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Xiaobing Zhang1* and Qi Jin1*
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Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China, 2Department of Research Ward, Beijing Chest Hospital, Capital Medical
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Union Medical College, Beijing, China
Introduction: Although natural killer (NK) cells play crucial roles in the immune

response to Mycobacterium tuberculosis (M.tb) infection, systematic

investigations delineating the immune characteristics of NK cells across the

tuberculosis (TB) disease spectrum are scarce.

Methods: This multiomics study employed transcriptomic, proteomic, and RT-

qPCR analyses to characterize and validate CD56+ NK cells from 165 participants

stratified by TB infection status (active TB (ATB), latent TB infection (LTBI), and

healthy control (HC)). Peripheral blood samples from an independent cohort of

85 participants were subjected to flow cytometry analysis and validation.

Results and discussion: Enrichment analyses of transcriptomic and proteomic

data revealed that the NK cell-mediated cytotoxicity and apoptosis pathways

were enriched in LTBI and ATB groups, whereas chemotaxis-related pathway

enrichment was specific to ATB. Further analysis revealed that the expression of

genes mediating the NK cell-mediated cytotoxicity signaling pathway through

perforin–granzyme was upregulated in the LTBI state, whereas that of those

associated with death receptors was elevated in ATB, potentially indicating a

transformation of NK cell function in different TB infection states. Moreover,

analysis of ATB-specific chemotaxis genes suggested that the migration of NK

cells was likely to occur in the ATB state. Flow cytometry revealed an increased

frequency of CD56dim NK cells and a decreased frequency of CD56bright NK

cells in individuals with LTBI versus that in HCs in an independent cohort. In

addition, RT-qPCR validation identified a four-biomarker combination (SLC7A5,

PDE4D, CXCR4, and SOCS3) distinguishing ATB from HCs, a three-biomarker

combination (SLC7A5, PER1, and PDE4D) differentiating LTBI from HC, and a
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three-biomarker combination (SOCS3, GZMK, and HIST1H3B) differentiating ATB

from LTBI. These findings elucidate the immune clearance mechanism of NK

cells in TB and provide clinically actionable biomarkers for infection staging,

advancing our understanding of TB immunopathogenesis.
KEYWORDS

tuberculosis, RNA sequencing, liquid chromatography-tandem mass spectrometry,
natural killer cells, CD56dim NK cell, CD56bright NK cell, natural killer cell-mediated
cytotoxicity, biomarker
1 Introduction

Tuberculosis (TB) is an infectious disease caused by

Mycobacterium tuberculosis (M.tb), with a global incidence rate of

134 per 100,000 people (1). Among individuals with latent TB

infection (LTBI), approximately 5–10% are at risk of progressing to

active TB (ATB) (2).

Natural killer (NK) cells, as innate immune cells, play a critical

role in defending againstM.tb infection. CD56+ NK cells constitute

the primary subset of NK cells in the peripheral blood (3). CD56+

NK cells are divided into two major subsets according to the

differential expression of the CD56 receptor: CD56dim NK cells

and CD56bright NK cells (4). The CD56dim subset accounts for

more than 90% of circulating NK cells and is characterized by high

expression of killer immunoglobulin-like receptors (KIRs), which

are either minimally expressed or absent in the CD56bright subset.

The CD56dim subset of NK cells is a highly efficient executor of

cytotoxicity, containing more perforin and granzyme (5). It

primarily exerts its cytotoxic effects by releasing perforin and

granzyme to induce target cell death, whereas KIRs function

mainly as inhibitory receptors whose interaction with HLA-C

(e.g., KIR2DL1–HLA-C) effectively transmits suppressive signals

(6, 7). By contrast, CD56bright NK cells are more efficient in

cytokine production, mainly secreting cytokines such as

interferon-g (IFN-g) and tumor necrosis factor-a (TNF-a).
Through the death receptor pathway, which is mediated by the

binding of FasL to Fas or TNF-a to TNF-R, FasL or TNF-R can

induce extrinsic apoptosis, ultimately resulting in cell death (8–10).

Moreover, differences in the chemotactic properties of these two NK

cell subsets have become increasingly apparent. CD56bright NK

cells specifically express CCR7 (11), are more prevalent in secondary

lymphoid organs, and tend to accumulate in inflamed tissues during

pathological conditions (12).

In recent years, omics technologies have emerged as powerful

tools for revealing cellular functions and regulatory networks.

However, existing transcriptomic studies on TB have mainly

focused on whole blood or peripheral blood mononuclear cell

(PBMC) samples (13). Given the complexity of the immune

response triggered by M.tb infection, a more detailed analysis of

the functions of distinct cellular subsets is necessary. While single-
02
cell sequencing has addressed some of these challenges, it remains

limited by small sample sizes and insufficient representation. This

study aimed to analyze the gene expression profiles and proteomic

signatures of host CD56+ NK cells under different TB infection

conditions. By integrating flow cytometry to assess changes in NK

cell frequencies, this research sought to elucidate the relationships

between NK cells and different TB states and the distinct molecular

expression patterns associated with immune responses. These

findings enhance our understanding of NK cell-mediated immune

mechanisms during TB infection and provide a scientific

foundation for the development of novel anti-TB strategies.
2 Materials and methods

2.1 Study design and participants

This study included a total of 250 participants: 53 ATB

patients, 102 LTBI individuals, and 95 healthy controls (HCs).

