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University School of Medicine, Baltimore, MD, United States, 2Department of Biomedical Engineering,
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Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States,
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Post-treatment Lyme Disease (PTLD) is a poorly understood complication of

Borrelia burgdorferi infection with significant patient morbidity. Characterized by

fatigue, generalized myalgias, and cognitive impairment, PTLD symptomatology

closely resembles long COVID and other post-acute infection syndromes. While

prior studies suggest immune dysregulation as a factor in PTLD pathogenesis, the

mechanisms underlying its heterogeneous presentation and severity remain

unclear. To associate symptom burden with discrete immune phenotypes, we

applied factor analysis to self-reported symptom data from 272 PTLD patients to

generate patient subgroups. We then immunophenotyped peripheral blood cells

of these individuals and 28 healthy controls through 19-parameter flow

cytometry and cytokine profiling to associate PTLD status and the newly

defined subgroups with specific immune states. Our PTLD cohort had fewer

circulating CXCR5+ CD4+ naïve T cells relative to healthy controls (5.2% vs. 8.3%,

Padj < 0.001). These cells were positively associated with musculoskeletal pain in

PTLD participants, but not healthy controls. This and addit ional

immunophenotypic alterations, including an increased prevalence of CXCR3+

CCR4- CCR6- CD8 T cells (43.1% vs. 25.7%, Padj < 0.01), permitted the creation

of an elastic net classifier which identified PTLD with moderate efficacy (AUC

0.83). Measurement of cytokines did not reveal associations with PTLD and did

not improve the performance of the model. While we could not identify immune

features which distinguished all patient subgroups, we did observe a female-

specific increase in central memory CD8 T cells restricted to one high-fatigue

patient subgroup. Additionally, factor analysis revealed multiple associations

between immune cell frequency and the severity of specific symptoms.

Collectively, our findings add to growing evidence of immune dysfunction as a

prominent feature of PTLD.
KEYWORDS

post-treatment Lyme disease (PTLD), flow cytometry, immune phenotyping, post-acute
infection syndromes (PAIS), cytokine profiling, T cells
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Introduction

Lyme disease is an inflammatory disease initiated by infection

with Borrelia burgdorferi following a bite from an infected tick (1, 2).

Signs and symptoms of early Lyme disease include the erythema

migrans skin rash (EM), which may be accompanied by symptoms

such as fever, sweats, chills, malaise, fatigue, and achiness. In some

untreated cases, this early phase can evolve into systemic disease with

signs of disseminated neurologic, cardiac, and/or joint involvement.

Later, untreated patients can also develop late-onset musculoskeletal

or neurological signs and symptoms (1–3). It is well known that both

acute infection and late-onset disease can largely be controlled by

appropriate antibiotic therapy and most individuals return to their

pre-infection baseline. However, following proper diagnosis and

treatment, there is a subset of patients which display a range of

symptoms that can persist for years (4–6). This patient group is very

heterogeneous, often self-reporting a variety of musculoskeletal,

neurological, cognitive, and other symptoms. A research case

definition for this illness, termed Post-Treatment Lyme Disease

(PTLD), has been operationalized to capture a significant subset of

these patients (4, 7). This definition includes a clear diagnosis of

Lyme disease as well as continuing symptoms and functional

changes that extend beyond 6 months after appropriate antibiotic

treatment. This definition of PTLD has allowed investigators to

recruit well-defined patient cohorts with the goal of understanding

the complexity of PLTD, uncovering its underlying biology, and

developing new approaches to diagnosis and treatment.

The underlying mechanisms driving PTLD are not known.

Multiple hypotheses have been proposed, including the presence of

persistent B. burgdorferi antigens and/or viable bacteria, post-infection

neural network alternations, infection-induced autoimmunity, or

generalized inflammation/immune dysregulation (4–6, 8). While

findings suggestive of immunologic abnormalities in PTLD have

been reported (9–13), a lack of well-defined alterations in specific

cell populations presents a substantial barrier to understanding and

treating patients with PTLD. It is important to note that the symptoms

associated with PTLD are heterogeneous, and distinct mechanisms

may drive disease pathophysiology in different patients. Linking

immune phenotypes to specific symptoms presents an important

step forward in understanding this heterogeneity.

Biological sex is known to alter many aspects of the immune

system (14). Several prior studies have identified sex-based

differences in prevalence of various stages of Lyme disease

infection (15–18), as well as an increased risk of PTLD among

females (19, 20). This is consistent with findings that females are

more likely to develop post-acute infectious syndromes overall (21–

24). However, the sex-specific immune characteristics involved in

PTLD, and their relationship to potential sex-differences in

symptom presentation, are not well understood. Therefore, an

additional area of interest is the exploration of sex-specific

immune features in PTLD patients.

