Jun N-terminal kinase

(MEKK1/JNK) signaling pathway to initiate the phosphorylation of

Sma and MAD related protein 3 (SMAD3), promote the

translocation of SMAD3 to the cell nucleus, and mediate the

recruitment of SMAD3 to the connective tissue growth factor

(CTGF) promoter, thereby inducing the expression of CTGF (79).

In RIPI, macrophage-related mechanisms are also one of the

key focuses of attention. Most studies suggest that in the early stage

of RIPI, the process is dominated by M1-type macrophages, which

secrete pro-inflammatory cytokines and ROS to exacerbate

inflammation and tissue damage. In the late stage, there is an

increase in M2-type macrophages, which secrete pro-fibrotic

factors, promoting the progression of pulmonary fibrosis (31, 80).

M1-type macrophages generated upon LPS stimulation may be

more involved in RP, whereas M2-type macrophages induced by IL-

4 and IL-13 stimulation may be more associated with the

development of RIPF. Specifically, M1-type macrophages possess

a higher capacity to produce CCL3 compared to M2-type

macrophages, while CCL3 demonstrates a stronger chemotactic

effect on M2-type macrophages than on M1-type macrophages.

This mechanism may be implicated in the transition of RIPI from

the inflammatory phase to the fibrotic phase. Nevertheless, the

study did not explore whether a cascade amplification reaction of

“recruitment followed by re-secretion” exists between CCL3 and

macrophages (81).

In addition, lung epithelial cells exposed to ionizing radiation

secrete chemokines such as CCL2 and CCL4. These chemokines can

recruit macrophages to the site of lung injury, and the recruited

macrophages are predominantly M2-type that express Arg-1 and

CD206. M2-type macrophages may further secrete transforming

growth factor-b (TGF-b), a classic cytokine that promotes EMT

(44). When CCR2 expression is absent in lung tissue, the proportion

of resident macrophages with an alternative activation phenotype

(M2) decreases (36). And the presence of CCR2 phenotype in lung

tissue contributes to the alternative activation phenotype (CD206) of

macrophages, promoting the progression of pulmonary fibrosis (36).

However, the polarization of M1 and M2 macrophages is not

strictly phase-separated; instead, the two subtypes can coexist

dynamically. Furthermore, their polarization status is regulated by

multiple signaling pathways, while the specific conversion

mechanisms and timing remain not fully clarified (16, 82, 83).

Therefore, the mechanism of M1/M2 macrophage polarization in

RIPI cannot be fully confirmed.
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Between tumor-associated and non-tumor-associated RIPI, one

of the significant differences is the participation and regulation of

the tumor microenvironment (TME), which are involved during the

occurrence and development of tumor-associated RIPI.

Compared with non-tumor-associated RIPI, the cell types and

signaling pathways in TME may exhibit differences. Tumor cells,

cancer-associated fibroblasts (CAFs), and TAMs in TME may

exhibit different characteristics after radiation compared with

ordinary lung tissue cells. For cancer cells, increased IL-6 levels in

irradiated cells upregulate the downstream protein CCL2 24 hours

after RT. This upregulation encourages macrophage migration and

invasion. Blocking CCL2 will decrease the number of macrophages

recruited by cancer cells after RT (45). And the NLRP3

inflammasome is mainly activated in normal lung epithelial cells,

which promotes the secretion of IL-1b. This in turn activates

fibroblasts, leading to pulmonary fibrosis, whereas tumor cells

exhibit weaker activation of this pathway (84). For CAFs, they

exhibit greater radiation resistance, enter a senescent condition,

persist in survival, and further affect the tumor TME after radiation.

Specifically, they secrete more pro-tumor-related signaling

molecules and maintain immune suppression by releasing factors

such as CXCL12 (85–89).

Radiation may exert effects on the tumor genome and TME.