All ATB cases were patients diagnosed with active TB, confirmed

by etiological tests, including at least one positive result from a

sputum smear,M.tb culture, or nucleic acid amplification test. The

patients were initially diagnosed with ATB and had received anti-

TB treatment for less than seven days. The LTBI group was defined

by a positive interferon-gamma release assay (QuantiFERON-TB

Gold Plus) with no history of TB, no TB-related clinical symptoms,

and no abnormal chest radiographic findings. The HC group was

defined by a negative interferon-gamma release assay, no history of

TB, no TB-related clinical symptoms, and no abnormal chest

radiographs (14). This study was approved by the ethics

committees of the Institute of Pathogen Biology, Chinese

Academy of Medical Sciences (Grant No. IPB-2021-17).

Informed consent was obtained from all participants prior to

their inclusion in the study.
2.2 NK cell collection

We collected 5 mL of whole blood from each participant into

K2-EDTA anticoagulant blood collection tubes. Within 4 h of
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collection, CD56+ cells (primarily NK cells) were isolated via the

MACSxpress® Whole Blood NK Cell Isolation Kit (130-127-695,

Miltenyi) (15) and subsequently subjected to RNA sequencing,

liquid chromatography–tandem mass spectrometry (LC-MS/MS),

and RT-qPCR analyses.
2.3 RNA extraction and RNA sequencing

Total RNA from CD56+ NK cells was extracted following the

standard protocol provided by the RNeasy Plus Mini Kit

(QIAGEN). The RNA-seq libraries were prepared using the

SMARTer® Stranded Total RNA-Seq Kit v2 (Takara) per the

manufacturer’s instructions. Quality control was performed with

an Agilent 2100 Bioanalyzer, followed by sequencing on the

Illumina NovaSeq 6000 platform, generating 150 bp paired-end

reads. The raw data were processed via Trimmomatic for quality

control and filtering (16). The filtered reads were aligned to the

human reference genome (GRCh38). Transcript read counts for

each sample were generated via HTSeq (17), and mRNA abundance

was normalized to the number of fragments per kilobase of

transcript per million mapped reads (FPKM). The Benjamini-

Hochberg method was applied to calculate adjusted P values.

Differentially expressed genes (DEGs) were analyzed via the

DESeq2 algorithm to calculate fold changes (FCs), with statistical

significance assessed by P values (18). In this study, DEGs were

identified using the thresholds of P <0.05 and |log2 FC| >0.5.
2.4 Protein extraction and LC-MS/MS
analysis

The purified CD56+ NK cells were lysed by noncontact

ultrasonic treatment. The protein mixture was quantified via the

BCA method. Protein digestion was subsequently conducted using a

Merck Millipore PVDF membrane MultiScreen 96-well filter plate

(MultiScreen HTS IP Filter Plate, 0.45 µm, clear, sterile) (19). Proteins

were denatured with DTT and alkylated with IAM, followed by

digestion with trypsin (50:1). The concentration of the digested

peptide was measured using the Pierce Quantitative Colorimetric

Peptide Assay Kit (Thermo Fisher). Mass spectrometry was

performed via an Orbitrap Eclipse Tribrid mass spectrometer

(Thermo Fisher Scientific) operating in positive ion mode. Data

acquisition was conducted via a data-independent acquisition

(DIA) method. For each sample, 800 ng of peptide was injected per

run for mass spectrometry analysis, with three technical replicates per

sample. A QCmix was injected after every eight samples to monitor

system stability. The DIA data were analyzed in Spectronaut using the

SwissProt human database with default parameters to generate the

initial target list. The false discovery rate (FDR) was controlled at 1%

for spectra, peptides, and proteins (20). Protein abundance values

were normalized to the median protein intensity to correct for sample

loading variations and systematic errors in the LC-MS/MS analysis.

Differentially expressed proteins (DEPs) were identified with a

threshold of P < 0.05.
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2.5 Bioinformatics analysis

DEGs and DEPs were visualized using the R packages “ggplot2” for

volcano plots (21) and “pheatmap” for heatmaps (22). Functional

enrichment analysis was conducted via Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses,

with the significance threshold set at P <0.05. The protein interaction

network (PPI) was generated via STRING and Cytoscape (23).
2.6 Real-time quantitative PCR

cDNA was synthesized from total RNA extracted from purified

CD56+ NK cells. The reactions were conducted using TaqMan™

Fast Advanced Master Mix (Thermo Fisher Scientific) and

TaqMan™ Gene Expression Assays (Thermo Fisher Scientific)

per the manufacturer’s instructions. Assays were performed using

the ABI 7500 Fast Real-Time PCR System, with target gene

expression normalized to the stably expressed reference gene

MYO1F (assessed by our laboratory (14)). Relative expression

levels were calculated via the 2^−DDCt method.
2.7 Flow cytometry

Freshly isolated whole blood (50 µL) was treated with lysis buffer

to remove red blood cells, followed by staining with various

fluorochrome-conjugated antibodies. The staining panel included

FITC-conjugated anti-human CD45 (555482, BD, USA), PE-

conjugated anti-human CD56 (555516, BD, USA), PerCP-

conjugated anti-human CD3 (552851, BD, USA), and APC-

conjugated anti-human CD16 (561304, BD, USA) antibodies. After

staining, the samples were washed with Cell Staining Buffer

(BioLegend, 420201, USA) and immediately acquired via a BD

Accuri® C6 flow cytometer (BD Biosciences, USA) with CFlow

Sampler software. To ensure accurate compensation and gating,

irrelevant isotype and single-stained antibody controls were used to

establish the compensation matrix. Single cells were identified by

plotting the forward scatter height (FSC-H) against the forward

scatter area (FSC-A). Gating strategies were applied according to

forward/side scatter characteristics and specific fluorescence markers.