To identify immune features associated with PTLD, we first

applied factor analysis to self-reported symptom scores collected
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through the Post-Lyme Questionnaire of Symptoms (PLQS) from

well-defined patients with PTLD. We then performed complex

cellular immunophenotyping using flow cytometry and measured

serum cytokines, chemokines, and acute-phase markers from the

peripheral blood of these patients and healthy controls. By

analyzing symptom profiles and immunophenotype data in

tandem, we sought to link symptom burden and presentation to

distinguish immune features within PTLD and identify differences

between our PTLD cohort and healthy controls.
Methods

Study participants

Participants were recruited from a referral-based clinic

population according to criteria previously described (7, 25).

Briefly, participants (i) required a medical record indicating prior

diagnosis and treatment for definite or probable Lyme disease

according to Centers for Disease Control and Prevention criteria

(26); (ii) experienced functionally impairing symptoms following

acute Lyme infection and at the time of enrollment, including

fatigue, musculoskeletal pain, and/or cognitive dysfunction; and

(iii) were excluded for specific comorbidities including depression,

cancer, HIV, and autoimmune disorders. The Institutional Review

Board of the Johns Hopkins University School of Medicine

approved this study, and written informed consent was obtained

from all study participants (IRB00035457). Controls without a

history of Lyme disease were recruited from a primary care clinic

or through online advertising. To be eligible, they were required to

have a negative two-tier serologic test for antibodies to B.

burgdorferi, and self-report no prior Lyme disease diagnosis. They

were also excluded for the same list of comorbidities as the patients

with PTLD. Self-reported gender was obtained for all participants.

Additional self-report of sex assigned at birth was added later in

data collection and was therefore incomplete. We have elected to

use the term “sex” in this manuscript under the assumption that

observed differences are most likely to result from biological

determinants; however, it is ultimately challenging to discern the

relevance of social factors in patient outcomes. Given how our data

were collected, we cannot be certain that we have captured

biological sex for a small proportion of participants.

Self-reported symptom data from 272 participants collected

using the PLQS were used in clustering analysis to generate

subgroups of patients based on symptom profiles. Serum

cytokine/chemokine profiling was performed on 258 participants

and 28 healthy controls. Flow cytometry was performed on whole

blood collected during study visits from 144 participants and 20

healthy controls, of whom all but four patients with PTLD

underwent cytokine/chemokine profiling. One hundred and

thirty-seven patients with PTLD had PLQS responses, cytokine

data, and flow cytometry data available. Cohort overlap between the

three data modalities is shown in Supplementary Figure S1.
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Demographic comparisons

We compared our healthy control cohort to PTLD participants

for differences in demographic characteristics as well as co-

morbidities. Among PTLD patient subgroups, we additionally

tested for differences in acute infection characteristics. Categorical

variables were compared using a Chi-square test, or Fisher’s exact

test when analyzing low frequency events (<=5 occurrences).

Continuous variables were compared using the univariate testing

procedure described below.
PLQS cluster analysis

The PLQS is a 36-item questionnaire previously used to define

patient-reported symptoms of PTLD (7). For each symptom,

presence and severity were assessed on a 4-part Likert scale

(“absent” [0], “mild” [1], “moderate” [2], “severe” [3]). Thirty of

the symptom questions on the PLQS were transformed into six

latent factors according to an exploratory analysis conducted

previously (25). Consistent with this prior study, the remaining

six PLQS symptoms, which were both lowly endorsed and of limited

clinical relevance, were not considered for analysis. The six

composite factors are as follows: Fatigue/Cognitive, Ocular

Disequilibrium, Infection-Type, Mood-Related, Musculoskeletal

Pain, and Neurologic. PCA and k-means clustering was

performed on normalized factor score data to generate between 2

and 20 clusters of patients. The number of six subgroups was chosen

as a balance between adequately resolving cohort heterogeneity,

maximizing silhouette score (27),and maximizing additional cluster

performance parameters ADM, AD, FM, and FOM reported

through the R package ClValid (28).
Sample acquisition

Sera was isolated using SST tubes, aliquoted, frozen at -80°C

and thawed prior to cytokine measurement. Whole blood was

assayed using flow cytometry on the same day blood was drawn,

conducted over a multi-year period 2014–2018 as described

previously (29).
Cytokine and chemokine measurement

The Bio-Plex bead array system using Luminex xMAP

technology was employed to perform multiplex analysis of 34

cytokines, chemokines, and acute-phase markers (30). Data

processing was completed using Bio-Plex manager software

(version 5.0). The final list of cytokines, chemokines, and

inflammatory markers included in the analysis is shown in

Supplementary Table S1. The protocol and data generated were

minimum information about a microarray experiment (MIAME)

compliant (31).
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Flow cytometry acquisition and analysis

Freshly drawn whole blood was stained using a 19-parameter

panel designed to measure T cell, B cell, Monocyte, and NK cell

populations (Supplementary Table S2). In a 12x75mm cell culture

tube, 200uL of whole blood with 0.0025% sodium azide was

combined with the antibody cocktail and Live/Dead fixable blue

stain (Molecular Probes) for 35 minutes. Erythrocytes were

removed by treating samples with Pharm Lyse (BD) for 15

minutes. Remaining cells were fixed with PFA and stored in PBS

at 4°C until data collection. Data was acquired on a five laser FACS

Aria II (Becton Dickinson) using FACSDiva software on the same

day blood was drawn.

