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Sepsis is a life-threatening condition caused by a dysregulated host response to 
infection and is one of the leading causes of morbidity and mortality worldwide. 
Glycosylation is one of the key modes of protein modification, affecting protein 
folding, transportation, and localization. Glycosylation patterns are closely 
related to sepsis, but their specific impact still needs further investigation. This 
study explored the role of glycosylation-related genes in sepsis through 
bioinformatics analysis and machine learning, and validated the expression 
value of the key genes. We identified 38 differentially expressed glycosylation
related genes in sepsis datasets, which divided sepsis patients into two subgroups 
with different survival outcomes, thus highlighting their prognostic value. 
Subsequently, we constructed prognostic models using various machine 
learning methods, classifying patients into high-risk and low-risk groups with 
significantly different survival rates. We conducted biological analysis of the key 
genes in the model at the single-cell level and also validated the expression of 
these key genes in sepsis patient samples. Our study not only enhances the 
understanding of sepsis glycosylation but also provides a new strategy for clinical 
diagnosis and prognosis. 
KEYWORDS 
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Introduction 

Sepsis is a life-threatening condition caused by a dysregulated response to infection, 
leading to multiple organ dysfunction with high morbidity and mortality rates (1). Despite 
significant advances in modern medicine, the early diagnosis and effective treatment of sepsis 
remain major challenges for the global medical community (2, 3). In recent years, the 
development of molecular biology techniques has provided researchers with a deeper 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1608082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1608082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1608082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1608082/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1608082&domain=pdf&date_stamp=2025-07-02
mailto:drlijie@sina.com
mailto:Fengxue_Zhu@126.com
https://doi.org/10.3389/fimmu.2025.1608082
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1608082
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2025.1608082 
understanding of the pathophysiological mechanisms of sepsis. Large-
scale studies in genomics, proteomics, and metabolomics have 
identified numerous molecular markers and potential therapeutic 
targets associated with sepsis (4, 5). However, due to the complex 
and highly heterogeneous nature of sepsis, finding a universal 
treatment approach seems impractical (6). Therefore, continuous 
exploration of new disease subtypes and therapeutic targets is 
crucial for improving the prognosis of sepsis patients. 

Among various research directions, protein glycosylation has 
gained increasing attention as a critical form of post-translational 
modification due to its pivotal roles in regulating cell recognition, 
signal transduction, and immune responses (7). Glycosylation refers 
to the enzymatic process in which sugars (monosaccharides or 
oligosaccharides) are covalently attached to proteins, lipids, or other 
organic molecules (8). It is one of the most common and significant 
post-translational modifications in living organisms (7). The 
primary types of glycosylation include N-linked glycosylation and 
O-linked glycosylation (9–11). Beyond these structural functions, 
glycosylation actively participates in regulating immune responses, 
including antigen presentation, cytokine signaling, receptor 
activation, and leukocyte trafficking (12). For instance, alterations 
in glycosylation can affect the binding affinity of immunoglobulins, 
the signaling strength of T cell receptors, and the expression of 
selectins that guide leukocyte migration. In the context of sepsis, 
aberrant glycosylation patterns have been increasingly recognized 
as contributors to immune dysregulation. Studies have shown that 
systemic inflammation during sepsis is associated with altered 
glycosylation of immunoglobulins, complement proteins, and 
mucins, which may exacerbate tissue damage and impair host 
defense (13–15). 

However, research on glycosylation in sepsis is currently 
limited, with many studies not yet providing a holistic view of its 
multifaceted mechanisms. Current research primarily focuses on 
specific glycosylation sites or individual forms of glycosylation, 
limiting the comprehensive understanding of glycosylation’s 
complex mechanisms in sepsis (14). Additionally, the significant 
individual variability among sepsis patients and the limited sample 
sizes in existing studies constrain the generalizability and 
reproducibility of the findings (14). Furthermore, although the 
potential impact of glycosylation on clinical outcomes in sepsis is 
increasingly recognized, its precise molecular mechanisms remain 
to be thoroughly investigated (14, 15). These limitations underscore 
the necessity for more systematic and comprehensive studies to 
elucidate the role and clinical significance of glycosylation in sepsis. 

This study utilizes publicly available datasets and clinical 
samples to conduct large-scale bioinformatics analyses and 
validate gene expression. It aims to develop a glycosylation-based 
prognostic model for sepsis using multiple machine learning 
approaches. Moreover, it seeks to evaluate the diagnostic efficacy 
of these prognostic factors. Through systematic analysis, the goal is 
to identify key glycosylation modifications and genes in sepsis. This 
research  not  only  enhances  the  understanding  of  the  
pathophysiological mechanisms of sepsis but also provides new 
insights and potential targets for clinical diagnosis and treatment, 
ultimately improving the prognosis for sepsis patients. 
Frontiers in Immunology 02 
Materials and methods 

