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Lung cancer remains one of the leading causes of cancer-related deaths

worldwide, highlighting the urgent need for enhanced diagnostic and

therapeutic strategies. Mucins, a family of glycoproteins crucial for maintaining

epithelial integrity and regulating immune responses, have emerged as promising

biomarkers and therapeutic targets in the context of lung cancer. The expression

patterns and functional roles of mucin family members significantly influence

lung cancer progression, thereby shaping diagnostic and therapeutic approaches

for this disease. A more detailed classification of mucin family members could

facilitate diagnosis and patient assessments, as well as help identify potential

therapeutic targets. This review thoroughly examines the latest advancements in

understanding the role of mucins in lung cancer progression, prognosis, and

treatment, while also highlighting knowledge gaps and opportunities for future

research, thus providing new perspectives for the management of this disease.
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1 Introduction

Lung cancers, the primary causes of cancer-related deaths globally, are a group of

malignancies that develop from bronchial epithelial cells (1). According to data from the

International Agency for Research on Cancer (IARC) of World Health Organization, the

incidence of lung cancer is increasing annually, particularly in developing nations (2).

Despite significant progress in diagnosing and treating lung cancers, the five-year survival

rate after diagnosis remains less than desirable (3–5). The main difficulty lies in detecting

lung cancer early, as it frequently advances to a late stage before patients are diagnosed (6).
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1.1 Classification and epidemiology

They can be histologically categorized into non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC). Notably,

NSCLC accounts for more than 85% of cases and includes

adenocarcinoma, squamous cell carcinoma, large cell carcinoma,

among others. SCLC, although uncommon, is the most aggressive

pulmonary neoplasm, characterized by a rapid doubling time and

the development of widespread metastases (7). The clinical

presentation of lung cancer is varied and may include common

symptoms such as coughing, chest discomfort, difficulty breathing,

weight loss, and abnormal blood collection (8).
1.2 Current treatment approaches and
research hotspots

The incidence of lung cancer has increased due to the

acceleration of industrialization and changes in lifestyle. The

etiology of lung cancer is complex, with smoking being identified

as the most significant risk factor (9). Long-term smoking is directly

associated with an increased likelihood of developing lung cancer

(10). Additionally, factors such as second-hand smoke exposure, air

pollution, occupational exposure (for instance, asbestos and

uranium mining), genetic susceptibility, and certain hereditary

diseases also contribute to the risk of developing lung cancer (11).

Current treatment regimens for lung cancer include surgery,

chemotherapy, radiotherapy, and targeted therapy. Surgical

resection offers the best chance of cure for early-stage NSCLC,
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while chemotherapy and radiotherapy are used for locally advanced

and metastatic disease.

Some of the latest anti-cancer treatments include immune

checkpoint inhibitors (ICIs), which have been proven to have a

high possibility to act as specific targets for successful treatment,

especially for NSCLC (12). Despite our ability to use predictive

biomarkers such as PD-L1 (Programmed cell death ligand 1)

expression and a high TMB (tumor mutational burden) as

indicators for ICIs treatment, the widespread clinical use of ICIs

is limited by various constraints (13, 14). Hence, researchers are

continuously trying to find other early, effective, and minimally

invasive approaches or advanced screening tools that might

benefit immunotherapy.

Biomarkers for lung cancer have been studied in recent years,

and the remarkable findings have enhanced the accuracy of clinical

diagnoses and treatments. These biomarkers have not only

enhanced disease diagnoses and typing but also guided differential

treatment regimens and the evaluation of responses to treatments

and prognoses, particularly in immunotherapy. Biomarkers are

critical to understanding treatment response, monitoring the

effectiveness follow-up, identifying resistance mechanisms, and

identifying new treatment targets (15).

Recent advances have underscored the mucin family possessing

profound functional and structural significance. By elucidating their

shared characteristics (summarized in Table 1), this review

establishes a robust framework for dissecting their distinct

mechanistic pathways and roles in diverse biological contexts.

This structured approach not only enhances our understanding of

mucins but also emphasizes their translational potential as targets

for therapeutic innovation.
TABLE 1 Description of the common characteristics of the mucin family.

Common
characteristics

Description

Structural Features Members of the mucin family typically have high molecular weights and are rich in O - glycosylation.

Tandem Repeat Sequences
Most mucins contain tandem repeat sequences, which are rich in proline, threonine, and serine (PTS domains), an important feature
of mucins.

Secretory and Membrane -
Bound Types

The mucin family can be divided into secretory types (such as MUC2, MUC5AC, MUC5B, MUC6) and membrane - bound types (such
as MUC1, MUC3A, MUC4, MUC16).

Cellular Localization
Secretory mucins are mainly located extracellularly, forming a mucus layer; membrane - bound mucins are anchored to the cell
membrane and participate in cell signaling.