Analysis of the flow cytometry data was performed using

FCSExpress (DeNovo Software) to generate 119 cell populations.

Lymphocyte gating leveraged a previously published strategy

measuring seven lineage markers using two fluorochromes (29).

Some populations were overlapping classifications of the same cells,

for example, gating effector memory T cells on a CD57 and HLA-

DR quadrant gate as well as separately gating on binary CXCR5

positivity. The gating tree is described in detail in Supplementary

Figure S2 and Supplementary Data. Statistical tests were performed

on the frequency of cells within each population expressed as a

percentage of the parent gate. In situations with binary gating (e.g.

CXCR5 positive and CXCR5 negative cells), only one gate was

considered for analysis.
Univariate testing

Individual variables, whether flow cytometry gate percentages

or cytokine levels, were compared between groups as follows. The

normality of each variable was assessed via Shapiro-Wilk test with

alpha=0.05. Variables which failed normality criteria were tested

using either aWilcoxon rank-sum test (in the case of two groups) or

a Kruskal-Wallis test. Those which satisfied normality criteria were

tested using a t-test (in the case of two groups) or one-way ANOVA.

For two-group comparisons, a student’s t-test was used in the case

of equal variance and a Welch’s t-test for unequal variance. False-

discovery rate (FDR) correction was performed using a Benjamini-

Hochberg correction with alpha=0.05 (32). Flow cytometry and

cytokine data were considered separately for the purposes of FDR

correction. All cytokine data were adjusted via Box-Cox

transformation prior to univariate significance testing.
Confounder adjustment

Significantly different variables between groups as outlined

above were additionally included as dependent variables in a

generalized linear model (GLM) to adjust for possible

confounders (33). The following variables were incorporated as

independent variables of a GLM in addition to the immune feature

of interest: Age, sex, race, and income status. For flow cytometry
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data, the year of data collection was also included. Group identity

was coded as the independent variable of interest. This was either

PTLD case vs. healthy control status, or for comparisons among

participants with PTLD, the PTLD patient subgroup. Immune

features were considered significantly different between groups

only if they yielded a statistically significant coefficient in the

resultant GLM. Residuals of each GLM were checked for

normality using the simulateResiduals function in R package

DHARMa (34). GLMs with non-normal residuals were discarded

and re-made following Box-Cox transformation of the immune

feature of interest.
Symptom associations with immune
variables

We measured correlations between immune variables and each

of six PLQS factor scores (Fatigue/Cognitive, Ocular Disequilibrium

etc.). Spearman’s rho correlation coefficient was computed, and the

FDR was controlled using the Benjamini-Hochberg procedure with

alpha=0.05 for multiple testing correction (32). Significant

correlations were further verified by generating a GLM with the

immune feature as the dependent variable, and factor score as an

independent variable along with participant age, sex, and race. For

flow cytometry data, the year of sample collection was also

considered. Residuals of each GLM were checked for normality

using the simulateResiduals function in R package DHARMa (34).

GLMs with non-normal residuals were discarded and re-made

following Box-Cox transformation of the factor score of interest.
Frontiers in Immunology 04
Elastic net regression

One-hundred and forty PTLD participants and 20 healthy

controls with both flow cytometry and cytokine data were used to

construct and test an elastic net classifier. Seventy percent of the

cohort was used to train the model and 30% withheld as a test

cohort. Training and test datasets were stratified to maintain equal

sex and PTLD/healthy proportions. A 3-fold cross-validation elastic

net regression was calculated using the function cv.glmnet from

package glmnet in R (33). The model was constructed 100 times,

recording coefficients, AUC, and misclassification error for each

iteration. Of the 100 iterations of the model, the regression

matching median AUC was selected as the representative model.
Results

Symptom profiling of PTLD participants

Cluster analysis was performed on self-reported PLQS

symptoms from 272 participants. Consistent with prior reports,

this cohort has a broad age range (median 48 years, 37–58 IQR),

similar sex representation (56.6% male), and marked white, non-

Hispanic skewness (91.5%) (Table 1) (7, 25). Consistent with the

methods of a prior published study, the results of 30 questions on

the PLQS were transformed into six factor scores representing

separate manifestations of symptoms: Fatigue/Cognitive, Ocular

Disequilibrium, Infection-Type, Mood-Related, Musculoskeletal

Pain, and Neurologic (25). Each factor score was normalized to a
TABLE 1 Characteristics of 285 PTLD patients and 28 healthy controls with PLQS data, flow cytometry, and/or cytokine/chemokine data available.
Extended demographic information, including by patient subgroup, is available in Supplementary Data.