Stereotactic Body Radiotherapy (SBRT) induces de novo somatic

mutations in tumor cells but does not increase the tumor

mutational burden (TMB), suggesting that SBRT may function by

inducing “tumor-specific neoantigens” rather than increasing the

total number of mutations. Regarding the tumor immune

microenvironment, SBRT enhances the diversity of the T-cell

receptor (TCR), expanding the range of tumor antigens

recognized by T cells, and upregulates the expression of PD-L1 (90).

Using techniques such as single-cell sequencing, studies have

found that CCL-related signaling may participate in the formation

of an immunosuppressive TME at the early stage after radiation. In

the early stage after hypo-fractionated RT, an M2-like macrophage

subset (designated as Mac_Ccl8) characterized by high CCL8

expression emerges in tumors. This macrophage subset highly

expresses M2 markers, immunosuppressive genes, and

phagocytosis-related genes, while it lowly expresses MHC-II

antigen presentation genes and pro-inflammatory genes. It can

inhibit T cell activity via immune checkpoint ligands, leading to

CD8+T cell exhaustion. Hypo-fractionated radiotherapy causes

DNA damage in tumor cells, triggering tumor cells and initial

myeloid cells to secrete CCL2 and CCL7. Subsequently, the

recruited monocytes differentiate into Mac_Ccl8, which further

secretes CCL8. CCL8 binds to CCR1/CCR5 receptors on the

surface of monocytes/macrophages, promoting their migration to

tumors; meanwhile, CCL2/CCL7 enhance this migratory effect via

CCR2 receptors and induce the polarized differentiation of

migrated cells toward the M2 phenotype. CCL8 secreted by

Mac_Ccl8 further amplifies CCL signaling, recruiting more M2-

like TAMs. At the same time, Mac_Ccl8 inhibits CD8+T cell

activity via Lgals9-Havcr2 (TIM-3) signaling, forming an

immunosuppressive TME (91, 92).
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Under the influence of TME, TAMs exhibit a greater tendency

toward the M2 phenotype, and most of them primarily function in

promoting tumor progression and fibrosis (83, 93, 94). But whether

macrophages in non-tumor-associated RIPI or TAMs in tumor-

associated RIPI, the current research definitions and detection

criteria for their phenotypes and roles in RIPI remain

inconsistent. Some studies are only based on marker expression

and lack functional verification. Further evidence is still needed.

Tumor-associated neutrophils (TANs) are important mediators

of the antitumor effect of RT and a key component of the TME.

During the early stage after RT, the levels of CXCL1, CXCL2, and

CCL5 increase significantly, mediating the recruitment of TANs.

On one hand, the recruited TANs can promote the infiltration of

CTLs and CD8+ T cells into tumors, spleens, and draining lymph

nodes, enhance the activation status of CTLs, and simultaneously

reduce the proportion of Tregs. G-CSF can further enhance these

effects of TANs. On the other hand, TANs can generate ROS to

inhibit the PI3K/Akt/Snail signaling pathway, thereby blocking the

EMT of tumor cells and inducing mesenchymal-epithelial

transition (MET). After neutrophil depletion, the MET effect

disappears, EMT is reinitiated, and the sensitivity to RT decreases

(95). Moreover, the functions of TANs are diverse. Radiation-

induced injury can activate neutrophils and enhance the Notch

signaling pathway. Specifically, GLUT1-mediated glucose uptake in

TANs enhances their pro-tumor behaviors, thereby promoting

tumor growth and radiotherapy resistance. This indicates that

TANs also exhibit pro-tumor effects under certain conditions (96,

97). However, there is currently no clear conclusion about the

relationship between TANs and tumor-associated RIPI.
4 The potential of chemokines in
diagnosis and treatment