Data acquisition 

We obtained 181 glycosylation-related genes from the 
GlycoGene DataBase (GGDB) database (https://acgg.asia/ggdb2/). 
We downloaded sepsis-related datasets from the Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) (16): the 
training cohort GSE65682, which consists of transcriptome 
sequencing data and corresponding follow-up data from whole 
blood samples isolated from 42 healthy controls and 760 sepsis 
subjects. Additionally, the datasets GSE54514 and GSE95233, which 
include follow-up information, were used to validate the prognostic 
value of the predictive model. Furthermore, six other sepsis-related 
datasets (GSE131761, GSE137340, GSE236713, GSE28750, 
GSE570653, GSE69528) were chose to confirm the diagnostic 
value of the model. To further investigate the underlying 
mechanisms, we downloaded GSE1754538 from GEO, which 
contains single-cell RNA sequencing (scRNA-seq) data from 
whole blood samples collected from 5 healthy controls and 4 
sepsis donors. To validate our findings, GSE176363 was enrolled, 
which contains 2 healthy controls and 10 sepsis donors. The 
scRNA-seq data was processed using Seurat for data loading, 
quality control, and dimensionality reduction. Cell type 
annotation was performed using the “SingleR” package and cell 
specific markers were obtained via the FindAllMarkers function to 
validate the cell type annotation results. 
Study population 

We prospectively enrolled 30 patients diagnosed with sepsis and 
20 healthy controls as validation dataset. Patients were recruited 
from the intensive care units of Peking University People’s Hospital 
from January 2023 to April 2024. The inclusion criteria were based 
on the Sepsis-3.0 definitions, which require a suspected infection 
plus a Sequential Organ Failure Assessment (SOFA) score of 2 or 
higher. Healthy controls were selected from individuals undergoing 
routine health check-ups who did not have any signs or symptoms 
of infection or inflammation. 
Identification of hub glycosylation-related 
genes 

We used the “limma” package to identify genes differentially 
expressed between normal and sepsis patient blood samples (P < 
0.05 & |LogFC| > 1) (17). From these, we selected glycosylation
related genes for further analysis. These selected genes underwent 
functional enrichment analysis using the Metascape database 
(www.metascape.org/) (18), with P < 0.05 considered significant. 
Finally, we used univariable Cox regression analysis to identify 
glycosylation-related genes significantly affecting sepsis prognosis, 
designating them as Hub-Glys. 
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Glycosylation-related patient stratification 
and survival analysis 

We used the “ConsensusClusterPlus” package in R to perform 
consensus clustering based on Hub-Glys (19). The optimal number 
of clusters was determined by analyzing the cumulative distribution 
function (CDF) curve. Subsequently, we used the “prcomp” 
function in R for principal component analysis (PCA) to confirm 
the reliability of the clustering. Kaplan-Meier (KM) survival 
analysis and log-rank tests were conducted using the survival 
package in R. The survival differences between different groups 
were analyzed, and the survival status of all patient samples within 
25 days was displayed. Immediately after, we identified 
glycosylation-related differentially expressed genes (Gly-DEGs) 
through differential analysis between diverse sepsis groups. These 
candidate genes were then subjected to gene set enrichment analysis 
(GSEA) using the clusterProfiler 4.8.2 package in R (20), with the 
Reactome pathway database for functional enrichment. A P value < 
0.05 was considered significantly enriched. 
Establishing prognostic model using 
multiple machine learning approaches 

Based on GSE65682 cohort, we used three machine learning 
a lgor i thms  to  se lec t  the  prognost ic  Gly-DEGs.  The  
“randomForestSRC” package in R was obtained for random 
survival forest (RSF) analysis (21). An ensemble of 1000 survival 
trees with default parameters was conducted and the out-of-bag 
(OOB) error was used to assess model stability. Variables were 
ranked by minimal depth and variable importance (VIMP). Genes 
with positive VIMP and consistent presence across trees were 
retained as candidate prognostic features. We performed CoxBoost 
algorithm analysis (22), via the CoxBoost package with 10-fold cross-
validation to determine the optimal number of boosting steps. Genes 
with non-zero coefficients were selected. The “glmnet” package for 
The LASSO regression analysis (23) was conducted using 10-fold 
cross-validation to determine the optimal l. Genes with non-zero 
coefficients at lmin were retained. To select genes for the final 
prognostic model, we applied LASSO, CoxBoost, and RSF to the Gly-
DEGs. Selected genes filtered by at least two of the three algorithms 
were considered robust predictors and included in the final 
multivariable Cox regression analysis to establish the Sepsis Risk 
Score (GRS). This integrative strategy reduced model overfitting and 
emphasized features supported across multiple selection methods. 
Based on the GRS, patients were stratified into high and low-risk 
groups according to the median GRS value, and their prognostic 
differences were analyzed in GSE65682 and validated in the 
GSE54514 as well as GSE95233 datasets. 
Meta-analysis 

