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Background: Hematopoietic stem cell transplantation (HSCT) offers a potentially 
curative option for severe aplastic anemia (SAA). However, graft failure (GF) 
remains a life-threatening complication following HSCT. Haploidentical HSCT 
may serve as an effective salvage therapy for the treatment of GF. 

Case presentation: This report describes a 3-year-old girl with acquired SAA who 
experienced  GF  twice  following  matched  unrelated  donor  (MUD)  
transplantations. Successful engraftment was ultimately achieved through a 
third haploidentical donor HSCT. This work was conducted in accordance with 
the Declaration of Helsinki and the Declaration of Istanbul. 

Conclusions: Based on our experience with this case, we conclude that a third 
HSCT with a haploidentical donor represents a viable approach to extending survival. 
KEYWORDS 

severe aplastic anemia, hematopoietic stem cell transplantation, graft failure, immune 
response, conditioning regimens 
Introduction 

Severe aplastic anemia (SAA) is an autoimmune disorder characterized by the 
destruction of hematopoietic components in the bone marrow, leading to life-
threatening complications such as infections and hemorrhage (1). The primary 
treatments for SAA include intensive immunosuppressive therapy (IST) and allogeneic 
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hematopoietic stem cell transplantation (allo-HSCT). Compared to 
IST, allo-HSCT provides multiple advantages, including higher 
long-term survival rates (70%–80%), faster hematopoietic 
recovery, a reduced incidence of clonal diseases, and an improved 
quality of life. Therefore, HSCT from an HLA-matched related 
donor (MRD) is regarded as the first-line treatment for children 
with SAA (2). Graft failure (GF) following HSCT can manifest as 
either the failure of donor cells to achieve initial engraftment or the 
loss of donor cells after successful engraftment. Due to persistent 
leukopenia and thrombocytopenia, which significantly increase the 
risks of infection, bleeding, and related mortality (3), GF remains a 
life-threatening complication of HSCT. The cumulative incidence 
of GF is significantly higher in nonmalignant disorders compared to 
malignant ones, with an incidence ranging from 3% to 5% in 
patients with SAA (4). A very small proportion of patients with 
GF may achieve complete autologous recovery (5). For the majority, 
a second transplantation remains the only potentially curative 
option (6). Despite favorable recovery of neutrophil counts, a 
second transplantation is associated with a high rate of non-
relapse mortality (NRM) (7). However, a third allo-HSCT has 
rarely been reported. This report describes a pediatric patient 
with SAA who experienced GF twice following matched unrelated 
donor (MUD) transplantations. The patient successfully achieved 
engraftment following a third haploidentical HSCT and remained 
with clinical remission during a subsequent 5-year follow-up, 
highlighting the effectiveness and safety of this approach. 
Case presentation 

A 3-year-old girl was admitted to our hospital with pancytopenia. 
Complete blood count revealed: leukocyte count 1.89 × 109/L, 
neutrophil count 0.01 × 109/L, hemoglobin 68 g/L, reticulocyte 
count 0.0015 × 10¹²/L, and platelet count 1 × 109/L. Multisite bone 
marrow (BM) examinations demonstrated markedly hypocellularity. 
The results of the sternal puncture show a significant reduction in BM 
hyperplasia, with severely reduced myeloid hyperplasia and severely 
reduced erythroid hyperplasia, and slightly varying sizes in the 
erythroid precursors. Lymphoid hyperplasia is significantly active, 
accounting for 90%. The marrow comprises an empty reticular 
structure, mostly consisting of non-hematopoietic cells. No 
megakaryocytes were observed in the entire section, and platelets 
are relatively rare. The karyotype was 46, XX. Assessment of 
peripheral blood flow cytometry for CD55 and CD59 was negative, 
which excludes paroxysmal nocturnal hemoglobinuria (PNH). The 
chromosome breakage test was negative. The coombs and lactate 
dehydrogenase were normal. Genetic testing for inherited bone 
marrow failure syndromes (IBMFS) was performed through a 
comprehensive panel analysis encompassing Fanconi anemia (FA) 
and related disorders. No pathogenic germline variants were detected 
through this investigation. 

