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Background: Ferroptosis and Cuproptosis are newly defined forms of cell death.

Despite distinct mechanisms, both involve metabolic processes in the TCA cycle

and downstream pathways, crucial for anticancer immunity.

Methods: We evaluated Iron (Fe) and Copper-induced cell death in lower-grade

gliomas (LGG) using The Cancer Genome Atlas (TCGA) data by developing a

metal-based ferroptosis and cuproptosis genes score (MBFCGs) risk model.

Lasso regression and survival analyses assessed MBFCGs’ significance. An

MBFCGs-based nomogram was created and its predictive performance

verified. Signaling pathways, immune checkpoints, chemokines, and

therapeutic response indicators were quantified using R/oncoPredict and

Tidepay. Immunohistochemistry (IHC) examined candidate gene expression.

Results: The MBFCGs risk model, based on BACH1, CDCA3, and TIMP1, predicts

LGG prognosis. High MBFCGs were associated with poor clinical outcomes.

Functional enrichment analysis showed upregulation in neurotransmitter

receptor regulation, KRAS signaling, and hedgehog signaling pathways in the

high-risk group. High-risk LGG patients exhibited higher tumor mutation burden

(TMB) and lower IDH1 mutation incidence. These patients also had increased

stromal and immune scores, with elevated levels of T helper cells, B cells,

macrophages, neutrophils, and NK cells. Immune checkpoint analysis indicated

higher expression of CD274, PDCD1, and other inhibitory molecules, suggesting

potential for targeted cancer immunotherapy.
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Conclusion: The MBFCGs risk model is a promising prognostic tool for LGG,

offering insights into underlying mechanisms and new directions for

immunotherapy strategies. Assessment of MBFCGs for individual LGG patients

may provide clues for developing new immunotherapy strategies.
KEYWORDS

ferroptosis, cuproptosis, cell death, immunotherapy, low-grade glioma, tumor
microenvironment, immune checkpoint blockade
Introduction

Gliomas are a class of tumors that mostly originate in the central

nervous system and are well studied (1, 2). LGG is a subtype of

Gliomas with a low malignancy, but they can still multiply and grow

in a variety of ways. Consequently, the median overall survival for

patients with grade II gliomas with LGG was only about 78 months

(2). Therefore, it is essential to identifying the precise molecular trait

for precise diagnosis, tailored care, and the prognosis of this disease.

Ferroptosis and Cuproptosis are two newly defined types of

programmed cell death. Under normal physiological state, both

Ferroptosis and Cuproptosis cell encounters are kept at

extraordinarily low level by maintaining a dynamic balance to

prevent accumulation of free intracellular Iron and Copper from

harming cells (3). Ferroptosis linked to pathogenesis, development,

therapeutic targets, and treatment resistance, is brought on by the

accumulation of iron-dependent lipid peroxides at cell membranes

(4, 5). This distinct non-apoptotic pathological cell death pathway has

received more attention in recent years, particularly because of its

potential tumor suppressor role (3, 6). Cuproptosis is a unique non-

apoptotic programmed cell death initially proposed by the lab of

Todd R. Golub in 2022 and found to be different from known cell

death mechanisms like ferroptosis, pyroptosis, and necroptosis (7).

The lipoylation proteins required to produce copper-induced cell

death are primarily found in the tricarboxylic acid (TCA) cycle. Cell

death, proteotoxic stress, and the loss of iron-sulfur cluster proteins

are directly caused by copper binding to lipoylated proteins (7).

Moreover, it may serve as a signal to facilitate reactions to the

strengthened host defenses brought on immunological activation (8).

Recent research has demonstrated a clear correlation between

the progression of cancer and high copper levels. Brady et al.

showed that copper regulates the autophagic kinases ULK1/2,

which is crucial in the development of lung adenocarcinoma (9).

Mittal and colleagues also found that the triple negative breast

cancer in mice is significantly suppressed when mitochondrial

copper levels are low (10). The proliferation of cancer cells can be

reduced by inhibiting the transport of copper (11).
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Although ferroptosis and cuproptosis have been shown in

numerous studies to be crucial in tumors, their influence on specific

kinds of cancer is yet unknown. Interestingly, there are several steps

involved in ferroptosis and cuproptosis, involving various pathways

(canonical, noncanonical inflammasome, and alternative pathways).

The overlap and potential crosstalk of the different pathways,

characterizing the overall effects of metal-based ferroptosis and

cuprotosis rather than cuproptosis and ferroptosis alone, could be a

more effective strategy to understand their biological significance.

Beyond their intrinsic roles in tumor cell regulation, ferroptosis and

cuproptosis have garnered attention for their potential impact on the

tumor immune microenvironment. In gliomas particularly LGG

immune evasion is a key hallmark, and mounting evidence suggests

that iron- and copper-dependent metabolic pathways may influence

immune cell dynamics, tumor inflammation, and therapeutic

sensitivity (5, 12–14). Notably, ferroptosis induction in tumor cells

has been associated with enhanced CD8+ T cell-mediated cytotoxicity

and improved responsiveness to immunotherapies (12, 15), while

cuproptosis-related mechanisms have been linked to the regulation of

cytokine secretion and redox homeostasis (7, 16).