Lymphocyte populations were gated using anti-CD45 staining, and

non-T cells were excluded using anti-CD3 as a dump gate. NK cells

were identified according to the CD3−CD56+ phenotype and further

stratified into subpopulations per the fluorescence intensity of CD56

and CD16, distinguishing between CD56dim and CD56bright NK

cells. Compensation adjustment and calculation of specific cell subset

frequencies were performed via FlowJo Software (FlowJo LLC, USA).
2.8 Statistical analysis

The statistical analyses were performed with GraphPad Prism

8.0 (GraphPad Software Inc., San Diego, CA, USA). One-way

ANOVA was used to analyze the differences among groups, and
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then the least significant difference (LSD) test was performed for

multiple comparisons. All the data are presented as the means ± SD.

Receiver operating characteristic (ROC) curves were generated via

GraphPad Prism 8.0 to evaluate the diagnostic performance of the

features selected via a LASSO regression model.
3 Results

3.1 Participant characteristics

This investigation included 250 participants. Among them, 165

samples, comprising those from 53 ATB patients, 56 LTBI

individuals, and 56 HCs, were used for RNA-seq analysis. Among

these 165 samples, 49 (from 15 ATB patients, 16 LTBI individuals,

and 18 HCs) were randomly selected for LC-MS/MS analysis,

whereas 111 (from 30 ATB patients, 30 LTBI individuals, and 51

HCs) were utilized for RT-qPCR analysis. Samples from another 85

individuals (46 LTBI individuals and 39 HCs) were used for flow

cytometry analysis. The detailed workflow is shown in Figure 1. The

participant characteristics are shown in Supplementary Table S1.
3.2 Transcriptomics

We performed RNA-seq on 165 ATB, LTBI, and HC samples to

obtain mRNA expression profiles. Differential expression analysis
Frontiers in Immunology 04
across the three comparison groups was conducted via DESeq2. In

the ATB_HC group, 1094 DEGs were identified, including 923

upregulated and 171 downregulated DEGs. In the ATB_LTBI group,

835 DEGs were identified, with 637 upregulated and 198

downregulated DEGs. For the LTBI_HC group, 895 DEGs were

identified, comprising 504 upregulated and 391 downregulated

DEGs. The selection criteria for DEGs were P <0.05 and |log2 FC|

>0.5 (Supplementary Table S12). The results are presented in Figure 2.

3.2.1 The unique transcription profile of ATB
reveals chemotactic differences

We first focused on ATB state-specific genes and conducted a

systematic study on the expression characteristics of these genes in

ATB patients and their potential biological functions. The Venn

diagram shows 437 overlapping DEGs between the ATB_HC and

ATB_LTBI groups. Among these DEGs, 427 exhibited consistent

expression, 361 were specifically upregulated in ATB, and 66 were

specifically downregulated in ATB (Figure 3A, Supplementary

Table S13). Cluster analysis of these 427 ATB-specific DEGs

revealed their ability to distinguish most ATB cases across

different TB infection states (Figure 3B).

We conducted KEGG functional analysis on the 427 ATB-

specific DEGs and found that the cytokine–cytokine receptor

interaction pathway was the most significantly enriched

(Figure 3C). We also identified several other functionally related

pathways, such as the JAK–STAT, TNF, and p53 signaling pathways

(Supplementary Table S2). Moreover, GO analysis revealed 27 terms
FIGURE 1

Schematic diagram of the overall study design and workflow.
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related to immune cell differentiation, primarily involving the

differentiation and differential regulation of monocytes, T cells,

macrophages, and other immune cells. In addition, 45 terms

related to immune function were enriched (Figure 3D,

Supplementary Table S3), primarily associated with adaptive

immunity and the regulation of adaptive immune responses. The

enrichment of these DEGs and functional pathways suggested that,

in the ATB state, NK cells modulate these genes to influence the

differentiation and functional mediation of other immune cells.

Importantly, GO analysis also revealed a substantial number of

terms related to chemotaxis, sparking our interest in migration

across different TB infection states. Furthermore, cluster analysis

was conducted on the DEGs related to chemotaxis among the

different TB infection states. As shown in Figure 3E, of the 25

chemokine-related DEGs, all except for WNT3 and DAPK2

exhibited consistent changes. Compared with those in HCs, these

DEGs in LTBI groups either did not significantly change or were

downregulated. However, all the DEGs were upregulated in ATB

group versus HC and LTBI groups. Although the difference in

CXCR3 expression was not significant, it exhibited an increasing

trend (Supplementary Table S4).

3.2.2 Opposite trend DEGs reveal functional
differences in NK cells across different TB
infection stages

Furthermore, we focused on the genes with opposite expression

trends between the ATB_LTBI and LTBI_HC groups. We aimed to

reveal the key molecular mechanisms underlying the transition of TB

infection states by analyzing which genes undergo subversive changes
Frontiers in Immunology 05
in different TB infection states. As shown in Figure 4A, 108 DEGs

were upregulated in the ATB_LTBI group and downregulated in the

LTBI_HC group, whereas 55 DEGs were upregulated in the

LTBI_HC group and downregulated in the ATB_LTBI group. We

performed KEGG functional analysis on these two sets of DEGs

(Supplementary Table S5). Similar to the results for ATB-specific

DEGs in Section 2.1, the 108 DEGs upregulated in ATB and

downregulated in LTBI were enriched in the cytokine–cytokine

receptor interaction pathway. Conversely, the 55 DEGs that were

highly expressed in LTBI and expressed at low levels in ATB were

most significantly enriched in the NK cell-mediated cytotoxicity and

antigen processing and presentation signaling pathways (Figure 4B).