Variable PTLD
Mean

PTLD
Median

PTLD
IQR

PTLD
%Missing

HC
Mean

HC
Median

HC
IQR

HC
%Missing

Age (yrs) 48.26 49 22 . 42.29 37 26.75 .

Male (%) 56.5 . . . 39.3 . . .

White, non-Hispanic (%) 91.2 . . . 64.3 . . .

BMI 27.0 25.82 6.89 7.38 27.57 25.78 5.78 75

High-Income (> $100k/yr) (%) 56.1 . . . 32.1 . . .

STTT Seropositive (%) 85.1 . . 1.05 . . . .

EM Rash (%) 39.6 . . . . . . .

Time post-infection at
enrollment (years)

3.20 1.73 3.45 . . . . .

Time from inf. to
treatment (days)

208.9 22 123 . . . . .

Total time on antibiotics (days) 102.85 51 69.25 . . . . .

Lyme arthritis (initial inf.) (%) 10.66 . . . . . . .

Lyme carditis (initial inf.) (%) 1.47 . . . . . . .

Neuroborreliosis (initial inf.) (%) 6.62 . . . . . . .
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mean of zero and standard deviation of one. We then performed K-

means clustering on a matrix of normalized factor scores to

generate six patient subgroups with distinct symptom profiles.

Symptom profiles generated for each cluster were broadly

consistent with prior studies, with patient stratification by both

overall intensity of symptoms as well as separation driven by

specific factors. Cluster 5 participants highly endorsed all six

symptom factors, while Cluster 6 participants experienced

comparatively mild symptoms in every category (Mean factor

score: 1.7 vs. 0.4, p<0.001). Cluster 2 had an especially high

endorsement of the “Neurologic” factor, while Cluster 3 was

dominated by the “Fatigue/Cognitive” factor (Figure 1A). For five

of six clusters, the “Fatigue/Cognitive” factor was most highly

endorsed, with the exception of Cluster 1, which more highly

endorsed the factor “Musculoskeletal Pain” (Figure 1B). The

heterogeneity of disease manifestations is consistent both with

prior studies of PTLD as well as related work in ME/CFS, Long

Covid, and other post-acute infection syndromes (22, 25, 35). We

next sought to identify differences in patient characteristics among

PLQS patient subgroups. We tested for differences in demographic

characteristics including age, sex, and race as well as a variety of

acute and post-acute infection characteristics including the

presence of an EM rash or the development of complications

such as Lyme arthritis, carditis, or neuroborreliosis. Prominent

sex bias was observed in “mild symptom” cluster 6, which was

significantly more male than “severe symptom” cluster 5 (71% vs.

35% male, Padj < 0.05, Figure 1C). This cluster also had a greater
Frontiers in Immunology 05
incidence of initial Lyme arthritis (17%) than female-enriched

clusters 3 and 5, which had no Lyme arthritis (Padj <0.05,

Figure 1D). Lastly, “Fatigue/Cognitive” cluster 3 was found to

have a greater incidence of flu-like illness symptoms during acute

infection than several other clusters (Padj < 0.05). Consistent with

these findings, male patients have previously been observed both to

have reduced symptom severity in PTLD relative to females, and a

greater incidence of Lyme arthritis following acute infection (4, 7,

23). Broadly, our symptom profiles reinforce and refine existing

knowledge of symptom heterogeneity in PTLD. With these patient

subgroups in mind, we sought to conduct immune profiling of

PTLD participants and associate objective immune findings with

PTLD status and self-reported symptom profiles.
Luminex cytokine profiling

Sera from 258 PTLD participants and 28 healthy controls were

tested for 34 cytokines and chemokines using the Luminex platform

(Supplementary Table S1). A multi-variate analysis was performed

using dimensional reduction and k-means clustering. Heterogeneity

in cytokine profile was noted across participants, with distinct

patterns of cytokine expression (Supplementary Figure S2), but

this heterogeneity did not associate with either PTLD status or

PTLD symptom subgroup (Figure 2A). Univariate testing was

performed comparing serum concentration of each analyte across

patient subgroups. No significant differences by patient subgroup
FIGURE 1

Cluster analysis of symptom profiles in PTLD. (A) Row-normalized factor scores for each of six PTLD patient subgroups. Color denotes the relative
endorsement of each PLQS symptom factor. (B) Symptom profile for each patient subgroup, displayed on an absolute scale (“absent” [0], “mild” [1],
“moderate” [2], “severe” [3]). (C) Sex composition of each patient subgroup. Group 6, with a comparatively mild symptom profile, is significantly more
male than subgroups 2-5. (D) Two characteristics of primary Lyme infection, the prevalence of flu-like illness and the development of Lyme arthritis,
are significantly different between patient subgroups. Bars are shaded by sex composition similarly to (C). * = Padj < 0.05.
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were identified. Similarly, no differences were observed in any

analyte between the PTLD cohort as a whole and healthy controls

(Figures 2B, C). No individual cytokines were found to significantly

correlate with symptom endorsement for any of the six PLQS factor

scores. Due to the importance of sex on both the prevalence and

symptomatology of PTLD, we repeated all analyses on sex-stratified

cohorts (Supplementary Files S4, S5). Sex-specific testing did not

identify any differences between HC and PTLD cohorts or identify

differences in cytokine profiles across patient subgroups.
Flow cytometry profiling