She was prescribed combination therapy with cyclosporine A 
(CsA) and danazol. At the six-month follow-up, the patient was 
diagnosed with SAA accompanied by persistent hypocytosis. She had 
a 9/10 human leukocyte antigen (HLA)-matched unrelated donor 
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identified, with matches at the HLA-A, -B, -DRB1, and -DQB1 loci, 
except for a mismatch at the HLA-C locus. The donor, a 49-year-old 
male, was also ABO-compatible with our patient. Cytomegalovirus 
(CMV) and epstein-barr virus (EBV) immunoglobulin G (IgG) were 
positive, while immunoglobulin M (IgM) was negative. The patient 
underwent the first allo-HSCT six months after being diagnosed with 
SAA. HLA class I and class II antibodies were negative. The 
conditioning regimen consisted of fludarabine (FLU, 30 mg/m² for 
4 days), cyclophosphamide (CTX, 30 mg/kg/day for 4 days), and 
rabbit anti-thymocyte globulin (r-ATG, 10 mg/kg, Thymoglobulin® , 
Sanofi Corporation, France), collectively referred to as the FCA 
conditioning regimen. The patient was transfused with peripheral 
blood stem cells (PBSC) containing mononucleated cells (MNC, 
6.62×108/kg) and CD34+ cells (4.47×106/kg). The excess cells 
(MNC, 25.53×108/kg, CD34+ cells,  20.56×106/kg) were 
cryopreserved at −80°C. During the first HSCT, a total of 8 units of 
red blood cells and 9 therapeutic doses of platelets were transfused. 
Graft-versus-host disease (GvHD) prophylaxis was administered 
using CsA, short-term methotrexate (MTX, 15 mg/m² on day 1 
and 10 mg/m² on days 3, 6, and 11), and mycophenolate mofetil 
(MMF, 0.25 g orally twice daily from day −7 to day 30 post-HSCT). 
Neutrophil engraftment was achieved on day 12 post-HSCT (+12), 
followed by platelet engraftment on day +13. Nonetheless, the patient 
developed pancytopenia with progressive mixed chimerism of 
87.68% on day +23. Due to the low CsA concentration (89.8 ng/ 
mL), the CsA dosage was increased to maintain a blood 
concentration of 150–250 ng/mL. On day +83, pancytopenia has 
not improved, accompanied by stable mixed chimerism at 86.81%. 
Bone marrow (BM) examination revealed severe hypocellularity and 
signs of cytomegalovirus (CMV) infection associated with GF. CMV­

DNA levels increased to 5 × 10³ copies/mL, prompting the addition 
of ganciclovir, granulocyte colony-stimulating factor (G-CSF), and 
thrombopoietin (TPO) to the treatment regimen. However, on day 
+123, the pancytopenia showed no improvement despite CMV-DNA 
being undetectable, with mixed chimerism declining to 30.68%. 

After donor-specific antibodies (DSA) were confirmed to be 
negative, the patient underwent a second allo-HSCT on day 154 
following the first HSCT. The conditioning regimen for the second 
MUD-HSCT was adjusted to include fludarabine (FLU, 30 mg/m² 
for 4 days), busulfan (Bu, 0.8 mg/kg every 6 hours for 2 days), CTX 
(50 mg/kg for 2 days), and r-ATG (7.5 mg/kg, from the same 
manufacturer). GvHD was prevented using CsA (maintained at 
150–250 ng/mL), MMF, and short-term MTX as previously 
described. The patient received the unfrozen PBSC from 
previously matched unrelated donor (HLA 9/10) containing 
CD34+ cells and MNC at doses of 9.32 × 106/kg and 9.67 × 108/ 
kg, respectively. Before the second transplantation, rituximab (375 
mg/m²) was administered on day −11 to address a slight increase in 
Epstein-Barr virus (EBV) levels (2×10³ copies/mL). The patient 
received 8 units of red cell transfusions and 20 units of platelets. 
Neutrophil recovery was achieved on day +13, and platelet 
engraftment occurred on day +15, with no signs of GvHD. 