Although ferroptosis and cuproptosis have been individually

explored in various cancers, their integrated role in lower-grade

glioma (LGG) remains poorly defined. To address this gap, we

conducted a comprehensive analysis of genomic and transcriptomic

alterations associated with these two metal-dependent cell death

pathways. We hypothesized that a combined Metal-Based

Ferroptosis and Cuproptosis Genes (MBFCG) score could effectively

stratify LGG patients by prognosis and treatment response.

Accordingly, we established and validated a prognostic risk signature

based on the MBFCG score, highlighting its potential to predict

survival outcomes, drug sensitivity, and the immunological landscape

of LGG. This integrative approach offers novel insight into the clinical

implications of ferroptosis and cuproptosis in LGG biology.

Material and methods

Dataset collection

Data on LGG gene expression and clinical details were sourced

from Chinese Glioma ATLAS (CCGA) (http://cgga.org.cn/) and

Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). In
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particular, TCGA-LGG has 529 samples, all of which have relevant

clinicopathological features, copy number variations (CNV), single-

nucleotide variants (SNV), and gene expression profiles. The values of

the TCGA-LGG fragment were translated to transcript values per

million. A uniform normalization and log2 transformation procedure

was applied to all included RNA-seq data. A segmentation analysis

utilizing the Genomic identification of Significant Targets in Cancer

(GISTIC) algorithm was used to identify copy-number alterations as

loss or gain levels.

Following the in-depth analyses, the SNV data were graphed

using the R package “oncoplot” using the R package maftools. For

external validation, two CGGA cohorts (CGGA1, 325 mRNAseq,

RNA-seq, CGGA2, 301 mRNA array, Microarray) were obtained.
Identification of metal-based genes and
the construction of metal-based
prognostic model

The FerrDB database (http://www.zhounan.org/ferrb/current/)

(17) was used to retrieve ferroptosis-related genes while the

cuproptosis-related genes were obtained from prior research by

Jiang et al. (18). Using the R’limma and Pacman packages, we

analyzed the correlation between cupproptosis and ferroptosis

genes. Based on stringent screening criteria (P< 0.05 and

correlation coefficient > 0.4), we identified 136 MBFCGs. Then,

we performed Lasso-Cox dimension reduction analysis using the

“glmnet” R package and applied univariate Cox analysis at

P = <0.005, resulting in the identification of 24 critical genes. We

then applied ten-fold cross-validation to carefully choose the

optimal penalty parameter (l) based on the minimum criterion

to reduce the risk of overfitting. Subsequently, multivariate cox

regression was conducted and identified three main genes from the

pool of candidate genes. In the next step, we created a predictive

model for MBFCGs using the three genes from the training cohort.

The following formula was used to determine each sample’s

MBFCGs: MBFCGs  =  o (Coefi �  Expi), where “Exp” stands for

each MBFCGs expression level and “Coef” for the coefficient.
Evaluation and validation of the prognostic
model

A prognostic scoring system was established for LGG patients,

by utilizing the median value of predicted MBFCGs as the

cutoff threshold.

We subsequently stratified patients into high-risk (MBFCGs >

median value) and low-risk (MBFCGs< median value) groups, based

on the distribution of MBFCG scores within the TCGA training

cohort. Stratification thresholds were determined a priori to ensure

consistency across validation datasets. (Page number 5 Line 110-118).

Kaplan-Meier analyses were conducted using the R packages

“survival” and “survminer”. To measure the prognostic accuracy of

the model, we conducted 1-,3- and 5-year receiver operating
Frontiers in Immunology 03
characteristic (ROC) analysis using the R package “timeROC,” and

the area under curve (AUC) values were calculated. Calibration plots

were generated using the bootstrap method with 1,000 resamples to

assess agreement between predicted and observed outcomes, thereby

validating the predictive performance of the MBFCG model.

To validate the metal-based prognostic model, we applied it to

the internal testing cohorts and two external cohorts, CGGA1 and

CCGA2. For each cohort of LGG patients, MBFCGs were calculated

and the samples were divided into different risk groups. Subsequently,

these groups underwent comprehensive assessments, Including

Kaplan-Meier analysis, ROC analysis, and calibration analyses.

Furthermore, we checked the survival time of all three datasets

using the model MBFCGs by using Kaplan-Meier analysis.
Tumor mutation burden, functional
enrichment, and estimation of tumor
microenvironment in cell infiltration

TMBs and Immune checkpoint genes (ICGSs) were associated

with immunotherapy response rates. TMBs were associated with

higher response rates, while ICGSs were associated with lower

response rates. This suggests that TMBs and ICGSs may be

important biomarkers for predicting response to immunotherapy.