To enhance the clarity of the diagnostic and prognostic value of 
the GRS, we utilized the “meta” package in R to combine the Odds 
Frontiers in Immunology 03 
Ratios (OR) and Hazard Ratios (HR) obtained from multiple 
studies. Depending on the degree of heterogeneity determined by 
the I2 statistics, we extracted and pooled the data from each study 
using either a fixed-effect or a random-effects model. 
Assessment of GRS with clinical 
characteristics and diagnostic efficacy 

We utilized the heatmap package to visualize the distribution of 
clinical characteristics within the GRS groups from the GSE65682 and 
GSE95233 datasets. Additionally, we employed univariable and 
multivariable Cox regression to select independent prognostic 
factors, thereby assessing the independent prognostic performance 
of the GRS. Furthermore, we evaluated the diagnostic capability of the 
GRS and its model genes for sepsis by using the “pROC” package to 
plot Receiver Operating Characteristic (ROC) curves across eight 
datasets (24). 
Single cell RNA-seq data analysis 

We used the “Seurat” R package to preprocess and analyze 
scRNA-seq data. Normalization was performed using the 
“NormalizeData” function with the “LogNormalize” method, and 
the data was converted into a Seurat object. For quality control, we 
calculated the percentages of mitochondrial and ribosomal genes, 
excluding cells with fewer than 200 or more than 3000 genes, and 
those with over 20% ribosomal RNA content. “Harmony” function 
was applied to correct for potential batch effects. Since all scRNA
seq samples were derived from the same GEO dataset (GSE175453) 
with unified experimental conditions, no significant batch effect was 
observed based on UMAP distribution, and batch correction was 
not applied. We selected the top 3000 variable features using the 
“FindVariableFeatures” function and standardized the scRNA-seq 
data. The “ScaleData” and “RunPCA” functions were used to obtain 
principal components (PCs), followed by dimensionality reduction 
using Uniform Manifold Approximation and Projection (UMAP). 
Cell types and subtypes were automatically annotated using the 
“SingleR” package with the HumanPrimaryCellAtlasData as 
reference, then further validated using cell-type–specific 
differential gene expression analysis with FindAllMarkers 
function. Based on these DEGs and their functional relevance, we 
confidently validated the major cell types. This data-driven 
approach provides robust support for cell identity assignment and 
avoids potential circularity associated with relying solely on 
predefined marker lists. 
Real-time quantitative polymerase chain 
reaction 

Total RNA was extracted using the TRIzol™ Plus RNA 
purification kit and reverse transcribed using a reverse 
transcription kit. RT-QPCR was performed on a AriaMx Real-
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time PCR System using SYBR® Green real-time PCR master mix. 
Gene expression was analyzed using the 2DDCt method with the 
threshold cycle (Ct). Data were normalized to the expression of 
GAPDH, and reported as expression in controls set to 1. The primer 
sequences are listed in the Supplementary Table 1. 
 

Statistical analysis 

All statistical analyses were conducted using R software 
environment (version 4.3.1). The Wilcoxon rank-sum test was 
used to compare differences between two groups. The Kruskal-
Wallis test was employed to evaluate differences among more than 
two groups. Spearman’s correlation was utilized for correlation 
analysis. A P-value of less than 0.05 was considered statistically 
significant. The significance levels were denoted as *p < 0.05; **p < 
0.01; ***p < 0.001. 
Results 

Identification of glycosylation-related 
differential genes 

The workflow of the present study is illustrated in Figure 1. To  
identify potential glycosylation-related biomarkers in sepsis, we first 
screened for differentially expressed genes using the “limma” R 
package on the GSE65682 dataset, which contains RNA-seq data 
from peripheral blood of sepsis patients and normal controls. This 
identified 2,774 differentially expressed genes, with 952 being 
upregulated and 1,822 being downregulated in sepsis patients 
(Figure 2A). We further screened for glycosylation-related genes 
based on the GGDB database, identifying 38 differentially expressed 
genes (Figure 2B). Among these, 23 were upregulated and 15 were 
downregulated in sepsis patients (Figure 2C). Functional 
enrichment analysis using the Metascape database revealed that 
these 38 genes were significantly enriched in multiple glycosylation
related pathways (Figure 2D). 
Identification of sepsis subtypes with 
different glycosylation states 

To identify Hub-Gly affecting patient prognosis, we conducted 
a univariable Cox regression analysis, selecting 8 Hub-Glys with 
significant prognostic impact (Figure 3A). Based on these Hub-

Glys, consensus clustering analysis was performed, dividing the 802 
samples in GSE65682 into two subtypes (Subtype1 and Subtype2) 
(Figure 3B). PCA showed clear discrimination between these 
subtypes (Figure 3C). Disease status distribution indicated that 
healthy patients were concentrated in Subtype1, with a significant 
difference in sepsis status between the subtypes (p=1.15e-30) 
(Figure 3D). After excluding healthy and duplicate samples, 
Kaplan-Meier survival analysis was conducted on 479 sepsis 
patients. The survival curves demonstrated a significant difference 
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in  prognosis,  with  Subtype1  patients  exhibiting  better  
outcomes (Figure 3E). 
Establishment of prognostic models based 
on GRS 