Although only two DEGs, KIR2DL1 and KIR2DL4, were enriched in

the NK cell-mediated cytotoxicity pathway, both are specific

receptors expressed in the CD56dim NK cell subset.

To further investigate the transition of the NK cell-mediated

cytotoxicity pathway, we selected genes (P <0.05) within this pathway

from both the LTBI_HC and ATB_LTBI groups. Interestingly, as

shown in Figure 4C and Supplementary Table S6, 20 genes were

clearly clustered into two groups across the HC, LTBI, and ATB

states. Eleven genes belonged to Cluster 2 (C2), including granzyme B

(GZMB), perforin (PRF1), KIR2DL1, KIR2DL4,HLA_B, and HLA_E,

all of which were upregulated in LTBI groups and downregulated in

ATB groups. Nine genes belonged to Cluster 1 (C1), including

IFNAR1, IFNAR2, TNFSF10, and TNFRSF10A, which were

downregulated in LTBI groups and upregulated in ATB groups.

Notably, although the HLA_C gene did not exhibit the opposite

expression trend in the two disease states, its expression was also

upregulated in LTBI groups (Supplementary Table S6).
FIGURE 2

Volcano plot shows the distribution of DEGs in pairwise comparisons among the three groups of samples.
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3.3 Proteomic validation of DEPs reveals
differences in NK cells across different TB
infection states

We obtained proteomic profiles for 49 samples via LC-MS/MS.

The QCmix correlation coefficient was greater than 0.9 (Figure 5A),

indicating good quality control throughout the LC-MS–MS/MS

process. DEPs were identified using a threshold of P <0.05

(Supplementary Table S14). As shown in Figure 5B, in the

ATB_HC, ATB_LTBI, and LTBI_HC groups, 287, 171, and 485

upregulated and 236, 335, and 168 downregulated DEPs were

observed, respectively. We integrated these DEPs with the

transcriptomic profiles and revealed that 125 DEPs in the

ATB_HC group, 96 in the ATB_LTBI group, and 173 in the

LTBI_HC group overlapped and showed consistent expression

trends with those in the transcriptome (Figure 5C, Supplementary

Table S7). These DEPs were selected for further protein analysis.

First, KEGG functional enrichment analysis was performed for

the DEPs of the three groups. Immune-related pathways were

enriched only in the ATB_HC group (Supplementary Table S8).

Similar to the transcriptome data, the proteomic analysis also

revealed enrichment in pathways related to NK cell-mediated

cytotoxicity, apoptosis, chemotaxis (such as chemokine signaling
Frontiers in Immunology 06
and leukocyte transendothelial migration), adaptive immunity

(including B-cell receptor signaling and T-cell receptor signaling),

and other immune cell differentiation pathways (such as Th17 cell

differentiation and Th1/Th2 cell differentiation). These enriched

pathways and the genes involved are shown in Figure 5D.

Second, we performed GO enrichment analysis separately on the

ATB_LTBI and LTBI_HC groups. The enriched immune-related

biological processes are shown in Figure 5E. Terms related to

extrinsic apoptosis-mediated cytotoxicity, such as “regulation of

extrinsic apoptotic signaling pathway via death domain receptors,”

were enriched in the ATB_LTBI group. The DEPs enriched under this

term included STX4, GSK3B, RFFL, and STK4. However, the term

“positive regulation of tumor necrosis factor production” was enriched

in the LTBI_HC group, contrasting with the transcriptome analysis

results. The DEPs enriched under this term included HAVCR2,

THBS1, PF4, HMGB1, MAVS, and HDAC2. We further analyzed

the DEPs enriched in these two terms and the DEGs enriched in the

NK cell-mediated cytotoxicity pathway in the transcriptome (genes

shown in Figure 4C). As shown in Figure 5F, the abovementioned

DEPs and DEGs from the ATB_LTBI group were intertwined in

extrinsic apoptosis-related pathways, such as the extrinsic apoptotic

signaling pathway, the extrinsic apoptotic signaling pathway via death

domain receptors, and the cytokine-mediated signaling pathway. The
FIGURE 3

Overlap of DEGs reflects chemotaxis differences. (A) Venn diagram showing the overlap of DEGs between ATB_HC and ATB_LTBI. (B) Heatmap
illustrating that the 427 overlapping DEGs are capable of distinguishing the ATB group from the LTBI and HC groups. (C) KEGG enrichment analysis
of 427 DEGs, displaying only the top 20 most significant pathways with significant enrichment (P <0.05). The size of the dots corresponds to the
proportion of genes annotated in each pathway. (D) GO enrichment analysis of 427 DEGs, displaying only the top 20 most significant pathways with
significant enrichment (P <0.05). The size of the dots corresponds to the proportion of genes annotated in each pathway. (E) Display of DEGs
involved in Chemotaxis-related biological processes (GO).
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DEPs from the LTBI_HC group, namely, HAVCR2, THBS1, PF4,

HMGB1, MAVS, and HDAC2, were involved both in the regulation of

biological processes such as cytotoxicity and killing (NK cell-mediated

cytotoxicity, leukocyte-mediated cytotoxicity, and cell killing) and in

the regulation of the biological process of tumor necrosis factor

production. PPI network analysis also revealed that HAVCR2,

THBS1, PF4, HMGB1, MAVS, and HDAC2 interact with these

DEGs in the subpathways of NK cell-mediated cytotoxicity,

including the perforin–granzyme pathway, death receptor pathway,

and cytotoxicity inhibition pathway (Figure 5G).
3.4 NK cell-mediated cytotoxicity and the
apoptosis signaling pathway