Early identification of TMBs and ICGSs can be used to identify

patients who are more likely to respond to immunotherapy. This

can help maximize the effectiveness of immunotherapy and

improve patient outcomes. The “maftools” R program was used

to extract the mutation annotation format (MAF) from the TCGA

database in order to ascertain the mutational landscape of LGG

patients based on the MBFCGs. In the whole TCGA cohort, the

TMB score was also computed for every LGG patient. A GSEA was

conducted to determine the gene sets that were statistically different

between the high-risk and low-risk groups. Based on the MSigDB

database, we used the gene sets “h.all.v7.2.symbols” and

“c5.bp.v7.2.symbols.”. Enrichment of gene sets with an adjusted

P-value of 0.05 was considered significant.
Estimation of metal-based gene score in
immunotherapy response

To estimate the immunotherapy response in LGG patients, the

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm

(http://tide.dfci.harvard.edu) was employed. This algorithm assists

clinicians in identifying patients who are better suited for

immunotherapy (19).
Prognostic independent analysis and
nomogram establishment

We collected clinical characteristics such as age, tumor grade,

and IDH mutation status of LGG patients within the entire TCGA
frontiersin.org
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cohort, and in two additional cohorts from Chinese Glioma

Genome Atlas (CGGA). Combining these variables with the

MBFCGs, we conducted both univariate and multivariable Cox

regression analyses to examine their associations with patient

survival outcomes. For personalized prediction of survival

probabilities among LGG patients, we developed a nomogram

using the clinical characteristics and the MBFCGs. This was

accomplished using the “rms” and “regplot” R packages.

To evaluate the predictive accuracy of the model, we performed

time-dependent Receiver Operating Characteristic (ROC) analysis

for 1-,3- and 5-year survival probabilities.

In addition, calibration plots were generated to compare the

predicted probabilities from the model with observed outcomes.

These analyses were conducted in the TCGA-LGG cohort and

validated in two additional cohorts, CGGA1 and CGGA2.
MBFCGs correlation with immune
infiltrates and immune checkpoint

To evaluate the composition of immune cell subsets within the

tumor microenvironment, we employed the Cell-type Identification

by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)

algorithm. This algorithm estimates the proportions of 22 immune

cell types in bulk tumor samples based on gene expression matrices

(20). To determine the relative number of immune cells, the TCGA-

LGG RNA-Seq data was processed and normalized to transcripts

per million (TPM). Subsequently, Spearman correlation analysis

was conducted to explore the relationship between the abundance

of infiltrating immune cells and MBFCG scores. P-values were

adjusted using the FDR method to account for multiple

comparisons. Then, we used Spearman’s rank correlation

coefficient to examine the relationships between Immune

Checkpoint Genes (ICGs) and the MBFCGs, and the three genes

included in the MBFCGs prognostic model.
Patients tissue samples for
immunohistochemistry

A total of 26 cases of LGG were included in this study,

encompassing individuals who underwent surgical resection at

Northern Jiangsu People’s Hospital (Yangzhou, Jiangsu, China)

between 2019 and 2023. Patients were selected based on inclusion

criteria of histologically confirmed LGG, no prior chemotherapy or

radiotherapy, and availability of sufficient tumor tissue. Sample size

was determined based on availability during the specified time period,

and no power analysis was conducted due to the exploratory nature

of the IHC study. Ethical approval for this study was obtained from

the Ethics Committee of medical college of Yangzhou University

(Approval No. YXYLL-2024-101). Informed consent was obtained

from all patients for the utilization of tissue samples for scientific

investigation. Immediately following surgical excision, tissue

specimens were promptly fixed in 10% paraformaldehyde.
Frontiers in Immunology 04
Immunohistochemistry

Paraffin-embedded sections, each 3mm thick, were incubated at 95°

C for 30 minutes in TE buffer (10 mmol/L Tris-HCl, pH 8.0, 1 mmol/L

EDTA) to facilitate heat-induced epitope retrieval. Post-retrieval, the

sections were incubated with primary antibodies anti-BACH1 (1:100

dilution, clone 9D11) or E-cadherin (1:200 dilution)—for 24 hours.

Secondary antibody staining followed this incubation. The intensity of

LGG staining was assessed based on BACH1 expression. IHC staining

was independently evaluated by two blinded pathologists.
Statistical analysis

All statistical analyses were conducted using R (version 4.3.2). For

comparisons between groups (e.g., high-risk vs. low-risk), statistical

significance was assessed using two-sided tests, including the log-rank

test for survival curves and Wilcoxon rank-sum tests for continuous

variables. A significance threshold of p< 0.05 was applied. Multiple

hypothesis testing corrections were performed using the Benjamini-

Hochberg method to control the false discovery rate (FDR), where

applicable. Statistical significance was annotated as follows: *p< 0.05;

**p< 0.01; ***p< 0.001; ****p< 0.0001.
Results

Identification of metal-genes and
construction of metal-genes prognostic
model

To establish a fusion of the metal-genes dependent risk model

in LGG, lasso and multivariate analyses were performed. Initially,

the correlation analysis was performed between the metal genes of

ferroptosis and cuproptosis. Further these genes were correlated

with LGG-TCGA dataset which revealed a total of 134 metal genes.

Patients in the TCGA cohort were divided into training and testing

cohorts at a 1:1 ratio. Three main candidate genes were identified

from the TCGA training cohort after lasso cox regression analysis

and multivariate cox regression analysis. Based on these three genes

BACH1, CDCA3, and TIMP1 metal-based prognostic model was

constructed. The associated metal-genes score can be calculated as

follows; Metal-gene score= 1.6265423* BACH1 + 6.0534006

CDCA3 + 0.4718346 TIMP1.The Forest plot, Hazard ratio (HR),

and significance are shown in the overall prognosis (Figures 1A–C).