We conducted differential expression analysis between the two 
subtypes and identified 100 Gly-DEGs (Figure 4A). Reactome 
pathway enrichment analysis revealed that these Gly-DEGs are 
significantly enriched in glycosylation-related pathways, such as 
REACTOME  O-Linked  Glycosylation  (Figure  4B) and

REACTOME O-Linked Glycosylation of Mucins (Figure 4C). 
Using the training set GSE65682, we applied multiple machine 

learning algorithms to select key glycosylation-related prognostic 
factors from these 100 Gly-DEGs. The Lasso algorithm identified 18 
important prognostic factors (The full names of all gene 
abbreviations in this article can be found in Supplementary 
Table 2): MAN1A1, EXT2, GALNT11, CD24, EXT1, MOGS, 
HMMR, HIF1A, CD44, SELL, MUC1, SDC4, PDGFB, SIGLEC7, 
GALNT10, GCNT2, HBEGF, TNF (Figure 4D). The CoxBoost 
algorithm identified 20 important factors: MAN1A1, RPS6, EXT2, 
GALNT11, GALNT14, EXT1, MOGS, HMMR, FUCA1, AKT2, 
HIF1A, CD44, SELL, MUC1, SDC4, PDGFB, SIGLEC7, GCNT2, 
HBEGF, TNF (Figure 4E). The RSF algorithm identified 4 
important factors: MAN1A1, SELL, HMMR, TNFRSF25 
(Figure 4F). Integrating results from multiple algorithms 
enhances the stability of the prognostic model. Thus, we 
considered glycosylation-related prognostic factors selected by at 
least two algorithms as potential clinically relevant prognostic 
factors, yielding a total of 16 potential prognostic factors for 
sepsis (Figure 4G). Multivariable Cox regression analysis of these 
factors established the following sepsis prognosis model based on 
their coefficients: 

GRS = CD44*(-0.46) + EXT1*10.52 + EXT2* (-0.26) + 
GALNT11*(-0.16) + HIF1A*0.50 + HMMR*0.23 + MUC*10.16 + 
SDC*40.20 + SELL*(-0.42), 

where 6 factors demonstrated independent prognostic ability: 
CD44, EXT1, EXT2, HIF1A, HMMR, SELL (Figure 4H). Their 
functions in immune regulation or sepsis reported by previous 
literatures were summarized in Supplementary Table 3. 
Validation of GRS reliability 

To verify the reliability of the GRS in predicting patient 
prognosis, we conducted external validation using the datasets of 
GSE65682, GSE95233 and GSE54514. Sepsis patients were divided 
into high GRS and low GRS risk groups based on the median GRS 
value in the training set GSE65682 (Figure 5A). Significant survival 
differences were observed between the high and low GRS groups in 
GSE65682 (p<0.0001) (Figure 5B), GSE95233 (P=0.011) 
(Figure 5C), and GSE54514 (p=0.0098) (Figure 5D). The bar 
chart revealed significant distribution differences in survival states 
between the high and low GRS groups. In the GSE65682 dataset, 
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High GRS group patients accounted for 75% of fatal cases, with a 
significant difference between groups (p=1.27e-08) (Figure 5E). In 
the GSE95233 dataset, High GRS group patients accounted for 76% 
of fatal cases, with a significant difference (p=0.04) (Figure 5F). 
Finally, in the GSE54514 dataset, High GRS group patients 
accounted for 80% of fatal cases, with a significant difference 
(p=0.01) (Figure 5G). 

To explore the distribution of clinical characteristics among 
patients with different GRS states, we created a heatmap of clinical 
information for dataset GSE65682 (Supplementary Figure S1A) and  
dataset GSE95233 (Supplementary Figure S1B). The results showed 
that GRS was significantly associated with ICU-acquired infection 
(p<0.01) and gender (p<0.05). Furthermore, to determine the 
Frontiers in Immunology 05 
independent prognostic ability of GRS, we performed univariable 
Cox regression analysis (Supplementary Figure S1C) and

multivariable Cox regression analysis (Supplementary Figure S1D) 
in GSE65682, incorporating GRS and clinical characteristics. The 
results indicated that GRS could serve as an independent prognostic 
factor  for sepsis patients.  This  finding was further validated externally 
in GSE95233 (Supplementary Figures S1E, F), confirming its 
independent prognostic capability. To evaluate the generalizability 
and discriminative power of predictive factors across datasets, we 
calculated the C-index for each model in these three independent 
sepsis-related cohorts. As shown in Supplementary Figure S3A, C
index values varied across both datasets and predictors, reflecting 
differences in model robustness and cohort characteristics. GRS 
FIGURE 1 

Workflow of this study. 
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achieved high C-index values across multiple datasets, indicating 
strong and stable discriminatory performance. 
Diagnostic capability of GRS for sepsis 
patients 