The transcriptome (Section 2.2) and proteome (Section 3)

KEGG analysis results revealed enrichment in the NK cell-
Frontiers in Immunology 07
mediated cytotoxicity signaling pathway. In the LTBI state, the

expression of representative genes of the perforin–granzyme

pathway (which induces intrinsic apoptosis) increased, whereas in

the ATB state, the expression of representative genes of the death

receptor pathway (which induces extrinsic apoptosis) increased. This

effect may lead to the transformation of the NK cell-mediated

cytotoxicity signaling pathway. First, genes within the perforin–

granzyme pathway, such as GZMB and PRF1, are upregulated

specifically in LTBI groups. This upregulation potentially indicates

that in the LTBI state, NK cells mainly mediate cytotoxicity via the

perforin–granzyme pathway. Second, increases in the expression of

inhibitory receptors KIR (KIR2DL1 and KIR2DL4) and HLA-I

(HLA_B, HLA_E, and HLA_C) were also observed. This

expression might suppress cytotoxicity and thereby modulate the

overall immune response. In comparison, in ATB patients, the genes

of the death receptor pathway, including type I interferon receptor

IFNsR (IFNAR1, IFNAR2), tumor necrosis factor-a (TNF-a) family
FIGURE 4

Opposite trend DEGs reveal differences in NK cell function. (A) Venn diagram showing the overlap of DEGs with opposite trends between ATB_LTBI
and LTBI_HC groups. (B) KEGG enrichment analysis of 108 and 55 DEGs with opposite trends, showing significant enrichment (P <0.05). The size of
the dots corresponds to the proportion of genes annotated in each pathway. (C) Heatmap illustrating the trend of DEGs in the specific Natural killer
cell-mediated cytotoxicity pathway between the LTBI_HC and ATB_LTBI groups.
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TRAIL (TNFSF10), and its receptor TRAILR (TNFRSF10A), were

upregulated. This change likely leads to a shift in the NK cell-

mediated cytotoxicity signaling pathway from the perforin–

granzyme pathway to the death receptor pathway. Moreover, the

expression of regulatory proteins such as STX4, GSK3B, RFFL, and
Frontiers in Immunology 08
STK4 was altered. Furthermore, in LTBI groups, HAVCR2, THBS1,

PF4, HMGB1, MAVS, and HDAC2 expression was upregulated.

This upregulation might be because, in the LTBI state, NK cells

participate in the regulation of tumor necrosis factor production and

indirectly participate in the regulation of the cytotoxicity pathway
FIGURE 5

Integration analysis of DEPs and DEGs. (A) The correlation matrix presents the correlations in the QCmix. (B) Volcano plot showing the distribution
of DEPs in pairwise comparisons across three groups of samples (P <0.05). Red represents upregulated expression, and blue represents
downregulated expression. (C) UpSet plot and Venn diagram illustrating the overlap between DEPs and DEGs. (D) Sankey diagram displaying genes
enriched in specific signaling pathways. (E) GO enrichment analysis of DEPs in the ATB_LTBI and LTBI_HC groups, with significant enrichment (P
<0.05); only the top 20 most significant DEPs are shown. The size of the dots corresponds to the proportion of genes with corresponding
annotations. (F) Circos plot depicting the integration of DEPs and DEGs in specific signaling pathways. (G) The PPI network illustrates the interaction
relationships between the DEPs and DEGs involved in NK cell-mediated cytotoxicity and the apoptosis signaling pathway. The DEPs from the
ATB_LTBI group are presented against a blue background; the DEPs from the LTBI_HC group are shown against a green background; the DEGs
from the ATB_LTBI group are displayed against a magenta background; and the DEGs from the LTBI_HC group are depicted against pink and
gray backgrounds.
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mediated by exogenous apoptosis. The specific signaling pathway

diagram is shown in Figure 6.
3.5 Flow cytometry reveals frequency
changes in CD56dim and CD56bright NK
cell subsets in LTBI

To further explore the changes in the NK cell frequency and the

frequencies of the two subsets in LTBI, we performed flow

cytometry on an independent cohort of 85 individuals to analyze

the frequency changes in CD56dim NK (primarily CD56dim CD16

+ NK cells) and CD56bright NK (primarily CD56bright CD16- NK

cells) cells between HCs and LTBI individuals. As shown in

Figure 7, compared with HCs, LTBI individuals presented an

increased frequency of CD56+ and CD56dim NK cells, whereas

the frequency of CD56bright NK cells decreased (Supplementary

Table S15, Supplementary Figures S1, S2).
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3.6 RT-qPCR detection of DEGs and
signature genes to distinguish ATB and
LTBI from HC