The risk plot showed that patients with a higher metal-gene score

had more deaths and shorter survival times (Figure 1D). The

Kaplan-Meier analysis showed that high-risk patients had worse

overall survival than low-risk patients in both TCGA testing and

training groups (P = 1.008e-08) (Figure 1E).

The survival probability of the metal-genes score in TCGA

training was represented by the AUC values of 0.82, 0.75, 0.7

respectively for 1-,3, and 5-years, indicating good parameters of the

accuracy of modeling (Figure 1F). Similarly, Kaplan-Meier analysis
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revealed a significant difference in overall survival between high- and

low-risk patients (Figure 2A), while the AUC values for 1-, 3-, and 5-

year predictions in the TCGA testing cohort were 0.84, 0.61, and 0.67,

respectively (Figure 2D). In addition, the calibration curve showed a

satisfactory agreement between the predictive and observational
Frontiers in Immunology 05
values at the three and five-year time periods (Supplementary

Figures S1A–D). Taken together, the risk plot the metal gene score

and Kaplan-Meier survival revealed that the patient with the high-

risk score has more cases of death and shorter survival time in both

TCGA training and testing cohorts (Figure 2D).
FIGURE 1

Lasso coefficient profiles of OS-related genes and cross-validation for tuning parameters selection in the LASSO regression (A, B). Multivariate Cox
regression analysis of three metal-based genes with overall survival in LGG patients (C). Patient risk score distribution correlates with survival (D). A
Kaplan-Meier survival curve comparing high and low risk groups, showing survival probabilities over time (E). (F) ROC curves for predicting sensitivity
and specificity at one, two, and three years. Specifically, *: represents a p-value < 0.05, and ***: represents a p-value < 0.001).
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Metal-genes based prognostic model
external validation

To further validate the prognostic performance of the model, we

conducted validation using two external cohorts, CCGA1 and

CCGA2. Subsequently, patients were stratified into high and low

risk groups based on metal-genes scores. Kaplan-Meier analysis
Frontiers in Immunology 06
demonstrated improved prognosis within the high-risk group

compared to the low-risk group (Figures 2B, C).

Furthermore, the model exhibited a notably high AUC value in

the external validation cohorts, as shown in (Figures 2E, F).

Additionally, Kaplan-Meir analysis of all three metal genes shows

significant differences in both risk groups of all three datasets of

LGG. The high-risk group showed significantly lower survival of
FIGURE 2

Validation of the Metal-based prognostic model in the TCGA, CCGA1, and CCGA2 datasets. (A–C) represents Kaplan–Meier overall survival (OS)
curves for high- and low-risk groups for TCGA, CCGA1, and CCGA2 datasets, respectively. While (D–F) ROC curves, depicting prognostic
performance. (G-O) show survival analysis of the metal-related genes BACH1, CDCA3, and TIMP1 in high- and low-risk groups across the TCGA,
CCGA1, and CCGA2 datasets.
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Kaplan-Meier analysis (KMP) in all three datasets of LGG when

tested separately with all three genes (Figures 2G–O).
Functional enrichment, tumor mutation
burden and estimation of tumor
microenvironment cell infiltration

To gain insight into the underlying biology contributing to the

remarkable predicative ability of the metal-gene score, we

performed GSEA enrichment analysis in the TCGA-LGG high

and low-risk group. GO analysis showed significant upregulation

of pathways related to the regulation of neurotransmitter receptors,

regulation of trans-synaptic signaling, and dicarboxylic acid

transport in the high-risk metal-genes score group. While the

HALLMARK showed the overexpression of KRAS signaling,

pancreas beta cells hallmark, and hedgehog signaling

(Figures 3A, B).

The tumor is surrounded by a variety of immune cell types that

infiltrate the dynamic microenvironment. These immune elements

interact with tumor cells to influence the immunogenicity of tumors

and their susceptibility to checkpoint inhibitors, including anti-

Programmed cell death (PD-1) and anti-PD-L1 antibodies. We next

looked into the relationship between the metal-genes score and

immunological infiltration, taking into account the different

immune high and low metal-gene score groups. Prior research

has demonstrated a significant correlation between elevated TMB

scores and enhanced immunotherapy response. A significant

correlation was found between the metal-gene score and TMB

(R = 0.33, P = 2.3e-8), and the TMB scores were increased

significantly (P = 5.7e-12) in the high-risk group in the current

investigation. The KMP illustrates the survivability between the two

groups (Figures 3C–E). Moreover, we found that high-risk group,

(66%) had a substantially lower incidence of Isocitrate

dehydrogenase 1 (IDH1) mutations compared to those in the

low-risk category of (90%). Similarly, TP53 and IDH1 mutations

were crucially correlated with the increased Metal-gene Score in

(Supplementary Figures S1E, F). These results suggested that metal-

gene score and IDH1 mutations may potential Metal-dependent

apoptotic activity in LGG.