Using a previously developed gating strategy, we phenotyped

whole blood from 144 PTLD and 20 healthy control participants

using a 19-parameter flow cytometry panel (Figure 3,

Supplementary Table S2). Data was processed to generate a table

of cell frequencies in each of the 119 manually derived gates. Cell

counts within each gate, expressed as the frequency of the parent

gate, were considered separate variables for statistical testing.

Similarly to cytokine analysis, we sought to query whether the

prevalence of specific cell populations distinguished PTLD
Frontiers in Immunology 06
symptom subgroups, or distinguished PTLD individuals from

healthy controls. Multivariate dimensional reduction and k-means

clustering did not generate clusters which stratified by PTLD status,

or by PLQS patient subgroup (Figure 4A).

Univariate testing did not reveal differences between PTLD

patient subgroups. However, multiple features varied between

healthy controls and PTLD participants (Table 2). CXCR5+ Naive

CD4 T cells were reduced in PTLD compared to healthy controls

(8.8% vs. 5.2%, Padj. < 0.001). CD4+ effector memory CD45RA+

(EMRA) cells were increased in the PTLD cohort (5.1 vs. 1.6%, Padj

< 0.01, Figure 4B). We also examined CXCR3, CCR4, and CCR6 on

CD8 T cells and identified CD8+ Th1-like cells (CXCR3+ CCR6-

CCR4-) which were markedly increased in PTLD relative to healthy

controls (43.1% vs. 25.7%, Padj < 0.01), with a corresponding

decrease in CD8+ Th1/17-like cells, defined as CXCR3- CCR6+

and CCR4+ (3.9% vs. 13.4%, Padj < 0.01). Lastly, CD4+ EMRA cells

were increased in the PTLD cohort (5.1 vs. 1.6%, Padj <

0.01, Figure 4B).

Although no flow cytometry characteristics were significantly

associated with PLQS symptom clusters, several parameters were

correlated with individual PLQS factor scores (Table 3, Figure 4C).

Most notably, CXCR5+ Naive CD4 T cells were positively
FIGURE 2

Cytokine and chemokine profiling of PTLD and healthy controls. (A) While heterogeneity in cytokine profiles was observed, multivariate clustering
failed to separate subjects based on either PTLD/control status or by PTLD patient subgroup. (B) Univariate testing failed to identify differences
between PTLD subjects and healthy controls. Positive Log2FC indicates overexpression in PTLD; unadjusted p values are shown. (C) Normalized
distribution of cytokine expression in PTLD and healthy control cohorts. Additional testing failed to identify cytokines which varied among PTLD
patient subgroups, or associate cytokine expression with PLQS symptom scores (Supplementary Files S4, S5).
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associated with the “Musculoskeletal Pain” factor in the PTLD

cohort (rho = 0.21, Padj= 0.041), but negatively associated with this

factor in healthy control data (rho = -0.56, Padj = 0.017,

Figure 4D). Multiple PLQS factors were also associated with NK

cell frequencies.

Similarly to our treatment of cytokine data discussed previously,

we repeated all analyses on sex-stratified cohorts. In comparing

healthy controls to PTLD, changes in immune features tended

towards the same direction in both sexes and do not appear

biologically distinct (Supplementary Figure S4). In correlating

PLQS factor scores with flow cytometry features, significant

correlations observed in the combined sex cohort had the same

direction of change in sex-stratified analyses, but did not meet

significance criteria at alpha = 0.05. However, in associating flow

cytometry data with PLQS patient subgroups, we observed sex-
Frontiers in Immunology 07
specific biases in central memory (CM) CD8 T cells. For females,