To further investigate the role of GRS in diagnosing sepsis, we 
generated ROC curves using GRS across multiple datasets containing 
both healthy individuals and sepsis patients. The results showed that 
the AUC values for GRS were consistently around 0.80, indicating 
excellent diagnostic capability (Figures 6A–H). This suggests that GRS 
is a reliable tool for diagnosing sepsis. Additionally, a meta-analysis 
revealed that the summary OR for GRS was 24.89 (95% CI = 2.66
Frontiers in Immunology 06
232.95) (Figure 6I). We also assessed the diagnostic performance of six 
independent prognostic factors. Supplementary Figures S2A-F show 
that CD44, EXT1, EXT2, HIF1A, HMMR, and SELL all demonstrated 
good diagnostic performance. 
Glycosylation characteristics of sepsis at 
the single-cell level 

To reveal glycosylation differences between sepsis patients and 
healthy individuals at the single-cell level, we analyzed 21,644 cell 
samples from four sepsis patients and 27,808 cell samples from five 
healthy controls. No obvious batch effects were observed in tSNE 
plot of different samples (Supplementary Figure S3B). We identified 
FIGURE 2 

Identification of glycosylation-related differential genes. (A) Volcano plot of differential analysis between normal and sepsis patients. (B) Venn 
diagram for the selection of glycosylation-related differential genes. (C) Heatmap of gene expression for 38 glycosylation-related differential genes. 
(D) Functional enrichment diagram for 38 glycosylation-related differential genes. 
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seven cell types in both normal and sepsis samples: hematopoietic 
stem cells (HSCs), monocytes, platelets, T cells, natural killer (NK) 
cells, B cells, and neutrophils (Figures 7A, B). Cell-type–specific 
differential gene expression analysis validated the annotation results 
(Supplementary Table 4). 

We assessed the expression of six independent prognostic 
factors in these cell types and found varying levels of expression 
in all cell types except platelets (Figures 7C, D). Differential 
expression analysis showed that, except for CD44, the other five 
genes exhibited significant differences in monocytes (Figure 7E). All 
six genes showed significant differences in T cells (Figure 7F). In NK 
cells, HIF1A, HMMR, and SELL showed significant differences 
(Figure 7G). In B cells, CD44, EXT2, and HMMR were 
significantly different (Figure 7H). In HSCs, all genes except 
Frontiers in Immunology 07 
EXT2 and HMMR showed significant differences (Figure 7I). In 
neutrophils, HIF1A and SELL showed significant differences 
(Figure 7J). The details of Wilcoxon rank-sum test results were 
presented on Supplementary Table 5. To validate our findings, we 
applied the same analysis in GSE167363 (Supplementary Figures 
S3C, D, S4). Significant differences were also observed. Overall, the 
six independent prognostic factors showed significant differential 
expression in most major cell types, which may underlie their 
strong diagnostic capability. GSEA enrichment analysis revealed 
significant differences in the N-linked glycosylation pathway 
between normal and sepsis samples (Figure 7K). 

Aiming at the glycosylation-related immune dysfunction, we 
visualized the differentially expressed glycosylation-related genes 
and performed enrichment analysis among immune cell types 
FIGURE 3 

Identification of sepsis subtypes with different glycosylation states. (A) Forest plot of univariable Cox regression analysis. (B) Unsupervised clustering 
classifying all samples into 2 subtypes. (C) Principal component analysis of the samples. (D) Bar chart of the percentage distribution of disease status 
among subtypes. (E) KM survival curves for subtypes of sepsis patients. 
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(Figure 8A). Monocytes exhibited high expression of TIMP1, VIM, 
LGALS3, and LGALS1, enriched in pathways related to immune 
activation and antigen presentation, indicating glycosylation’s role 
in monocyte-driven inflammatory responses. T cells upregulated 
MYC and RPS6, enriched in cell cycle and lysosomal pathways, 
Frontiers in Immunology 08
suggesting glycosylation’s involvement in T cell proliferation and 
exhaustion priming. NK cells showed elevated expression of 
GNPTAB and KDELR2, with enrichment in N-glycan processing 
and pathogen response pathways, linking glycosylation to cytotoxic 
granule trafficking and effector function. B cells demonstrated ER-
FIGURE 4 