Tumor immunity plays a key role in tumor growth and survival

of the patients. Hence, we examined the tumor immunity risk

groups of LGG. The ESTIMATE package was used to infer the

stromal score and immune score of LGG specimens. High metal-

gene scores were associated with increased stromal and immune

scores (Figures 3F–H), indicating enhanced stromal and immune

cell levels in LGG TME. Multiple immune infiltrates were elevated

in tumors with high metal-gene scores. These results suggest the

potential differences in tumor immune response between high-risk

and low-risk groups. Therefore, we used the MCP counter and

TIMER to analyze related immune factors, such as immune

infiltration and immune checkpoints. Specifically, compared to

the low-risk groups, the high-risk group showed significantly

higher levels of T helper cells, B cells, macrophages, neutrophils,

and NK cells (Figure 3). Multiple immune checkpoint expression
Frontiers in Immunology 07
including CD274, PDCD1, BTLA, CTLA4, CD276, HAVCR2, and

LAG3 uncovered the significant overexpression in the high-risk

group (Figure 3J). These inhibitory checkpoint molecules protect

tumors from damage and attack, making them promising targets for

cancer immunotherapy. A prominent accumulation of T helper

cells and macrophages in the high-risk group indicates the presence

of an immunosuppressive TME, likely shaped by persistent

inflammation and the recruitment of tumor-associated

macrophages (TAMs). Concurrently, increased infiltration of

neutrophils and NK cells may reflect the activation of innate

immune responses; however, their precise functional roles within

the LGG microenvironment remain poorly defined. Notably,

although NK cells are more abundant in high-risk cases, their

cytotoxic activity may be attenuated by functional exhaustion,

potentially mediated by the upregulation of inhibitory immune

checkpoint molecules such as CD274 (PD-L1) and PDCD1 (PD-1).

These findings suggest that high-risk LGGs may adopt immune

evasion strategies through checkpoint pathway modulation and

TME remodeling, thereby dampening antitumor immune

responses and contributing to unfavorable clinical outcomes.
Estimation of metal-based gene score in
immunotherapy response

To our best knowledge, no research work has been previously

reported on metal-immunity interactions, including Fe and Cu

deficiency. The role of metal-dependent apoptosis in immune-

oncology has hardly been investigated. To better understand the

relationship between metal-gene scores and immunotherapeutic

responses, we evaluated predicted immunotherapy responsiveness

using transcriptome data from patients with LGG using the Tumor

Immune Dysfunction and Exclusion (TIDE) method. According to

the results, the high-risk group had a much higher TIDE score than

the low-risk group, which may indicate the lower-risk group is

benefited more from immunotherapy. The TIDE, dysfunction and

exclusion scores showed significant differences: individuals in the

low-risk group scored lower on exclusion and higher on

dysfunction (Figures 4A–C). However, the low-risk group had a

higher Microsatellite instability (MSI), representing a better

prognosis (Figure 4D). Subsequently, the TIDE algorithm

classified the patients as responder and non-responders, revealing

once more an intriguing correlation between immunotherapy

responsiveness and a lower metal-gene score (Figures 4E, F).

These findings provide insights into the relationship between

metal-gene interactions and the responsiveness of LGG patients

to immunotherapy.
Estimation of metal-based gene score in
chemotherapy response

To determine the value of the metal-gene score as a biomarker

for anticipating chemotherapeutic responsiveness in LGG patients,

we assessed the association between our risk model and the
frontiersin.org
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sensitivity of prevalent chemotherapeutic agents. This analysis

involved analyzing the Half-maximal inhibitory concentration

(IC50) values through the utilization of the “oncoPredict” R

package, differentiating between the high-risk and low-risk

cohorts. Different agents used in the clinic for cancer and
Frontiers in Immunology 08
specifically for LGG including cisplatin, imatinib and vinblastine

showed consistently higher sensitivity in the lower group. Only

gefitinib had higher IC50 values in the high-risk group which makes

a clear distinction between the groups and provides one new door of

specific drug for the patients of high-risk (Figure 5).
FIGURE 3

Immune correlation with Metal-genes scores and cancer stem cell index. GSEA reveals the significant GOBP and HALLMARK terms enriched in the
High and Low risk Group (A, B). Correlation between MBFCG score and TMB. High and low risk difference based on TMB (C, D) and survival of the
patients based on high and low TMB (E). Comparison of Immune Score, Stromal score and ESTIMATE score between the two risk group (F–H).
Analysis of differences in immune cell abundance between risk groups using MCP counter (I). Expression level of immune checkpoints of risk
groups, *p<0.05, **p<0.01, ***p<0.001 (J).
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To assess the predictive performance of the MBFCGs model, we

constructed a nomogram integrating clinical parameters with the risk

score and evaluated its accuracy across multiple cohorts. Univariate

and multivariate Cox regression analyses were conducted to assess

the independent prognostic value of the MBFCG risk score alongside

clinical parameters. In TCGA dataset univariate analysis identified

age, type, IDH status, histologic grade, and the MBFCG risk score as

significant predictors of OS all p< 0.001 (Figure 6A). Similarly, in

multivariate analysis, the MBFCG risk score remained an

independent prognostic factor (p < 0.001), even after adjusting for

age, tumor type, and histological grade (Figure 6B). Finally, the

overall survival probabilities at 1, 3, and 5 years were predicted by

the nomogram using the biomarkers Histological grade, Age, and

score expression levels, contributing to the total score (Figure 6C).