To further validate the reliability of the transcriptomic results

and explore the potential of certain DEGs as auxiliary diagnostic

markers for distinguishing different TB infection statuses, we

performed RT-qPCR validation on 10 target genes from the RNA-

seq DEGs in a validation cohort of 111 individuals (including 30

ATB patients, 30 LTBI individuals, and 51 HCs). Statistical analysis

revealed that the significance and relative expression levels of genes

such as SLC7A5, GZMK, PDE4D, CXCR4, PIK3R1, PER1, SOCS3,

HIST1H3B, and HBB in the RT-qPCR validation group were

consistent with the RNA-seq results. Although the RT-qPCR

results for HBA1 in the ATB_HC group did not significantly

differ, the trend was consistent with the RNA-seq findings

(Figure 8A). In addition, we further utilized a LASSO regression

model to combine the validated genes and constructed receiver
FIGURE 6

Signaling pathways of NK cell-mediated cytotoxicity and apoptosis. The black arrow indicates positive regulation, and the red inhibitory arrow
indicates negative regulation. The genes obtained from RNA-seq analysis are shown on a pink background, including GZMB, PRF1, and FYN, which
mainly mediate cytotoxicity through the perforin–granzyme pathway in the LTBI state, and TNFSF10, TNFRSF10A, IFNR1, and IFNR2, which mainly
mediate cytotoxicity through the death receptor pathway in the ATB state. The proteins obtained from the LC-MS/MS analysis are shown in a blue
background and include HAVCR2, THBS1, PF4, HMGB1, MAVS, and HDAC2, which regulate the production of tumor necrosis factor in the LTBI state,
and STX4, GSK3B, RFFL, and STK4, which are involved in the regulation of cytotoxicity mediated by extrinsic apoptosis in the ATB state. The genes
that inhibit cytotoxicity obtained from RNA-seq analysis are shown on a gray background, including KIR2DL1, KIR2DL4, HLA_B, HLA_E, HLA_C, and
PTPN11, which inhibit cytotoxicity and apoptosis in the LTBI state.
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operating characteristic (ROC) curves to distinguish between the

phenotypes (ATB, LTBI, and HC). In the ATB_HC comparison, a

combination of four genes—SLC7A5, PDE4D, CXCR4, and SOCS3—

was the most effective for distinguishing the ATB and HC groups,

with an AUC of 0.947 (Figure 8B). When the Youden index was

maximized, the sensitivity was 0.867, and the specificity was 0.882

(Supplementary Table S9). In the LTBI_HC comparison, a

combination of three genes—SLC7A5, PER1, and PDE4D—was the

most effective for distinguishing the LTBI and HC groups, with an

AUC of 0.933 (Figure 8C). At the optimal Youden index, the

sensitivity was 0.900, and the specificity was 0.922 (Supplementary

Table S10). In the comparison between ATB and LTBI, a

combination of three genes—SOCS3, GZMK, and HIST1H3B—was

the most effective in differentiating the ATB and LTBI groups, with

an AUC of 0.817 (Figure 8D). At the optimal Youden index, the

sensitivity was 0.633, and the specificity was 0.900 (Supplementary

Table S11). These gene combinations demonstrated strong

discriminatory power in distinguishing different TB infection

states; thus, they are promising potential diagnostic biomarkers.
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4 Discussion

In this study, we aimed to elucidate the immune mechanisms

and functional characteristics of peripheral blood NK cells across

different infection states of TB by analyzing the differences in the

transcriptional and protein profiles of NK cells in the peripheral

blood of ATB, LTBI and HC individuals. Initially, we explored DEGs

strongly associated with ATB and identified significant changes in a

wide range of cytokines and cytokine receptors. These changes

mediate mainly cytokine–cytokine receptor interaction signaling

pathways. GO enrichment analysis revealed numerous DEGs

involved in adaptive immune cell differentiation, immune

function, and regulation. Proteomic analysis also revealed

enrichment of adaptive immune-related pathways (B-cell receptor

signaling pathway and T-cell receptor signaling pathway) in the

ATB_HC group and other immune cell differentiation pathways

(e.g., Th17 cell differentiation and Th1 and Th2 cell differentiation).

These findings suggest that when ATB is present, NK cells indirectly

participate in adaptive immunity by regulating the differentiation
FIGURE 7

Flow cytometry reveals frequency changes in CD56dim and CD56bright NK cell subsets in LTBI. The flow cytometry plot illustrates the gating
strategy for CD56+ NK Cells, CD56dim NK subset, and CD56bright subset. The violin plot shows the frequency changes of these cells between LTBI
and HC groups.
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and function of other immune cells, a phenomenon previously

reported in TB research (24).

Importantly, both transcriptomic and proteomic analyses

identified chemotaxis-related terms, highlighting numerous
Frontiers in Immunology 11
chemotactic genes significantly upregulated in ATB. IP-10

(interferon-inducible protein 10), encoded by the CXCL10 gene, is

prominently featured in the NK chemotactic gene set and is crucial

in stimulating NK cell migration. CXCR3+ NK cells are the primary
FIGURE 8

RT-qPCR validation of relative expression levels of target genes. (A) Scatter plot showing the relative expression of each gene across all samples.
ns, P ≥ 0.05, *P < 0.05, **P < 0.01. (B) ROC curve analysis for genes combination to discriminate ATB vs HC subjects, S-P-C-S is a genes
combination named by taking the initials of four genes: SLC7A5, PDE4D, CXCR4, and SOCS3. (C) ROC curve analysis for genes combination to
discriminate LTBI vs HC subjects, S-P-P is a genes combination named by taking the initials of three genes: SLC7A5, PDE4D, and PER1. (D) ROC
curve analysis for genes combination to discriminate ATB vs LTBI subjects, S-G-H is a genes combination named by taking the initials of three
genes: SOCS3, GZMK, and HIS1H3B.
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targets of IP-10 (25). In this study, both IP-10 and CXCR3 were

elevated in the NK cells of ATB patients, suggesting that in ATB

patients, NK cells exhibit a heightened response to chemotactic

signals, with increased expression of surface receptors that facilitate

their migration to the site of infection. Previous studies have

demonstrated that supernatant from M.tb-infected dendritic cells

stimulates NK cell migration and increases CXCR3 expression, with

chemotactic activity primarily attributed to CXCL10 (26). The

chemokine receptor CCR7, specific to CD56bright NK cells, was

highly expressed in the NK cells of ATB patients. These findings

suggest that CD56bright NK cells undergo migration in ATB.