4.1 The possibility of chemokines for
predicting and diagnosing RIPI

Since chemokines play regulatory roles in RIPI, researchers

have explored their application in RIPI diagnosis. Based on the

relationship between CCL2 and RIPI, CCL2 has been studied in

predicting RIPI. In research by Siva et al., 12 NSCLC patients

receive a treatment of 60 Gy in 30 fractions over 6 weeks, with some

also receiving chemotherapy. Those with lower blood CCL2 an hour

after the first RT have a greater probability of severe pulmonary

toxicity (according to CTCAE standard), suggesting that CCL2

could be a predictive biomarker (98). However, Yu et al. do not

discover any connection between grade ≥2 radiation pneumonitis

(RP2) and CCL2 levels (99). Moreover, Eleni Gkika et al. attempted

to explore the relationship between CCL18 levels and early

radiation lung toxicity, expecting to find the potential of CCL18

as a biomarker. However, no correlation was demonstrated between

the occurrence of radiation-induced lung toxicity and the levels of

CCL18 which were elevated in fibrotic diseases. But the hypothesis

that CCL18 levels increase after radiotherapy is not completely

disproved, as tumor regression after radiotherapy may also lead to a
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decrease in CCL18, allowing its levels to remain stable on the

surface (100).

In addition to biomarkers, some studies have attempted to

develop imaging probes targeting chemokine receptors for the

visualization of RIPI lesions using PET/CT. Different from other

chemokine receptors. CXCR4 has received more attention in studies

for lesion imaging, especially when it serves as a tracer probe. It can

be used to construct a short-wave infrared emitting nanoprobe that

can targeted-detect sub-tissue microlesions in a model of lung

metastasis from breast cancer up to 10.5 mm deep, with the

smallest lesions up to 18.9 cubic millimeters in size (101). [68Ga]

Ga-Pentixafor which targeting CXCR4 could be used to assess

MALT lymphoma non-invasively by PET/CT (102). Vag et al.

found that although the SUVmax of the probe targeting CXCR4

was lower than conventional [18F]F-FDG, it was more than tenfold

in non-small cell lung cancer than other solid tumors (103).

Moreover, Lau et al. designed [68Ga]Ga-BL01 and [177Lu]Lu-BL01

targeting CXCR4 for PET detection in mice with malignant tumors.

The results demonstrated excellent tumor uptake and remarkable

CXCR4+ targeting ability. This indicated the great potential of

CXCR4 for application in tumor diagnosis and internal radiation

therapy (104). Targeting CCR2+ monocytes and macrophages by
64Cu-DOTA-ECL1i contributed to the visualization of fibrotic

lesions in IPF patients by PET and responded to treatment

effects (105).

Therefore, considering the possible involvement of the

CXCL12/CXCR4 axis in the development of RIPI, Pei et al.

targeted CXCR4 with [18F] AlF-NOTA-QHY-04 and found this

novel tracer detected RIPI earlier than [18F] FDG. Tracer uptake by

irradiated mouse lung tissue increased significantly at 6 days post-

RT, reached a peak at 14 days post-RT. The SUVmax significantly

elevated in patients who developed RP in a clinical trial and may be

positively correlated with the severity of RP (34). These indicates

the potential of chemokines as tracer targets for early noninvasive

screening of RIPI by PET/CT.

Based on the research findings above, it is obvious that there are

many challenges in the application of chemokines for diagnostic

purposes remain to be addressed. The accuracy of the research

which using chemokines as biomarkers for predicting or diagnosing

RIPI may be questionable, due to the lack of systematic detection of

the dynamic changes in chemokine levels post-irradiation.

Although some chemokines exhibit a general trend of change in

RIPI, fluctuations in their levels still occur during the process. Both

the liver and the lungs exhibit alterations in a number of

chemokines, including a decrease in CCL2, CCL8, and CCL3 one

to two weeks following stereotactic ablative radiation, which are

different from the previous trend (106). In addition, for patients

with advanced lung cancer receiving palliative RT, serum CXCL2

and CXCL6 levels also decrease during and after receiving RT (33).

This indicates that in order to use chemokines as biomarkers, it is

necessary to further advance the research on the mechanisms

underlying their level changes, and also requires larger sample

size, prospective studies to provide evidence (107).