To assess the predictive accuracy for prognosis, AUC values

were used to assess the model’s discriminative performance. In the

TCGA dataset the accuracy of AUC for 1-, 3-, and 5-year were 0.87,

0.88, and 0.8, respectively (Figure 6D). It is noteworthy that the

model demonstrated robust predictive capability in the CGGA1
Frontiers in Immunology 09
cohort (AUC > 0.75) (Figure 6F), and in the CGGA2 cohort (AUC >

0.7) (Figure 6H). Calibration plots further demonstrated a high

degree of agreement between the model predicted capabilities and

observed outcomes, as depicted in (Figures 6E, G, I).
MBFCGs correlation with immune
infiltrates and immune checkpoint

Given the distinct immune characteristics observed in high and

low metal-gene score, we delved into the association between metal-

gene score and immune infiltration. We further explored the

correlation of immune infiltration and immune and immune

checkpoints with 3 genes of metal-genes related prognostic

models (Figure 7A). The metal-gene score showed a negative

correlation with activated dendritic cells, but a positive

correlation with macrophages M0, neutrophils, and T cells with

CD memory activation (Figures 7B–E). We also investigated the

connection between metal-gene score and ICGs, since it has been
FIGURE 4

Estimation of Metal-based prognostic model in immunotherapy response. TIDE scores difference in between both risk groups (A). Difference in
dysfunction score between high and low risk groups (B). Difference in exclusion between two risk groups (C). Representing difference in MSI
between two risk groups (D). TIDE value and the proportion of clinical response in the low and high-risk group of TCGA cohort (E, F). Specifically,
**: represents a p-value < 0.01, and ***: represents a p-value < 0.001. ****: represents a p-value < 0.0001).
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demonstrated that ICG expression levels are correlated with the

therapeutic benefit of checkpoint blockade immunotherapy

(Supplementary Table 4). A noteworthy association was

discovered between the majority of the ICGs and the three genes.

The metal-gene score was shown to be negatively correlated with

VTL9, SIRPA, and CD47; nevertheless, the high-risk patient

showed an increase in the expression level of 69 ICGs, including

CD276, BTN2A2, PDCDILG2, CD274, and CD276 (Figure 7F).
Immunohistochemistry of BACH1

IHC analysis of clinical specimens was conducted to explore

BACH1 expression. To achieve this, we developed a monoclonal
Frontiers in Immunology 10
antibody (mAb) targeting human BACH1. Interestingly, all the

samples found to have the Positive expression of BACH1.

Particularly, patients were categorized into three groups based on

the intensity of staining such as +weak, +-++moderate, and ++strong.

Out of 19 samples 14 found to be + (74%) weak, 2 samples had a +-+

+ moderate (10%) and 3 samples showed strong staining intensity of

++(16%). Overall, the IHC result indicates it as a new biomarker for

LGG patients for the further confirmation (Figure 7G).
Discussion

The term “ferroptosis” was coined in 2012, and there has been

observed an exponential growth in ferroptosis research in recent
FIGURE 5

Prediction of therapeutic sensitivity in MBFCG high and low risk for the TCGA patients. Differences in estimated IC50 values of common drugs for
high and low risk groups. (A–H) show the elevated level of IC50 in low-risk group indicating lower predicted drug sensitivity. (I) Representing the
Gefitinib only shows the lower sensitivity to low-risk group.
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FIGURE 6

Establishment of nomogram and independent prognostic analysis. (A, B) Univariate and Multivariate Cox regression analysis of LGG and the clinical
characteristic in the TCGA cohorts. (C) A nomogram was developed to predict 1-,3- and 5-year overall survival ability of LGG training cohort.
(D) ROC curves showed the prognostic performance of the model in the TCGA cohort. (E) The calibration curves quantified the correlation between
the model’s anticipated and actual results for the TCGA cohort. (F) ROC curves demonstrated the model’s prognostic performance in the CGGA1
cohort. (G) The calibration curves assessed the correlation between the model’s anticipated results and the observed results for the cohort known as
CGGA1. (H) ROC curves demonstrated the model’s prognostic performance in the CGGA2 cohort. (I) The calibration curves assessed the
correspondence between the model’s anticipated and observed results for the CGGA2 cohort. Specifically, ***: represents a p-value < 0.001).
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years. Increasing evidence indicates that ferroptosis may play a

significant physiological role in both immunity and tumor

suppression (12, 21). Additionally, a growing body of research

indicates that copper plays a critical role in processes such cancer

spread, tumor angiogenesis, and cell proliferation (22, 23).

Numerous studies have delved into cuproptosis and ferroptosis in

the context of cancer. However, the collective impact on cancer,

particularly on LGG, remains incompletely characterized.

Consequently, the role of the metal-genes score in the
Frontiers in Immunology 12
development of the TME and its potential therapeutic significance

remains unclear. Hence, it is reasonable to assume that a

comprehensive assessment of metal-dependent apoptosis gene

status could optimize therapeutic outcomes and facilitate the

development of synergistic treatment approaches.