Elevated expression of CCR7 in the CD56bright subset has been

reported in TB pleuritis (27). Furthermore, the chemokine receptors

CCR1 and CCR5 are considered characteristic chemokine receptors

for NK-macrophage crosstalk and migration (28). In this study,

these receptors were highly expressed in NK cells from ATB

patients, suggesting that in ATB patients, NK cells and

macrophages may migrate in coordination.

In addition, numerous other chemokines, chemokine receptors,

and genes regulating chemotaxis showed the same expression

pattern, with their levels being unchanged or decreased in NK

cells of LTBI groups and increased in those of ATB patients. This

finding reflects a relatively stable immune equilibrium in the LTBI

state. However, in the ATB state, the inflammatory response

intensifies, with a surge of inflammatory mediators and

chemokines providing strong migratory signals that could guide

NK cells to migrate from the bloodstream or peripheral tissues to

the site of infection (27). This result also helps explain previous

studies demonstrating NK cell subset depletion in the PBMCs of

ATB patients (29). Similarly, evidence of the regulation of

chemotaxis by NK cells was found in our proteomic analysis.

Notably, chemokines have complex functions beyond simply

guiding cell migration. Elevated levels of chemokines and their

receptors can also promote the activation of immune cells,

enhancing their phagocytic and bactericidal abilities against M.tb.

Furthermore, by analyzing genes exhibiting opposite expression

patterns between the two TB infection states, we explored the shift in

NK cells’ immune mechanisms during distinct TB infection states. The

characteristic genes mediating the NK cell-mediated cytotoxicity

signaling pathway through perforin–granzyme were upregulated in

the LTBI state, whereas those via death receptors were elevated in ATB.

Specifically, in the LTBI state, genes encoding perforin (PRF1),

granzyme B (GZMB), and the gene FYN (30), which promotes

perforin release, as well as inhibitory KIR receptors (KIR2DL1 and

KIR2DL4) and HLA molecules (HLA-B, HLA-C, and HLA-E), were

highly expressed. These genes are characteristic of the CD56dim NK

cell subset, suggesting that in LTBI, cytotoxic effects mediated primarily

by perforin and granzyme are crucial for the early control of M.tb

infection. Consistent with the gene characteristics, through flow

cytometry, we analyzed the frequency changes in CD56 NK cell

subsets in the peripheral blood of individuals with LTBI and found

that, compared with those in the HCs, the proportions of CD56+ NK

cells and the CD56dim NK cell subset were significantly greater in the

LTBI individuals, whereas the proportion of the CD56bright NK cell

subset was lower. The greater proportion of the CD56dim subset,
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owing to its stronger cytotoxic function than the CD56bright subset

(5), can control the progression of TB. This subset of NK cells also

expresses high levels of inhibitory receptors and HLAmolecules, which

may suppress toxic effects. Previous studies have shown that KIR2DL1

recognizes and binds to the ligand HLA-C to mediate cytotoxic

inhibition (7, 31) and that excessive cytotoxicity can accelerate the

formation of pulmonary TB cavities (32). However, in the ATB state,

we observed a decrease in the expression of genes involved in the

cytotoxicity mediated by perforin and granzyme. Conversely, the

expression of genes associated with death receptor-mediated

cytotoxicity, which are also genes specifically and highly expressed in

the CD56bright subset, such as type I interferon receptors (IFNAR1

and IFNAR2), the TNF-a family member TRAIL (TNFSF10), and its

receptor TRAILR (TNFRSF10A), was upregulated. This expression

upregulation might have resulted in a shift in cytotoxicity toward

extrinsic apoptosis mediated by death receptors, which may be driven

primarily by the CD56bright NK cell subset (6, 33). We did not

investigate changes in the CD56 NK cell subsets of patients with ATB.

The frequency changes in NK cell subsets in ATB patients are affected

by multiple factors, such as the host’s pathological state, immune

environment, and chemotaxis. Prior studies have also shown that,

compared with LTBI, ATB is associated with a decrease in early NK

cells (CD16+ CD56dim CD57+) and an increase in the proportion of

the CD56bright CD16dim NK cell subset (29, 34). Similarly, proteomic

analysis revealed enrichment of the “NK cell-mediated cytotoxicity”

and “apoptosis” pathways in the ATB_HC comparison, providing

consistent evidence with the transcriptomic data. We found that the

levels of some proteins regulating the extrinsic apoptotic signaling

pathway were elevated in the NK cells of patients with ATB. Among

them, some are proapoptotic (GSK3B and STK4) (35, 36), whereas

others are antiapoptotic (STX4 and RFFL) (37, 38). Furthermore,

through proteomic analysis, we found that the levels of proteins

involved in the regulation of tumor necrosis factor production, such

as HAVCR2, THBS1, PF4, HMGB1, MAVS, and HDAC2, were

elevated in the NK cells of individuals with LTBI. All of these

proteins are conducive to the production of tumor necrosis factor

(39–44). These findings imply that, in the LTBI state, NK cells may

regulate the production of tumor necrosis factor via these proteins,

thereby participating in the cytotoxic process mediated by exogenous

apoptosis. These proteins collectively regulate the “NK cell-mediated

cytotoxicity” and “apoptosis” pathways, forming a complex dynamic

regulatory network. Additionally, through the integrated analysis of

transcriptomics and proteomics, we observed divergence between the

two omics results. The divergence may be attributed to post-

transcriptional regulatory mechanisms (such as mRNA stability,

translation efficiency, and protein degradation) (45–47). Such

divergence provided insights for future screening of biomarkers and

validation of therapeutic targets: sole reliance on transcriptomic data

may result in the omission of key functional proteins, whereas

integrative analysis of multi-omics data can more comprehensively

characterize biological processes and significantly enhance biomarker

reliability (48). Therefore, in clinical translational research, potential

targets predicted by transcriptomics should be interpreted with caution,

and systematic validation using multi-omics data is recommended to

minimize false-positive risks.
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In addition, TB diagnosis has long been a challenge. While