Unfortunately, on day 21 after the second HSCT, the patient 
developed pancytopenia again, accompanied by a progressive decline 
in mixed chimerism to 94%. Pancytopenia progressed, accompanied 
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by stable mixed chimerism at 59.11% on day 71 after the second 
HSCT. Despite administering adequate doses of immunosuppressive 
agents, the patient experienced GF again. The dose of infused PBSC 
from the initial donor was increased with CsA prophylaxis of GvHD, 
which containing peripheral blood mononuclear cells (PBMC, 
1.02×108/kg) containing CD34+ cells (1.17×106/kg) and CD3+ 
cells (0.8×107/kg) without the induction of GvHD. Chimerism 
initially increased to 91.28% but rapidly declined to 13.44% by day 
79 after the second HSCT, with no improvement in pancytopenia. 
BM aspiration after GF exhibited a reduction in BM hyperplasia, with 
reduced myeloid hyperplasia and erythroid hyperplasia. Lymphoid 
hyperplasia was active, accounting for 63%. No megakaryocytes were 
observed in the entire section, and platelets are relatively rare. 

B cells, T cells, and natural killer (NK) cells were isolated from 
peripheral blood (PB) using magnetic bead-based sorting, and 
donor-derived  chimerism  of  each  cel lular  subset  was  
independently assessed. As depicted in Figure 1A, following the 
first two allo-HSCT, the patient demonstrated robust donor-derived 
B-cell chimerism while exhibiting relatively lower levels of T-cell 
and NK-cell chimerism. Donor-derived chimerism in PB exhibited 
a significant decline, with concomitant marked reductions in donor 
chimerism across all three magnetically sorted cellular subsets (B 
cells, T cells, and NK cells). Following the third allo-HSCT, donor-
derived chimerism in PB, B cells, T cells, and NK cells reached stable 
levels, with all cellular subsets consistently exceeding 95% for 
durable engraftment. Notably, the patient demonstrated 
suboptimal donor-derived immune reconstitution following the 
first two allo-HSCT, characterized by delayed lymphopoiesis and 
insufficient functional maturation of T/NK cell subsets. In contrast, 
following the third allo-HSCT, robust immune reconstitution was 
observed, with donor-derived B cells, T cells, and NK cells achieving 
substantial repopulation by post-transplant month 6 and 
subsequently maintaining stable levels consistent with durable 
engraftment criteria (Figure 1B). 

A third HSCT was considered due to persistent pancytopenia, 
recurrent infections, and transfusion dependency. Lymphocyte subset 
Frontiers in Immunology 03 
analysis of both the donor and recipient was performed. It was 
indicated that interferon-gamma (IFN-g) was significantly elevated in 
the patient after the second GF (Figure 2). After DSAs were 
confirmed to be negative, the patient underwent the third allo-
HSCT 194 days after the second transplant. The conditioning 
regimen for the third haplo-HSCT included total body irradiation 
(TBI, 3 cGy for one day), fludarabine (FLU, 30 mg/m² for 4 days), 
CTX (35 mg/kg for 4 days), and r-ATG (7.5 mg/kg, from the same 
manufacturer). In the transplantation protocol of this study, a 
sequential infusion strategy was adopted: donor BM stem cells were 
infused on day 1, and PBSC were infused on day 2. The cumulative 
infused cell dose was: MNC 9.67×108/kg, CD34+ cells 9.32×106/kg. 
Additionally, we incorporated the post-transplant cyclophosphamide 
(PTCy, CTX 14.5mg/kg on days +3 and +4, respectively) into the 
third haplo-HSCT to prevent GvHD. Neutrophil and platelet 
engraftment were achieved on day +13 and day +15, respectively. 
An invasive pulmonary fungal infection occurred on day +22 and was 
successfully treated with voriconazole, achieving resolution on day 
+90 (Figure 3). Intravenous immunoglobulin (IVIG, 5 g, equivalent 
to 0.4 g/kg) was administered twice a week for a duration of 6 
months, and no infections were detected. Routine screening includes 
assessments of growth, endocrine function, pulmonary function, 
bone health, and cancer screening to ensure early detection and 
timely treatment of potential late effects. 