Establishment of prognostic models based on GRS. (A) Heatmap of Gly-DEGs between subtypes. (B) GSEA enrichment analysis of the O-Linked 
Glycosylation of Mucins pathway. (C) GSEA enrichment analysis of the O-Linked Glycosylation pathway. (D) Prognostic genes screened by the 
LASSO algorithm. (E) Prognostic genes screened by the CoxBoost algorithm. (F) Prognostic genes screened by the RSF algorithm. (G) UpSet plot of 
machine learning results. (H) Forest plot of the multivariable Cox regression analysis. 
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related enrichment in protein folding and retrograde transport, 
implicating glycosylation in antibody maturation. These findings 
reveal cell-type-specific glycosylation signatures that contribute to 
immune dysfunction in sepsis. Genes such as MYC (a transcription 
factor, TF), SELL, and LGALS3 (associated with cold shock 
domain-containing protein A) may act as upstream regulators or 
potential therapeutic targets in the context of glycosylation 
dysfunction related to sepsis. Then, we performed correlation 
analysis between six GRS genes and exhaustion markers in T cells 
(Figures 8B, C). We observed stronger correlations between 
glycosylation-related genes and T cell exhaustion markers in 
normal T cells compared to sepsis-derived T cells. This suggests 
Frontiers in Immunology 09
that glycosylation may normally act in coordination with 
exhaustion-related transcriptional programs, but this relationship 
is disrupted under septic conditions, possibly contributing to 
dysfunctional immune responses. 
Expression validation of key glycosylation
related genes in patient samples 

We enrolled 30 sepsis patients, with their clinical information 
listed in Supplementary Table 6. We validated the expression of key 
glycosylation-related genes in peripheral blood cells through PCR. 
FIGURE 5 

Validation of GRS reliability. (A) Ridge plot of GRS score distribution in the training and validation sets. (B) KM survival curves for high and low GRS 
sepsis groups in GSE65682. (C) KM survival curves for high and low GRS sepsis groups in GSE95233. (D) KM survival curves for high and low GRS 
sepsis groups in GSE54514. (E) Percentage distribution of survival states of high and low GRS groups in GSE65682. (F) Percentage distribution of 
survival states of high and low GRS groups in GSE95233. (G) Percentage distribution of survival states of high and low GRS groups in GSE54514. 
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The results showed that, compared with the healthy control group, 
the expression of EXT1, HIF1A and HMMR was upregulated in 
sepsis, whereas the expression of CD44, EXT2 and SELL was 
downregulated in sepsis group (Figures 9A–F). 
Discussion 

In recent years, the role of glycosylation in sepsis has garnered 
increasing attention. However, there has been no systematic study on 
glycosylation genes in sepsis to date. This study identified differentially 
expressed glycosylation genes associated with sepsis through 
bioinformatics analysis. Using consensus clustering methods, 
patients were classified into different subtypes, and survival analysis 
was employed to assess the prognostic value of these subtypes. 
Frontiers in Immunology 10 
Furthermore, machine learning techniques such as random forest, 
CoxBoost algorithm, and LASSO regression were used to identify key 
genes related to patient prognosis and to establish a GRS model. The 
reliability of the GRS model was validated using external datasets, and 
its diagnostic and prognostic value was examined through meta

analysis. Additionally, the study evaluated the relationship between 
GRS and clinical characteristics and analyzed the expression 
differences of GRS model genes at the single-cell level. Ultimately, 
our findings suggest that GRS is a promising tool for predicting the 
prognosis of sepsis. 

Sepsis exhibits a high degree of heterogeneity, making its 
diagnosis and treatment challenging (6). To better understand 
and address this complexity, researchers have postulated the 
concept of sepsis subtypes (25). These subtypes can be classified 
based on various biological characteristics, including genotyping 
FIGURE 6 

Diagnostic capability of GRS for sepsis patients. (A) ROC curve of GRS for diagnosing sepsis in GSE65682. (B) ROC curve of GRS for diagnosing 
sepsis in GSE54514. (C) ROC curve of GRS for diagnosing sepsis in GSE131761. (D) ROC curve of GRS for diagnosing sepsis in GSE137340. (E) ROC 
curve of GRS for diagnosing sepsis in GSE236713. (F) ROC curve of GRS for diagnosing sepsis in GSE28750. (G) ROC curve of GRS for diagnosing 
sepsis in GSE57065. (H) ROC curve of GRS for diagnosing sepsis in GSE69528. (I) Meta-analysis of the diagnostic efficacy of GRS for sepsis patients. 
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and immune status (25, 26). This study focuses on the analysis of 
glycosylation subtypes, a relatively new research perspective. 
Through our research, we discovered that specific glycosylation-
related gene expression patterns are significantly associated with the 
prognosis of sepsis patients. This suggests that glycosylation 
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subtypes may be a valuable classification tool for sepsis, aiding in 
identifying patient groups with different clinical presentations and 
prognoses. Additionally, these findings imply that interventions 
targeting specific glycosylation  pathways  may provide  new
strategies for sepsis treatment. 
FIGURE 7 