bacteriological confirmation remains the gold standard, diagnostic

rates have been consistently low, with little improvement observed.

Host transcriptomics can reflect the immune response status, which

helps elucidate the pathogenesis and progression of TB and holds

significant potential for enhancing clinical diagnostics. Currently, TB

remains devoid of universally acknowledged clinical biomarkers, with

the core challenge lying in the difficulty of replicating biomarkers

across large-scale populations. Notable disparities in genetic

backgrounds and environmental exposures among populations may

give rise to substantial heterogeneity in gene/protein expression profiles

across different ethnicities and regions (49, 50), which could further

compromise the reproducibility of biomarkers in cross-ethnic and

cross-regional cohorts (51). Most ongoing TB biomarker investigations

focus on whole blood or PBMC samples (13), yet the complexity and

cellular heterogeneity of these specimens may obscure critical biological

signals. By contrast, the exploration of biomarkers based on NK cells as

a single immune cell population is anticipated to enhance biomarker

specificity and stability, thereby offering a novel research perspective for

addressing the reproducibility challenges of TB biomarkers. Based on

peripheral blood NK cells, we used RT-qPCR to validate and identify a

four-gene combination (SLC7A5, PDE4D, CXCR4, and SOCS3) that

distinguishes ATB patients from HCs and a three-gene combination

(SLC7A5, PER1, and PDE4D) that differentiates LTBI from HC,

showing considerable diagnostic potential in terms of sensitivity and

specificity. In addition, the three-gene combination (SOCS3, GZMK,

andHIST1H3B) exhibited suboptimal sensitivity in differentiating ATB

from LTBI, limiting its utility as a standalone screening tool. However,

its high specificity supports its potential as an adjunct to clinical

diagnosis, particularly in reducing false-negative results for LTBI.

Meanwhile, we observed that certain biomarkers (SLC7A5, PDE4D,

CXCR4, PER1, PIK3R1, HBA1, HBB) were elevated during the pre-

infection phase (LTBI), while others (SOCS3, GZMK, HIS1H3B) were

upregulated in the post-infection phase (ATB). This phenomenon

suggests the potential value of biomarkers in tracking tuberculosis

progression. Additionally, previous studies have demonstrated that

immune markers such as GZMB and soluble TRAILR can predict

treatment outcomes during the intensive phase of tuberculosis (52),

which also reflects the potential of the characteristic genes identified in

this study for monitoring disease progression or treatment response. Of

course, more in-depth studies incorporating samples from different

disease development stages will be required to clarify their clinical

value. Notably, the potential biomarkers identified in this study are still

in the preliminary stage and remain far from clinical application. Their

stability and generalizability across different ethnic and regional

populations still need to be explored. Future research will expand the

sample size to explore and validate robust diagnostic biomarkers

(particularly for differentiating ATB from LTBI) to optimize the model.

This study has some limitations. In terms of sample size, there is

an urgent need to expand the current cohort by including more

participants representing diverse subgroups and infection stages. This

strategy would not only enhance the accuracy and generalizability of

existing diagnostic models but, when combined with dynamic

tracking of disease progression data, could also provide key insights

into the immunological mechanisms underlying TB pathogenesis,
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thereby revealing disease evolution patterns and potential therapeutic

targets. Additionally, functional validation requires further

strengthening: by integrating in vitro cell models, animal infection

experiments, and emerging spatial transcriptomics technologies [e.g.,

spatial CITE-seq (53), multimodal tri-omics mapping (54), and

Perturb-DBiT (55, 56)], it is expected to systematically construct

the molecular regulatory network of NK cells, deepen mechanistic

interpretation, and address the shortcomings of traditional omics

technologies in resolving cellular microenvironments.

In conclusion, this study systematically characterized themolecular

and functional signatures of peripheral blood NK cells across ATB,

LTBI, and HC states. In LTBI, NK cells exhibit upregulated perforin–

granzyme-mediated cytotoxicity pathways, increased inhibitory

receptor and HLA ligand expression, and a higher frequency of

CD56dim subsets, suggesting a balanced immune state dominated

by intrinsic cytotoxicity with self-regulation. By contrast, ATB is

characterized by the activation of death receptor-mediated extrinsic

apoptosis pathways and the significant upregulation of chemokines/

chemokine receptors, which may promote NK cell migration. Flow

cytometry confirmed that LTBI is associated with elevated CD56dim

and reduced CD56bright NK cell frequencies compared with those

observed in HCs. RT-qPCR was used to validate multigene biomarker

panels with high diagnostic accuracy for distinguishing ATB and LTBI

from HC. The observed differences in the NK cell profiles between

LTBI individuals and ATB patients could reflect dynamic regulatory

mechanisms, possibly supporting the role of immune control in latency

and migratory responses in active disease.
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