Currently, the patient has remained disease-free for 5 years, 
with a high quality of life, normal growth and development, and no 
signs of GvHD, infections, thyroid dysfunction, or cataracts, 
demonstrating the convincing effectiveness and safety of this 
approach. This work complied with the Declaration of Helsinki 
and the Declaration of Istanbul. 
Discussion 

The latest expert consensus recommends stratified management 
of SAA treatment based on the spectrum of patient age, best donor 
FIGURE 1 

(A) The chimerism of the different lymphocyte subsets during the decrease in donor chimerism. (B) The immune reconstitution following the three 
transplants. SCT, stem cell transplantation; +23d 1st SCT, on day 23 post the first SCT; +21d 2nd SCT, on day 21 post the second SCT; +26d 2nd 
SCT, on day 26 post the second SCT; +71d 2nd SCT, on day 71 post the second SCT; +79d 2nd SCT, on day 79 post the second SCT; +3m 1st, 3 
months post the first SCT; +6m 1st, 6 months post the first SCT; +1m 2nd, one month post the second SCT; +6m 2nd, 6 months post the second 
SCT; +3m 3rd, 3 months post the third SCT; +6m 3rd, 6 months post the third SCT; +9m 3rd, 9 months post the third SCT; +12m 3rd, 12 months 
post the third SCT; +15m 3rd, 15 months post the third SCT; +27m 3rd, 27 months post the third SCT. 
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availability, disease status, and treatment response (8). HSCT from 
a matched related donor (MRD), associated with high overall 
survival (OS) and event-free survival (EFS), is considered a first-
line therapy for children and young AA patients, attributed to 
qualitative advantages over IST (2, 8). However, only a small 
number of SAA patients have MUD. Experts currently propose 
that allo-HSCT from a well-MUD could also be considered (8). 
Iftikhar et al. also endorsed increased utilization of HCT by 
prioritizing matched unrelated or haploidentical donor HCT over 
IST in children and adults who lack a matched related donor (9), 
but the randomized clinical trial of IST versus MUD for pediatric 
patients is still ongoing (10). The ideal unrelated donor is a male or 
a nulliparous female, HLA-matched donor at the A, B, C, DRB1 
Frontiers in Immunology 04
loci, younger than 30 years of age, and CMV-compatible with the 
recipient. In our case, the donor was a 49-year-old male with a 9/10 
HLA match, ABO blood group compatibility, and CMV 
compatibility with the recipient. HSCT was performed using an 
FCA conditioning regimen, with an adequate dose of PBSC. 
Unfortunately, GF occurred after each HSCT from this donor. 

Primary GF (pGF) remains a rare but life-threatening 
complication following allogeneic hematopoietic stem cell 
transplantation and is a significant contributor to morbidity and 
mortality (11–13). It was characterized by the absence of initial 
donor cell engraftment (donor cells <95%), absolute neutropenia 
(ANC  ≤0.5×109/L),  anemia  (hemoglobin  <80g/L),  and  
thrombocytopenia (platelets <20×109/L) by day+28 post-allo-
FIGURE 2
 

Lymphocyte subset analysis by flow cytometry. (A) Total lymphocytes. (B) CD3+ T cell selection. (C) CD4+/CD8+ T cell subsetting. (D, E) Memory/
 
effector phenotype profiling. (F) T cell subset cytokine secretion analysis by flow cytometry. Teff, terminally differentiated effector T cell; Tem,
 
effector memory T cell; Tcm, central memory T cell.
 