patient subgroup 3 expressed a higher prevalence of CM CD8 T

cells relative to other symptom subgroups (21.2% vs 12.2%, Padj =

0.04), which was not observed in male participants or when sexes

were combined (Figure 4E).
Multimodal elastic net classifier

We next sought to combine cytokine and flow cytometry

features for participants with both data collected. Despite the lack

of statistically significant findings in cytokine data, we hypothesized

that a combination model with flow cytometry features might reveal

immune signatures associated with PTLD or its symptom

manifestations. One-hundred and forty of the 144 PTLD
FIGURE 3

Abbreviated gating strategy for flow cytometry profiling. (A) Forward and side scatter were used to broadly gate lymphocytes, monocytes, and
granulocytes. (B) Lymphocyte lineages were identified via a two-fluorochrome strategy, published previously. (C) CD4 and CD8 T cells were gated
into naïve and memory subsets via CCR7 and CD45RA. (D) All T cell subsets were assayed for CXCR5, CD57, and HLA-DR expression. (E) In parallel,
all T cell subsets were classified into Th1/2/9/17 subtypes using expression of CCR6, CCR4, and CXCR3. (F) Limited phenotyping of B and NK cell
subsets was performed using CXCR5/HLA-DR or CD57/CD16 expression, respectively. Unabridged gating strategy is available in Supplementary Data.
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participants with flow cytometry data, along with all 20 healthy

controls, had cytokine data available. We combined cytokine and

flow data and used a 3-fold cross validation elastic net classifier to

separate PTLD participants from healthy controls. Classifiers based

solely on flow cytometry data had a similar performance to the

multimodal model, but classifiers trained on cytokine data were

ineffective (Figures 5A, B). In a representative multimodal model,

CXCR5+ Naive CD4 T cells were the most heavily weighted feature

with 32% of variance explained. CD8 Th1-like and CD8 Th1/17-like

cells were the next most heavily weighted coefficients, explaining

approximately 25% variance each (Figure 5C). No cytokines were

assigned predictive weight in any of the 100 iterations of the model.

We attempted a similar approach to generate regressions which

might predict PLQS factor scores for PTLD participants but were
Frontiers in Immunology 08
unsuccessful. Models were unable to predict any of the six PLQS

factor scores with Spearman’s Rho > 0.12 and failed to produce

non-zero coefficients in 49% of iterations (Supplementary

Table S3).
Discussion

Similarly to other post-acute infection syndromes, individuals

with PTLD experience a wide variety of symptoms, which may be

the result of distinct disease processes in different patients.

Therefore, successfully identifying immune correlates of disease

may require deconstructing patient populations into subgroups

based on symptom presentation. Using a factor analysis
FIGURE 4

Flow cytometry profiling of PTLD subjects and healthy controls. (A) Multivariate clustering on flow cytometry features failed to differentiate PTLD
from healthy controls, or separate individuals by patient subgroup. (B) Univariate testing identified four cell populations which differed between
healthy controls and PTLD subjects, but these features did not vary based upon PTLD patient subgroup. (C) Heatmap of spearman correlation
coefficients for correlations between immune features and PLQS symptom scores. Multiple cell populations correlated with PLQS factor scores (Padj
< 0.05). Correlations which did not meet significance criteria are shaded grey. (D) Notably, CXCR5+ Naïve CD4 T cells had opposite correlations with
musculoskeletal pain in PTLD and healthy control groups. (E) Testing by sex revealed female-specific variation in central memory CD8T cells across
patient subgroups. For patient subgroup plots, multivariate (Kruskal-Wallis or Anova) P values displayed in upper left. For pairwise comparisons,
* = Padj < 0.05; ** = Padj < 0.01, *** = Padj < 0.001.
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previously employed in this cohort, we generated subgroups of

PTLD based on self-reported symptoms on the PLQS. Following the

creation of patient subgroups, we queried whether immune features

might distinguish specific subgroups or collectively differentiate our

PTLD cohort from healthy controls. Our factor analysis of self-

reported symptom data from the PLQS demonstrated heterogeneity

in the symptom burden of PTLD patients consistent with prior

reports (7, 25). Similar to those studies, we note heterogeneity in

symptoms and symptom profiles which are enriched for male or

female participants. We deliberately increased the clustering

resolution of our analysis relative to prior work to identify patient

subgroups with increased granularity. Our findings provide a

framework to associate subjective symptom reporting with

objective immune phenotypes.

We were unable to identify differences between healthy controls

and PTLD participants in the levels of serum cytokines or

chemokines, nor were we able to associate soluble immune

mediators with symptom burden. Furthermore, these data were

not predictive of PTLD when used in a multi-modal predictive

model, which relied wholly upon flow cytometry data to distinguish

PTLD from healthy controls. Prior analyses in longitudinal cohorts

of Lyme disease patients followed from the time of acute infection
Frontiers in Immunology 09
have noted trends in CCL19, IL-23, and IFNa expression associated

with the development of PTLD (9–12). Several possibilities may

explain this discrepancy with our findings. First, participants in this

analysis are from a retrospective cohort of PTLD individuals with

enrollment substantially later than initial infection (median

enrollment 635 days post-infection, IQR 222 – 1484). Prior studies

have not analyzed participants more than 1-year post-infection.

Additionally, variability in enrollment criteria across different

cohorts with regards to the presence of EM rash, seropositivity,

cohort catchment area, and other factors complicates direct

comparison across cohorts. Rather than contradicting prior

findings, these studies may describe temporally and clinically

distinct PTLD populations following Lyme infection.