To enhance the evaluation of metal-gene patterns in individual

LGG patients, a comprehensive analysis of metal-related genes was

conducted (Supplementary Tables 1, 2). This led to the

identification of three key metal genes BACH1, CDCA3, and
FIGURE 7

Relationships between immune infiltration and ICGs in LGG and the MBFCG score. (A) Relationships in the metal-based prognostic model between
three genes and immune cell abundance. (B–E) Correlations between the MBFCG score and immune cell abundance. (F) ICG expression
correlations with three genes in the metal-based prognostic model. (G) IHC analysis of BACH1expression in human LGG samples.
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TIMP1 from which a predictive metal-gene-related prognostic

model was constructed. Using lasso-cox risk scores, patients were

stratified into high and low-risk groups. Notably, the low-risk group

exhibited significantly longer overall survival time, consistently

validated across both CCGA cohorts. This suggests that a high-

risk score may serve as an indicator of an unfavorable prognosis.

The roles of our identified metal-related genes, BACH1, CDCA3,

and TIMP1, were thoroughly examined in the context of

previous studies.

BACH1, a CNC-bZip transcription factor (24), regulates iron-

related genes and promotes breast cancer metastasis (25). In

glioblastoma, elevated BACH1 correlates with an immunosuppressive

microenvironment, suggesting therapeutic potential (26). However,

BACH1’s role in LGG remains unclear, necessitating further

exploration. Often overexpressed in tumor tissues, CDCA3 is linked

to carcinogenic qualities in a number of malignancies, such as gastric

(27), non-small-cell lung (28), prostate (29), and colorectal (30).

Numerous studies consistently show significant TIMP1 upregulation

across various cancers (31, 32). Meta-analyses reveal plasma TIMP1 as

an independent prognostic marker in certain cancers (33, 34). Notably,

in LGG, elevated TIMP1 expression correlates with a poorer

prognosis (35).

In our study, GSEA enrichment analysis unveiled the pivotal

involvement of biological processes in distinguishing between

patients with high and low-risk metal-gene scores. The GO

analysis elucidated the high expression of the tricarboxylic acid

cycle (TCA) within the high-risk group. The significance of the

TCA cycle was found to be intricately linked with the cuproptosis

type of cell death (7). Furthermore, HALLMARK enrichment

analysis demonstrated that the high-risk group predominantly

exhibited enrichment in hedgehog signaling and KRAS signaling.

As a result, we postulate that the changes in survival outcomes

between the two groups may be attributed to the activation of

hedgehog and KRAS signaling pathways (Supplementary Table 3).

Despite a decade of progress in LGG therapy, significant gaps

persist, with treatment response heterogeneity. Standard

multimodal approaches (36) face challenges in addressing diverse

patient outcomes (37). Mansouri et al.’s study highlights MGMT

promoter methylation’s predictive accuracy for temozolomide

chemotherapy outcomes (38). Further exploration of intratumor

heterogeneity and TMB’s impact on prognosis is crucial. The

potential benefit of IDH1/2 mutations in upregulating VEGF and

HIF-1a is noteworthy (39). Consistent with previous studies, our

data unveils a notable contrast in TMB between metal-gene score

subgroups. Patients, in the high-risk group, show the mutation of

TP53, EGFR, and PTEN are observed (Supplementary Figure 1),

ultimately known to correlate with poorer clinical outcomes (40).

We continued our study to evaluate the efficacy of immunotherapy

in various LGG subgroups. Our research showed that there were

differences in 38 immunological checkpoint expression between the

two groups. Interestingly, most immunological checkpoints

including (LAG3, CTLA4, CD274, and PDCD1) were over-

expressed in the high-risk group. In contrast, the low-risk group

only showed increased expression of IDO1, TNSF9, and CD160.
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This suggests a prevalence of multiple inhibitory mechanisms

within the high-risk group, thereby emphasizing the potential

efficacy of targeted immunotherapeutic interventions specifically

tailored for high-risk group of LGG. Understanding these distinct

immunological profiles could significantly inform prognosis and

treatment strategies, potentially leading to improved survival

outcomes for patients with LGG.

Furthermore, the TME features showed that a higher metal-

gene score was correlated with a higher stromal score and a higher

ESTIMATE score. An increasing body of research highlights the

critical function of various immune cells in the immune response

against LGG (41). The three metal-gene profiles also showed a

strong correlation with immune cells. Additionally, a higher metal-

gene score showed a negative correlation with active dendritic cells

alone, but a positive association with neutrophils, activated T cells,

and macrophages M0. Targeting these immune checkpoints may

assist patients even more for successful immunotherapy techniques,

given the possible association between the aforementioned hallmark

genes and immune checkpoints. Furthermore, drug sensitivity

analysis enabled the metal-genes risk model to predict candidate

drugs. The majority of drug candidates, such as cisplatin, gefitinib,

and vinblastine, show promise in the low-risk group, suggesting a

higher likelihood of treatment response and improved

clinical outcomes.

Immune infiltration profiling revealed a substantial enrichment

of T helper cells, macrophages, neutrophils, and NK cells in the

high-risk group, indicating an inflamed yet immunologically

dysfunctional TME. While such immune-rich TMEs often suggest

heightened immunogenicity, the concurrent upregulation of

inhibitory immune checkpoints including PDCD1, CD274,

CTLA4, and LAG3 points to a state of immune exhaustion.

Although immune cells are actively recruited, their effector

functions appear attenuated by checkpoint-mediated suppression.