FIGURE 3 

The yellow arrow indicates the location of the invasive pulmonary fungal infection. (A) Left lung nodule with ground-glass opacity (GGO) and halo 
sign on day 22 after the third haplo-SCT. (B) The nodule lesion and GGO have diminished on day +40. (C) The nodule lesion and GGO have 
resolved, evolving into fibrotic streaks on day +60. (D) The fibrotic streaks have further attenuated and diminished, with lesions substantially resolved 
on day +90. 
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HSCT using either mobilized PBSC or BM progenitors in the 
absence of relapse (7). For umbilical cord blood transplantation, 
these criteria apply by day +42 due to the expected delayed 
engraftment of umbilical stem cells (7, 14). In contrast, secondary 
GF refers to the progressive loss of donor cell function following 
successful engraftment of donor hematopoietic stem cells and 
hematopoietic reconstitution in the recipient. This condition is 
characterized by a subsequent decline in blood cell counts, with 
persistent absolute ANC ≤ 0.5 × 109/L and PLT< 20 × 109/L (7). The 
incidence of pGF ranges from 0.8% to 20% (15), varying 
significantly depending on the method of T-cell depletion. GF 
results from the recipient’s immune response against donor 
immunohematopoietic cells, driven by residual host immunity 
that remains active despite the conditioning regimen. Residual 
host T cells are considered the primary effector cells responsible 
for rejection (16). It have been reported that an increased risk of GF 
in cases of HLA mismatch (17) and major ABO mismatch (18). 
Notably, the identification of donor-specific anti-HLA antibodies 
(DSAs) has been recognized as a major cause of pGF in 
haploidentical HSCT (19–23). However, donor cytotoxic T cells 
play a facilitative role in HSC engraftment. The absence of donor T 
cells in blood and bone marrow due to graft T-cell depletion is 
associated with an increased incidence of GF (3). Moreover, 
CD4+CD25+Foxp3+regulatory T cells (Tregs) and Natural killer 
(NK) cells also play a role in graft failure pathogenesis (24). In 
patients with engraftment dysfunction and pGF, elevated serum 
levels of IFN-g, decreased Th2 and Tc2 cells, and imbalances in the 
Th1/Th2 and Th17/Treg ratios may contribute to the pathogenesis 
of engraftment dysfunction (2, 3, 25, 26). GF may be related to 
insufficient immune reconstitution, inadequate tolerance due to 
the patient’s compromised immune function, or abnormalities in 
the BM microenvironment. These factors collectively impair the 
recipient’s immune system’s ability to effectively support the 
engraftment and growth of the transplanted HSCs. Studies have 
shown that children with GF exhibit significantly elevated serum 
levels of IFN-g, and CXCL9 compared to control groups. 
Furthermore, the use of an anti-IFN-g monoclonal antibody, such 
as emapalumab, has been demonstrated to facilitate successful 
engraftment in second transplants using the same donor (27). 
Alternatively, it may result from other mechanisms, such as drug 
toxicity, sepsis, or viral infections, including CMV, human 
herpesvirus 6 (HHV-6), and parvovirus (3). In our case, the 
patient experienced two times of GF with the same unrelated 49­
year-male-donor, despite receiving adequate HSCs and a different 
conditioning regimen for the second HSCT. She had not received 
chemotherapy prior to HSCT, received an adequate dose of HSCs, 
and did not develop graft-versus-host disease. We analyzed 
lymphocyte subsets in both the donor and recipient and found no 
abnormalities in lymphocyte subpopulations, including CD4+ T 
cells, CD8+ T cells, and Tregs. However, elevated levels of IFN-g 
were detected in the patient, suggesting the involvement of 
immune-related factors. 

The OS of patients with GF can be enhanced through 
interventions such as  cytokine therapy, IST, DLI, ATG,
Frontiers in Immunology 05 
alemtuzumab, and a second HSCT. A study on serial chimerism 
analysis in patients with acquired AA highlights an important 
distinction from the standard approach used following HSCT for 
leukemia. In leukemia, immunosuppression is typically withdrawn 
in response to declining donor chimerism. However, current 
guidelines for acquired AA recommend continued serial 
chimerism monitoring and the reinstatement of IST when donor 
chimerism decreases post-HSCT (28). The management of patients 
experiencing GF following HSCT has historically included 
reinfusion  of  cryopreserved  progenitor  cel ls  (29) or

administration of high-dose hematopoietic growth factors (30). 
However, both approaches have been associated with poor 
outcomes in cases of true GF. DLI from an alternative donor has 
been shown to effectively address secondary graft failure by 
eliminating residual host cells through immune-mediated 
mechanisms and improving chimerism (31). In our case, 
intensified IST and treatment with hematopoietic growth factors 
proved ineffective. Despite DLI temporarily increasing chimerism 
to 91.28%, it rapidly declined to 13.44%, indicating the need for 
salvage treatment. Following the failure of an HLA-matched graft, 
the  original  donor  is  typically  preferred  for  a  second  
transplantation, as identifying a  similarly matched  secondary
donor is often challenging (32–35). A second HSCT provides the 
best opportunity for long-term survival in patients with primary or 
secondary GF. In this case, the patient underwent a secondary 
HSCT using unfrozen PBSC from the original donor, but GF 
recurred shortly thereafter. 