Though our study was primarily powered to explore clinical

heterogeneity within the PTLD population, we identified multiple

aberrations in T cell populations that distinguish individuals with

PTLD from healthy controls. PTLD patients had decreased

frequencies of CXCR5+ CD4 naïve T cells, an increased

prevalence of CD8 Th1-like cells (with a corresponding decrease

in Th1/17-like cells), and an increased prevalence of CD57+ HLA-

DR+ CD4 EMRA cells.

CXCR5 is the chemokine receptor for CXCL13, a chemokine

responsible for lymphocyte recruitment to lymphoid follicles and a

defining marker of follicular-helper T cells (TFH) (36, 37). TFH cells

are critical mediators of T cell help in humoral immunity,

facilitating B cell maturation and robust antibody responses (36).

The CXCR5+ naïve CD4 T cells observed in our study are not

classically defined TFH cells, nor are they the CXCR5+ central

memory T cells that have been posited as a circulating

counterpart to TFH cells (38). While literature specific to CXCR5+

naïve CD4 T cells is scarce given that CXCR5 is primarily expressed

by memory T populations, these cells may be precursors to TFH or

otherwise related to T cell/B cell interactions. Our observations in

this celltype would complement existing literature demonstrating

impaired T-cell dependent B cell function following Borrelial

infection in mouse models (39, 40). The intriguing positive

association of CXCR5+ naïve CD4 T cells with musculoskeletal

symptoms in our PTLD cohort further links these cells to disease

manifestations. Likely, such a link would involve indirect

involvement of CXCR5+ naïve CD4 T cells and more proximally

relate to B cell dysregulation or irregular lymph node dynamics

which cannot be observed in peripheral blood, yet have

demonstrable importance during acute infection (41).

Our observation of increased CD57+ CD4+ TEMRA cells may

support the presence of an inflammatory milieu, having been

previously associated with cytotoxic function and expression of

KLRG1 and CD154 (42–44). Included among theories of PTLD

pathogenesis are the (non-exclusive) possibilities of persistent

borrelial remnants or an autoimmune disorder initiated by events

during acute infection (35). Both of these mechanisms could result

in chronic inflammation, be consistent with elevated prevalence of

cytotoxic cell types, and may contribute to fatigue and myalgias

emblematic of PTLD.

Similarly to subpopulations of CD4+ helper T cells, CD8+ T

cells have been characterized to have multiple effector phenotypes
TABLE 3 Significant correlations between flow cytometry populations
and PLQS factor scores within the PTLD cohort, alpha < 0.05.

Population PLQS
Factor

Spearman r Padj

NK CD8+ Ocular -0.295 0.012

NK CD8+ MSK Pain -0.254 0.026

NK CD8- Ocular -0.263 0.026

CD4T Neurological 0.246 0.027

NK CD8- Mood -0.227 0.034

dnT MSK Pain 0.227 0.034

Monocytes Mood -0.226 0.034

CXCR5+ CD4 Naïve MSK Pain 0.208 0.041

NK CD8+ Fatigue/
Cognitive

-0.213 0.047
Positive correlations are shown in bold.
TABLE 2 Flow cytometry populations which were significantly different
between PTLD and healthy control cohorts, alpha < 0.05.

Population % HC % PTLD Padj

CXCR5+ CD4 Naïve 8.84 5.17 0.001

CD8 Th1/17 13.43 3.88 0.003

CD8 Th1 25.68 43.15 0.003

CD57+ HLADR+
CD4 EMRA

1.58 5.12 0.024

CD57+ HLADR- CD8 Naive 1.86 3.09 0.073

CCR6- CD4 EMRA 54.91 68.37 0.081
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with distinct cytokine profiles (45, 46). We identified an increase in

a Th1-like CD8+ population (CXCR3+ CCR4- CCR6-), with a

corresponding decrease in Th1/17-like CD8+ cells (CXCR3-CCR4

+CCR6+). We are cautious in applying Tc1 or Tc1/17

nomenclature, as functional cytokine secretion of these cells has

not been established. However, it is possible these Th1-like CD8+ T

cells are Tc1 cells, which secrete inflammatory cytokines including

IFNg and TNFa. Like CD57+ CD4+ TEMRA cells discussed above,

an increased presence of these cells would be consistent with a

chronic inflammatory state similar to disease mechanisms observed

in autoimmune conditions (47, 48). Under similar assumptions, if

our observed CXCR3-CCR4+CCR6+ cells are Tc1/17 cells, their

absence may suggest deficiencies in IL-17 production and

dysregulated B cell responses consistent with CXCR5 expression

as discussed previously. Although we did not observe differences in

circulating IFNg, TNFa, or IL-17, which might support the

functional relevance of these observations, secretion of these

cytokines is likely paracrine rather than systemic. IL-23, another

relevant cytokine in Tfh biology which has been associated with

Lyme infection, was not measured (9).