In addition, the insufficient specificity of chemokines as

biomarkers also needs to be taken into account. Since chemokines
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are involved in multiple immune regulation process, it is more

reliable to select several relevant chemokines or other indicators

with reference value to construct a model, rather than using a single

chemokine. The risk of RP2 is related to baseline levels of CCL2 and

IL-8 two weeks prior to RT in NSCLC patients. By integrating with

mean lung dose (MLD) and hypertension, this indicator helps to

produce an RP2 prediction model that had 76.5% specificity, 80%

accuracy, and 100% sensitivity (99).

Meanwhile, since genetic polymorphism affects an individual’s

sensitivity to inflammatory responses and disease severity. And

chemokine expression is also influenced by multiple factors such

as genetics, environment, and underlying diseases, there may be

significant variations in expression among different individuals,

making standardization difficult to achieve (108, 109). The -353A/

T and +781T/C polymorphisms of the CXCL8 gene are associated

with increased CXCL8 expression and elevated cancer risk (110). In

addition, CCL2-2518A/G is a common single nucleotide

polymorphism (SNP) in the promoter region of the CCL2 gene. It

affects transcription factor binding, thereby regulating the

transcriptional activity of the gene. High-expression genotypes

(e.g., G/G or A/A, depending on the disease) are associated with

more intense inflammatory responses, higher disease activity, and

greater tissue damage. For example, in severe acute respiratory
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syndrome (SARS), the high-expression G/G genotype suggests a

higher disease risk. In systemic lupus erythematosus (SLE), the high-

expression G/G genotype is related to more severe inflammation

(111, 112). This indicates that the regulatory effect of CCL2-2518A/

G may vary in the context of different diseases. However, this

research area remains unexplored in RIPI and requires further

investigation. No matter using chemokines as biomarkers or using

chemokines in combination with PET/CT for diagnostic purposes,

the cost factor also needs to be taken into account.
4.2 Chemokines in RIPI treatment: require
further exploration

Currently, as therapeutic targets, chemokines have received

attention in relevant studies on various diseases. They have the

potential to be therapeutic targets due to their critical roles (39,

113). For example, CXCR4 antagonists can inhibit tumor

progression and metastasis, CXCL8 inhibitors can slow down

tumor progression, and CCL5 inhibitors play a role in the

treatment of atherosclerosis, etc. (114–116).

In RIPI treatment, adoptive transfer of MSCs during the early

post-irradiation period could restore decreased superoxide
FIGURE 1

Schematic diagram of the involvement of chemokines in non-tumor-associated RIPI.
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dismutase 1 (SOD1) levels and reduce vascular damage and

endothelial cell loss (75). In addition to the paracrine pathway

(117, 118), MSCs can also play a therapeutic role through

homeostatic differentiation, immunomodulation, and exosome

secretion (119). For example, miR-466f-3p in exosomes derived

from murine MSCs prevent radiation-induced EMT by targeting c-

MET to inhibit the AKT/GSK3b pathway (120). The amount and

duration of the accumulation of MSCs at the site of injury are still

challenges to be solved, and further research is required to

investigate the optimal time, concentration, and route of

administration of the treatment (121). Meanwhile, mesenchymal

stem cells (MSCs) are also closely associated with chemokines in

RIPI. Therefore, whether chemokines can also be applied to RIPI

treatment remains to be further studied.

CXCR4-overexpressing human umbilical cord mesenchymal

stem cells (HUMSCs) showed better effects. They accumulated

more in irradiated lungs and enhanced the protective effect,

manifesting as attenuated interstitial hyperplasia, interstitial-

patchy congestion, and interalveolar septal thickening. In addition

to this, they reduced the expression levels of CXCL12, TGF-b1, and
a-SMA, while enhancing the expression of E-cadherin (35). TGF-

b1 is a crucial cytokine in the development of RIPF. And the

production of a-SMA indicates the differentiation of myofibroblasts

(122). The reduction of both helps to resist RIPF. E-cadherin is an

epithelial marker that reflects the integrity of epithelial tissue and is

also frequently used in EMT-related studies (123).