A third HSCT was deemed the only viable option for the patient 
due to transfusion dependency and recurrent infections. In the 
absence of an MRD, her father was chosen as the donor for the third 
HSCT. A multicenter study on refractory severe AA revealed that 
haplo-HSCT achieved a 94% engraftment success rate, with a 3-year 
OS rate of 89% and a failure-free survival (FFS) rate of 86.8%, 
compared to unrelated donor HSCT (36). They also reported on 52 
children who underwent haplo-HSCT (37), with 29 patients 
receiving HSCT as a salvage treatment and the remaining 23 
patients as a front-line therapy. No significant differences were 
observed between the two groups across most clinical endpoints, 
including myeloid engraftment time (P=0.175), grade II–IV acute 
GvHD (p=0.699), chronic GvHD (p=0.916), OS (p=0.698), and FFS 
(p=0.899). Furthermore, it has been recently reported that 268 of 
275 evaluable patients (97.5%) obtained sustained full donor 
chimerism, and 93.4% had complete hematopoietic recovery 
during the long-term follow-up (38). Improved allo-HSCT 
outcomes with unrelated and haploidentical donors are reflected 
in the panel’s recommendation of allo-HSCT using MRD or MUD 
as the preferred initial therapy in younger, medically fit patients (8). 
The panel also endorses increased utilization of HSCT by 
prioritizing matched unrelated or haploidentical donor HSCT 
over immunosuppressive therapy in children and adults who lack 
a matched related donor (9). Thus, haplo-HSCT can be considered 
a viable alternative treatment option. 

In addition, BM contains not only CD34+ cells but also 
supportive  components  such  as  BM  stromal  cells  and  
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mesenchymal stem cells (MSCs), which differ from PBSC in surface 
markers and differentiation potential. Bone marrow-derived stem 
ce l l s  may  more  read i l y  home  to  the  bone  marrow  
microenvironment, while peripheral blood stem cells show 
stronger proliferative activity (39, 40). Their combination covers a 
broader hematopoietic stem cell subset spectrum and enhances 
engraftment success. Patients with AA often exhibit BM 
microenvironmental abnormalities. Meanwhile, BM-derived 
MSCs exhibit immunosuppressive functions, capable of inhibiting 
recipient T-cell activation and proliferation, reducing transplant 
rejection, and promoting stem cell homing. Moreover, it has been 
established that BM should be the preferred stem cell source for 
matched sibling transplants in acquired AA in patients of all age 
groups (41, 42). In our case, although a substantial number of PBSC 
and CD34+ stem cells were infused during the first two HSCTs, 
both  resulted  in  GF,  l ikely  due  to  the  abnormal  BM  
microenvironment. Therefore, the patient underwent haplo-
HSCT and received BM and PBSC from her father in the third 
HSCT. Engraftment was achieved rapidly, and no GvHD 
was observed. 