Additionally, the elevated presence of M0 macrophages and

neutrophils likely contributes to the establishment of an

immunosuppressive niche. Particularly, TIMP1 has been

implicated in promoting pre-metastatic niche formation via

neutrophil recruitment through the SDF1/CXCR4 axis (42).

CDCA3 expression correlates with immune exhaustion markers

such as PD-1 and CTLA-4, and is associated with increased

immune infiltration and poor outcomes in renal and lung cancers

(43, 44). Moreover, BACH1, particularly through the BACH1-IT2/

miR-4786/Siglec-15 axis, has been shown to mediate immune

evasion by enhancing Siglec-15 expression and suppressing

immune activation (45). Finally, we created a quantitative

nomogram for prognostic classification in LGG patients to

improve performance and streamline the implementation of the

metal-gene score.

Nomograms have emerged as powerful statistical tools for

predicting patient outcomes across various cancers. By integrating

multiple clinical or molecular variables, nomograms enable

individualized risk stratification and often surpass traditional

stage-based systems in predictive accuracy. Their application

mitigates subjective bias and offers clinical guidance, particularly
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in cases where the potential benefit of additional treatment remains

uncertain (46–49).

In recent years, the prognostic value of nomograms has

garnered increasing attention in LGG research. Gittleman et al.

developed a nomogram using TCGA data, including age, WHO

grade, Karnofsky performance status, and IDH-based molecular

subtype; this model was externally validated in the Ohio Brain

Tumor Study cohort, offering reliable individualized survival

estimates (50). Similarly, Han et al. adapted and validated a

refined version in a large Chinese Glioma Genome Atlas (CGGA)

cohort (n = 582), incorporating age, tumor grade, molecular

subtype, and post-operative treatment, confirming its applicability

in Asian populations (51). More recently, Guo et al. introduced a

DNA methylation-driven nomogram combining epigenetic

markers (ARL9, CMYA5, STEAP3) with clinico-molecular

features (IDH1 mutation, age, sex), which demonstrated

outstanding prognostic performance (AUC = 0.93) in both TCGA

and external CGGA validation cohorts (52). These models

underscore the increasing sophistication and predictive accuracy

of nomogram-based tools in LGG. Extending these findings, we

conducted a systematic analysis of MBFCGs in LGG biology and

established a novel significant risk model based on three MBFCGs

genes (BACH1, CDCA3 and TIMP1). These uncovered distinct

pathways, immune infiltrative characteristics and the better

prognostic model.

This model demonstrated strong predictive accuracy, with AUC

for 1-, 3-, and 5-year were 0.87, 0.88, and 0.8, for 1-, 3-, and 5-year

survival, respectively in the TCGA dataset. It is noteworthy that the

model demonstrated robust predictive capability in the CGGA1

cohort (AUC > 0.75), and in the CGGA2 cohort (AUC > 0.7).

Notably, the inclusion of BACH1 as a novel biomarker add

depth to our understanding of LGG pathogenesis and offer a

potential avenue for targeted therapeutics interventions.

MBFCGs related genes are gaining traction as clinically relevant

markers in glioma stratification. The recent identification of

cuproptosis as a distinct form of programmed cell death

characterized by copper-induced lipoylated protein aggregation

and proteotoxic stress offers novel mechanistic insights that

extend beyond traditional apoptosis or necroptosis (7). Similarly,

emerging clinical data suggest that dysregulation of copper

homeostasis and cuproptosis-related pathways can influence

treatment sensitivity and tumor immune evasion, highlighting

cuproptosis as a potential therapeutic target in cancers such as

esophageal carcinoma (18). Although the clinical application of

cuproptosis-related biomarkers remains in its early stages, emerging

evidence suggests that key regulators such as FDX1 hold promise as

prognostic indicators and therapeutic targets in cancer. These

biomarkers have the potential to guide patient stratification and

inform personalized treatment strategies by predicting tumor

sensitivity to copper-modulating therapies. Nonetheless, further

clinical validation and standardized testing protocols are

necessary before widespread implementation in routine practice

can be realized (7).
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In our study, the MBFCGmodel, by integrating both ferroptosis

and cuproptosis genes, may serve as a biomarker tool to stratify

LGG patients into immunotherapy-responsive and chemotherapy-

sensitive subtypes. Given the differential TMB levels, immune

checkpoint profiles, and drug response signatures observed

between MBFCG-defined risk groups, the model could be applied

in routine clinical workflows for risk stratification and therapeutic

planning. Further validation in prospective, multi-center cohorts

and clinical trials evaluating MBFCG targeting agents will be

essential to fully translate these biomarkers into practice.

In conclusion, our findings provide a promising framework for

guiding personalized therapeutics strategies in LGG patients, paving

the way for more personalized and effective treatment.

This study also has few limitations. The MBFCGs risk model

was constructed using retrospective data derived from publicly

available cohorts, which may inherently introduce selection bias.

Consequently, its validation in prospective, multi-center cohorts

and clinical trials evaluating MBFCG targeting agents will be

essential to fully translate these biomarkers into practice.

Furthermore, our findings highlight the potential functional role

for MBFCGs genes, mechanistic confirmation through in vivo and

in vitro assay remains essential to full elucidate their biological

relevance in LGG.
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