Additionally, when chemokine receptors are selected as targets,

it is necessary to consider that some chemokines have multiple

receptors. In RIPI, chemokine ligands binding to different receptors

may produce different effects. For CCL3, its receptor CCR1 exhibits

synchronized changes with CCL3 after irradiation. Furthermore,

blocking CCR1 to inhibit inflammation in the early stage

(inflammatory phase) can also exert a protective effect on long-

term pulmonary fibrosis. However, CCR5, which acts as another

receptor for CCL3, exerts a protective function against RIPI. In

mouse experiments, following the knockout of CCR5, both the

degree of pulmonary inflammation and the level of lung tissue

damage in irradiated mice were significantly increased. But whether

blocking the expression of one receptor for CCL3 will lead to

enhanced activity of the pathway mediated by the binding of

CCL3 to its other receptor remains to be further investigated (29).

The chemokine network is complex. The ligands and receptors

of chemokines can exhibit cross-interaction, and additionally,

atypical chemokine receptors (ACKRs) are also involved in

regulation. If a single chemokine receptor is selected as a

therapeutic target, other chemokine receptors will likely be

upregulated to maintain the signaling pathway, leading to the

occurrence of receptor compensation effect (124–126). CXCR4

and CXCR7(also known as ACKR3) can be expressed individually

or collectively. When CXCR4 is inhibited, CXCR7 can substitute to

mediate CXCL12 signaling, promoting tumor cell migration,

angiogenesis, and metastasis (127). Therefore, selecting

chemokines as therapeutic targets for RIPI requires full

consideration of the complexity of the chemokine regulatory

network. While the mechanism of chemokines in RIPI is being
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further elucidated, multi-target combination therapy can be taken

into account.

Beyond these, it is also necessary to consider whether targeting

chemokines will induce immunosuppression. This question is

particularly critical in tumor-associated RIPI. Some studies

suggest that blocking specific chemokine pathways can reduce the

infiltration of immunosuppressive cells in TME, while also

enhancing the function of effector immune cells like CD8+ T

cells. For example, blocking chemokine pathways such as

CXCL12/CXCR4, CCR8, and CCL2 can reduce the infiltration of

cells like Tregs, MDSCs, and M2-type macrophages in TME. This

effect helps reverse immunosuppression and improve the efficacy of

immunotherapy (128–132). However, current research on targeting

chemokine for RIPI treatment remains relatively limited, and the

effects induced by this therapeutic strategy have not yet been fully

clarified. Thus, there is still a long way from truly applying

chemokines to clinical diagnosis and treatment practice.
5 Conclusion

This review focuses on the role of chemokines in RIPI and

systematically summarizes the regulatory role of chemokines in the

pathological process of RIPI, as well as related mechanisms and

explorations of translational applications. RIPI can be divided into

tumor-associated and non-tumor-associated subtypes (Figure 1).

Chemokines not only participate in lung tissue injury and repair but

also are affected by TME in tumor-associated RIPI, exhibiting

additional specific regulatory effects.

Mechanistically, the dynamic changes of chemokines persist

throughout the entire course of RIPI, and their expression and

functions are regulated by many factors. In terms of translation,

chemokines show potential in the diagnosis (e.g. biomarkers,

imaging targets) and treatment (e.g. targeted intervention

strategies) of RIPI. However, current research still has challenges

such as insufficient standardization and treatment complexity.

Future research should focus on some aspects. Firstly,

promote basic research to clarify the differences in the core roles

of chemokines among different RIPI subtypes. Secondly,

promoting translation to optimize diagnostic tools and explore

effective treatment. Finally, strengthening clinical validation to

advance the practical application of chemokine-related

technologies in the precision diagnosis and treatment of RIPI, in

order to help to address the challenges in the clinical management

of RIPI.
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