Despite various conditioning regimens and T-cell depletion 
strategies had been evaluated, the optimal approach for a third 
transplantation in AA remains undefined. The optimal 
conditioning regimen appears to be a combination of fludarabine 
and CTX or melphalan with radiation therapy, as it is associated 
with higher engraftment rates and improved survival outcomes 
(43). When combined with partial T-cell depletion, TBI-containing 
regimens have demonstrated improved OS compared to regimens 
using CTX alone (44). Nonetheless, the significance of low-dose TBI 
in HLA-mismatched related SCT remains unknown (45, 46). 
Younger children who undergo TBI are considered to be more 
vulnerable to late effects such as gonadal and thyroid dysfunction, 
growth impairment, and secondary malignancies (47). It has been 
reported that 11 of 13 (85%) patients transplanted before age 3 with 
TBI had neuropsychological abnormalities (48). Given the very 
young age of our patient and concerns about the late effects, we did 
not include TBI in the first two transplants. However, both methods 
have been proved inadequate for our patient, prompting the 
addition of TBI during the third HSCT. High-dose TBI-
containing regimens have been shown to mitigate the increased 
risk of GF in unrelated-donor HSCT for pediatric acquired AA. 
Nonetheless, high-dose TBI regimens are associated with high rates 
of early toxicity as well as late effects compared to patients who do 
not receive TBI (49). A dose-evaluation study found that a TBI dose 
of 2–4 cGy, combined with CTX and ATG, was sufficient to 
facilitate engraftment without causing prohibitive toxicity in 
patients with an HLA-matched donor (50). This combination was 
associated with the highest survival rates following matched 
unrelated donor HSCT (MUD-HSCT). Kojima et al. analyzed 
data from 154 patients with SAA who underwent MUD-HSCT 
and identified ovarian dysfunction as a significant late complication 
(51). Based on these reports, we selected for low-dose TBI at 3 cGy 
and implemented ovarian shielding during TBI. The successful 
engraftment achieved with acceptable regimen-related toxicities 
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indicated that this conditioning regimen was a feasible option for 
salvage haplo-HSCT in patients with SAA. 

In clinical practice, it is recommended to switch to a different 
type of ATG for subsequent courses, such as horse ATG (h-ATG) if 
r-ATG was used initially, and vice versa. This strategy aims to 
minimize adverse events associated with ATG, particularly serum 
sickness, which tends to occur earlier and more severely upon re-
treatment with the same brand of ATG (52). However, since 2007, 
h-ATG has become unavailable in most Asian, Latin American, and 
European countries, with r-ATG being the only available 
formulation (53). A repeat course of immunosuppression with the 
same formulation of r-ATG is rarely reported. In a study on 
secondary IST, serum sickness was observed in 2 of 39 patients 
during a median follow-up period of 283 days (54). In this case, we 
used r-ATG with the same formulation and manufacturer due to 
the unavailability of h-ATG. No serum sickness was observed, even 
after three courses. To minimize the risk of serious infections, we 
reduced the ATG dosage to 7.5 mg/kg during the second and third 
HSCTs, given the short interval between each transplantation. We 
monitored immune reconstitution following HSCT and observed a 
slow but steady recovery without any serious infections, suggesting 
that the dosage was appropriate. 

Various protocols have been implemented to achieve sustained 
engraftment in unmanipulated T-cell-replete transplantation. 
Mixtures of granulocyte colony-stimulating factor (G-CSF) primed 
BM (G-BM) plus G-CSF mobilized peripheral blood grafts (G-PB) 
have successfully introduced T-cell hyporesponsiveness, promote 
polarization of T cells from Th1 to Th2, and provided protection 
against acute graft-versus-host disease (aGvHD) (55). Additionally, 
G-BM may include BM-derived mesenchymal stem cells (MSCs) in 
the graft, which could reduce the severity of GvHD and enhance 
engraftment (56). PTCy in the allo-HSCT setting has facilitated 
engraftment and resulted in GvHD rates comparable to those 
observed with MUD-HSCT in hematologic malignancies. 
Reducing GvHD is especially important in non-malignant 
conditions, where the goal is to achieve stable engraftment without 
excessive immune complications (57). Clay et al. reported a pilot 
study in which allo-HSCT using post-transplant successfully rescued 
4 patients with AA who experienced primary GF after unrelated 
donor transplantation or umbilical cord blood transplantation 
(UCBT) (58). We use PTCy for GvHD prophylaxis, and no acute 
or chronic GvHD was observed. 
Conclusion 

When a haploidentical donor is the only available option for a 
patient who experiences two episodes of GF after an alternative 
donor transplantation, a combination of BM and PBSC, 
conditioning regimens including fludarabine and low-dose TBI, 
and PTCy regimen for GvHD prophylaxis can improve the 
outcomes after the third HSCT. However, further investigations 
are necessary to establish more effective and safer allo-HSCT 
protocols for GF in patients with AA. 
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