Glycosylation characteristics of sepsis at the single-cell level. (A) t-SNE plot of the distribution of various cell types in normal samples. (B) t-SNE plot 
of the distribution of various cell types in sepsis samples. (C) Bubble chart of the expression of 6 genes in different cell types in normal samples. 
(D) Bubble chart of the expression of 6 genes in different cell types in sepsis samples. (E) Box plot of the expression differences of 6 genes in 
monocytes between normal and sepsis samples. (F) Box plot of the expression differences of 6 genes in T cells between normal and sepsis samples. 
(G) Box plot of the expression differences of 6 genes in NK cells between normal and sepsis samples. (H) Box plot of the expression differences of 6 
genes in B cells between normal and sepsis samples. (I) Box plot of the expression differences of 6 genes in HSC between normal and sepsis 
samples. (J) Box plot of the expression differences of 6 genes in neutrophils between normal and sepsis samples. (K) GSEA enrichment analysis 
between normal and sepsis samples. 
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Enrichment analysis of differentially expressed genes between 
the two subtypes revealed significant enrichment in the O-linked 
glycosylation and O-linked glycosylation of mucins pathways. O-
linked glycosylation is a post-translational modification process that 
involves adding sugar molecules to the serine or threonine residues 
of proteins (27). In sepsis, proper glycosylation helps to regulate 
immune responses and facilitates intercellular communication and 
signal transduction (28). Mucins are highly glycosylated proteins 
widely present on the surface of epithelial cells and in mucous 
secretions, and their O-glycosylation plays a critical role in 
maintaining epithelial barrier function (29). Although the 
protective role of O-glycosylation in sepsis is significant, the O
glycosylation of certain proteins can have negative effects (30, 31). 
For example, a study indicated that the O-glycosylation pattern of 
some proteins in sepsis patients change, resulting in excessive O
glycosylation (30). Endoplasmic reticulum stress and the activation 
of the unfolded protein response are associated with excessive O
glycosylation, leading to cellular dysfunction and organ damage (32, 
33). Additionally, mucin-type O-glycans can shift the balance 
towards increased susceptibility to microbial infections and 
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subsequent tissue damage (34). These findings suggest that 
clinical treatment should balance the regulation of O

glycosylation to maximize its protective effects while avoiding the 
adverse consequences of excessive glycosylation (31). 

In this study, we successfully developed a GRS by integrating 
multiple machine learning algorithms. The random forest algorithm 
excelled in handling high-dimensional data and identifying important 
features, aiding in the selection of key genes associated with mortality 
(21). The CoxBoost algorithm, designed specifically for survival data, 
was effective in identifying genes closely related to patient prognosis 
(22). LASSO regression improved the model’s stability and 
interpretability through penalization (23). By combining the results 
from these algorithms, we gained a more comprehensive 
understanding  of the  molecular mechanisms of sepsis and

constructed a robust prognostic model. The key genes identified, 
such as MAN1A1, EXT1, EXT2, HIF1A, HMMR, and SELL, 
demonstrated independent prognostic capabilities in multivariable 
Cox regression analysis. Some of these genes have been previously 
reported to play critical roles in the pathogenesis of sepsis. For 
instance, HIF1A is crucial in inflammation and angiogenesis, with 
FIGURE 8 

Cell-type-specific glycosylation patterns in sepsis immune cells. (A) Glycosylation-related genes show distinct expression and functional enrichment 
patterns across immune cell types in sepsis. (B) Heatmap shows the correlation between six GRS genes and T cell exhausting markers in healthy 
donors. (C) Heatmap shows the correlation between six GRS genes and T cell exhausting markers in sepsis patients. * indicates p < 0.05, ** indicates 
p < 0.01. 
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changes in its expression levels potentially linked to the severity and 
prognosis of sepsis (35). SELL is a cell adhesion molecule involved in 
the rolling and migration of immune cells, and its abnormal 
expression may affect immune cell responses to infection (36). The 
identification of these key genes provides new insights for future 
research. Further studies could explore the specific mechanisms  by
which these genes contribute to sepsis and how they interact with 
other biological processes to influence sepsis prognosis. 

Further single-cell analysis provided in-depth insights into the 
expression differences of GRS model genes across various cell types. 
We observed significant expression differences of multiple 
independent prognostic factors in monocytes and T cells, which 
may reflect the crucial role of glycosylation in regulating the 
immune behavior and signal transduction of these cells. 
Additionally, GSEA enrichment analysis revealed significant 
differences in the N-linked glycosylation pathway between normal 
and sepsis patient samples. N-linked glycosylation is a post-
translational modification that occurs on asparagine residues (37). 
Research has shown that N-linked glycosylation plays a key role in 
the immune system by modifying receptors on the surface of 
immune cells and secreted cytokines, thus regulating immune 
responses (38). In sepsis patients, changes in the IgG N-linked 
glycosylation patterns in serum are significantly associated with 
immune responses and patient prognosis, further underscoring the 
importance of N-linked glycosylation in sepsis (39). Additionally, 
glycosylation remodeling is not merely a downstream response, but 
may serve as an active regulatory node shaping immune cell states 
during sepsis. This finding provides new perspectives for further 
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mechanistic studies into glycosylation-TF-exhaustion networks and 
suggests potential therapeutic strategies targeting glycosylation 
pathways to restore immune balance in sepsis. 