Previous symptom profiling in PTLD, along with the factor

analysis reported here, demonstrate sex-specific differences in

symptomatology. However, a comparison of immune features

either (i) between healthy controls and PTLD participants or (ii)

across symptom subgroups did not yield substantially different

results when performed on either sex alone compared to the

combined cohort. Our sole sex-specific observation is the female-

specific increase in CD8 TCM cells within patient subgroup 3. This

subgroup was characterized by high fatigue/cognitive factor scores

and a high incidence of flu-like illness upon initial infection.

Increased TCM cells may suggest a greater capacity for durable,

proliferative responses following an inflammatory insult (49). Why

this observation is restricted to the females of patient subgroup 3,

but not males, is unclear and requires future study.
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Summarily, the cell types most notably different between healthy

controls and our PTLD cohort are suggestive of chronic inflammation

and irregularities in T-cell help. We speculate that disease mechanisms

related to our findings would be similar to those reported in

autoimmunity and other post-acute infection syndromes (8, 24, 35,

50). Importantly, our cohort study does not include participants with

Lyme disease who returned to health following antibiotic treatment of

acute infection. This group would be important to distinguish

pathologic features of PTLD from non-pathologic, long-term

changes which may occur in all individuals following Lyme infection.

However, if our observations are specific to PTLD, measurement of the

aforementioned cell types could be diagnostically useful for this disease,

which remains a strictly clinical diagnosis.

This study has several limitations given that our findings are

observational, and in a retrospectively recruited, cross-sectional

PTLD cohort. As mentioned, participant enrollment occurred

long after acute infection in this cross-sectional study.

Furthermore, while all patients met specified criteria for prior

Lyme disease, not all patients had identical initial presentations,

including not requiring an EM rash but meeting CDC criteria for

Lyme disease based on symptoms and confirmatory serology (7,

25). Second, we note that the small number of healthy controls in

this study reduces our power to resolve differences between healthy

controls and PTLD, especially when split for sex-specific

comparisons. An additional limitation is the collection of flow

cytometry data on fresh blood over a multi-year period. Although

freshly analyzed PBMCs have advantages over frozen samples, day-

to-day assay variation may increase noise in the data. Lastly, while

we analyzed many immunologic parameters, this study is far from

exhaustive. T cell phenotypes were the most thoroughly explored in

our flow cytometry panel, with a limited exploration of B cell, innate

immune cell, and monocyte phenotypes.

For the in silico component of this work, it is possible that

changes in our approach to clustering, or our data processing
FIGURE 5

Elastic net regression for a multi-modal classifier. (A) Receiver-operating characteristic curve for models generated using flow cytometry and
cytokine data, or either modality individually. The multi-modal classifier was moderately successful at identifying PTLD from healthy controls (AUC
0.83, misclassification error 0.26). (B) AUC of 100 iterations of the classifier using either all data, flow cytometry data alone, or cytokine data alone.
The inclusion of cytokine data provided no improvement in performance over flow cytometry data alone. Mean +/- standard error shown.
(C) Coefficients of a representative multi-modal classifier, expressed as the proportion each coefficient contributes to the model. Flow cytometry
populations were solely responsible for classifier performance, with no contribution from cytokine data. *** = Padj < 0.001.
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pipeline more broadly, might reveal additional insights relating

symptom subgroups to immune alterations in PTLD including sex-

based heterogeneity. While our choice of six PTLD symptom

subgroups was guided by several statistical measures and

clinically relevant observations, choosing the best cluster

resolution in any dataset is a challenging problem dependent on

the data, clustering algorithm used, and intended downstream

applications (51). Further validation of our findings will be

important in longitudinal Lyme disease cohorts and mechanistic

studies employing high-dimensional methods to interrogate a

broader range of cell types, and to more deeply explore the

functional consequences of the differences we identified.

Collectively, we identified objective immune perturbations

which both distinguish PTLD from healthy controls and associate

with specific PTLD symptoms. Though observational in nature, our

findings are consistent with literature supporting dysregulated

humoral responses following borrelial infection, and an

inflammatory/exhausted T cell profile similar to those observed in

other chronic or post-acute infection syndromes (22, 35, 48). With

further investigation and a comparison to return to health cohorts,

assaying the immune populations identified in this manuscript may

have diagnostic utility. In addition, our work lays the foundation for

future mechanistic studies. Our strategy of factor analysis and

patient subgroup profiling, followed by examining potential

associations with immune features, provides a useful framework

for future studies of post-infection syndrome cohorts which are so

often heterogenous. As methodological advances in high-

dimensional immunophenotyping and analytics continue,

abnormalit ies underlying PTLD and its heterogenous

manifestations will come more clearly into view.
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