Despite the positive results achieved in developing and 
validating the GRS model, several limitations and directions for 
future research remain. Although the model demonstrated robust 
prognostic performance across multiple transcriptomic datasets, the 
clinical sample size used for validation was relatively small, limiting 
the generalizability of the findings. This constraint is primarily due 
to the challenges of obtaining well-characterized patient samples in 
the acute phase of sepsis under ethical and logistical constraints. 
Future studies with larger and more diverse patient cohorts are 
needed to confirm the model’s applicability across different clinical 
settings and populations. Additionally, the potential clinical utility 
of the GRS model—such as its use in ICU risk stratification, early 
triage, or glycosylation-targeted biomarker development—warrants 
further investigation. Integrating the GRS with other clinical 
parameters, including inflammatory markers, genetic background, 
and treatment response, may further enhance  its prognostic

accuracy. Moreover, in-depth exploration of the biological 
functions and regulatory mechanisms of key genes in the GRS 
model will contribute to the development of novel therapeutic 
strategies to improve outcomes for sepsis patients. Furthermore, 
whether glycosylation changes are drivers or consequences of 
immune dysfunction in sepsis remains unclear. Aberrant 
glycosylation may contribute to immune dysregulation by 
affecting  receptor  signaling  or  cell  adhesion,  whereas  
inflammatory stress may also disrupt glycosylation pathways. Our 
FIGURE 9 

Expression of key glycosylation-related genes in patient samples. (A) mRNA Expression value of CD44 in patient samples. (B) mRNA Expression value 
of EXT1 in patient samples. (C) mRNA Expression value of EXT2 in patient samples. (D) mRNA Expression value of HIF1A in patient samples. (E) mRNA 
Expression value of HMMR in patient samples. (F) mRNA Expression value of SELL in patient samples. All data are presented as median ± interquartile 
range (IQR) and were analyzed using the Wilcoxon rank-sum test. * indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001. 
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findings support a potential association, but further studies are 
needed to clarify causality. 

In summary, this study provides a new tool for prognostic 
assessment in sepsis through innovative bioinformatics methods 
and machine learning techniques. The development and validation 
of the GRS model not only highlight the significant role of 
glycosylation in the pathogenesis of sepsis but also offer valuable 
information for future clinical research and treatment. With further 
research and validation, the GRS model has the potential to become 
an important component of sepsis management, helping to improve 
patient prognosis and quality of life. 
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SUPPLEMENTARY FIGURE 1 

Association of GRS with clinical characteristics. (A) Heatmap of the clinical 
characteristics of patients under different GRS states in GSE65682. (B) 
Heatmap of the clinical characteristics of patients under different GRS 
states in GSE95233. (C) Forest plot of the univariable Cox regression 
analysis in GSE65682. (D) Forest plot of the multivariable Cox regression 
analysis in GSE65682. (E) Forest plot of the univariable Cox regression analysis 
in GSE95233. (F) Forest plot of the multivariable Cox regression analysis 
in GSE95233. 

SUPPLEMENTARY FIGURE 2 

Meta-analysis of the diagnostic efficacy of 6 prognostic genes. (A) Meta-analysis 
of the diagnostic value of CD44 for sepsis patients. (B) Meta-analysis of the 
diagnostic value of EXT1 for sepsis patients. (C) Meta-analysis of the diagnostic 
value of EXT2 for sepsis patients. (D) Meta-analysis of the diagnostic value of 
HIF1A for sepsis patients. (E) Meta-analysis of the diagnostic value of HMMR for 
sepsis patients. (F) Meta-analysis of the diagnostic value of SELL for 
sepsis patients. 

SUPPLEMENTARY FIGURE 3 

Single cell data preprocessing. (A) Bar plot showing the C-index values of 
different predictive factors across multiple sepsis-related datasets. (B) Sample 
t-SNE plot shows no obvious batch effect in GSE175453. (C) Sample UMAP 
plot shows obvious batch effect in GSE176363. (D) Sample UMAP plot shows 
no obvious batch effect after harmony. 

SUPPLEMENTARY FIGURE 4 

Glycosylation characteristics validation. (A) UMAP plot of the distribution of 
various cell types in normal samples. (B) UMAP plot of the distribution of 
various cell types in sepsis samples. (C) Bubble chart of the expression of 6 
genes in different cell types in normal samples. (D) Bubble chart of the 
expression of 6 genes in different cell types in sepsis samples. (E) Box plot 
of the expression differences of 6 genes in monocytes between normal and 
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sepsis samples. (F) Box plot of the expression differences of 6 genes in T cells 
between normal and sepsis samples. (G) Box plot of the expression 
differences of 6 genes in NK cells between normal and sepsis samples. (H) 
Box plot of the expression differences of 6 genes in B cells between normal 
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and sepsis samples. (I) Box plot of the expression differences of 6 genes in 
HSC between normal and sepsis samples. (J) Box plot of the expression 
differences of 6 genes in neutrophils between normal and sepsis samples. (K) 
GSEA enrichment analysis between normal and sepsis samples. 
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