Functions

1. Protect and lubricate the epithelial surface.
2. Maintain epithelial integrity and participate in cell adhesion.
3. In tumorigenesis, the abnormal expression of mucins is associated with the occurrence, development, and prognosis of
various cancers.

Roles in Tumors
1. Promote the proliferation and invasion of tumor cells.
2. Transmit carcinogenic signals through interactions with growth factor receptors.
3. Have anti - apoptotic effects, protecting cancer cells from the effects of chemotherapy.

Expression Patterns
The expression patterns of mucins differ between normal and tumor tissues. Changes in their expression levels and subtypes are closely
related to the biological behavior of tumors.

Evolutionary Diversity
The mucin family shows a high degree of diversity during evolution, with different members having different structural domains
and functions.
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1.3 Focus on mucins

Mucins are high-molecular-weight glycoproteins that play

essential roles in maintaining physiological homeostasis across

various tissues, particularly in the respiratory tract, where they

serve as protective barriers against environmental insults (16).

However, in lung cancer, their dysregulation and overexpression

are critical factors influencing disease initiation, progression, and

metastasis (17).

In physiological settings, mucins serve as vital components of

the mucosal defense system, safeguarding epithelial surfaces against

pathogens and toxins. These transmembrane glycoproteins are

predominantly expressed in epithelial cells and are crucial for

maintaining cell integrity and surface smoothness (18). Their

primary function throughout the body is to form protective

barriers, playing a pivotal role in preserving mucosal integrity,

mitigating inflammatory cell infiltration, maintaining alveolar

surface hydration, and modulating the phagocytic efficiency of

alveolar phagocytes (19–21).

For instance, MUC5B, a major mucin in the airways, plays a

crucial role in sustaining mucociliary clearance, which is an

essential defense mechanism against inhaled pathogens and

pollutants. Its expression can be upregulated during lung injury

to modulate inflammatory responses, thereby reducing the

secretion of inflammatory factors, promoting goblet cell

differentiation, and limiting excessive inflammation. This

demonstrates its protective role in lung diseases such as chronic

obstructive pulmonary disease (COPD) and idiopathic pulmonary

fibrosis (IPF) (22–25).

Chronic inflammatory states, such as those induced by cigarette

smoke exposure, can lead to sustained overexpression of mucins.

This overexpression may ultimately predispose cells to malignancy,

as elevated levels of MUC1 in response to chronic inflammation

have been correlated with an increased risk of carcinoma. This

observation demonstrates how a protective mechanism can shift

toward promoting carcinogenesis under pathological conditions

(26, 27).

Abnormal mucin expression can lead to alterations in cell

adhesion, invasion, and metastasis, which are critical processes in

cancer development and dissemination. Some mucins also

modulate signaling pathways, thereby enhancing tumor survival

and resistance to treatment (16, 17). For instance, cell surface

mucins such as MUC1 initially serve as a protective barrier

against pathogen invasion by acting as both a physical wall and a

decoy for microbial binding. However, prolonged or chronic

infections may induce persistent inflammation via MUC1-

mediated signaling. MUC1 interacts with TLR and NLRP3

inflammasome pathways: while it can initially suppress excessive

inflammation by competitively inhibiting MyD88/TRIF

recruitment to TLRs, sustained interactions with microbes may

exacerbate pro-inflammatory responses, ultimately fostering a

tumor-promoting microenvironment (28, 29).

Mucins, such as MUC3A, have been identified not only as

markers of poor prognosis but also as active regulators of key

signaling pathways that promote cancer development. In NSCLC,
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elevated levels of MUC3A correlate with increased tumor growth,

reduced sensitivity to therapies such as radiation, and the

upregulation of immune checkpoint proteins like PD-L1, which

facilitate immune evasion by tumors (30, 31).

In summary, mucins exhibit a dualistic role in lung tissue: they

provide critical protective functions against pathogens and

maintain lung homeostasis; however, their dysregulation drives

cancer-associated pathological processes. Deciphering this balance

is pivotal for developing therapeutic strategies that selectively

mitigate oncogenic mucin activity while preserving their

protective roles in lung health. Mucins hold promise as

biomarkers to overcome current limitations in lung cancer

diagnostics and therapeutics. Their utility in early detection,

accurate tumor typing, and patient stratification—by virtue of

cancer-type-specific expression patterns—may guide the

development of minimally invasive or individualized therapies. In

this context, mucin biomarkers represent a promising frontier for

advancing precision oncology in lung cancer and improving

clinical outcomes.

A concise review would be necessary on explicating mucins’

dual roles in lung cancer, detailing their expression, functions, and

clinical applications. By synthesizing these findings, we provide

novel insights to reframe perspectives on the complex interplay

between mucins and lung cancer, thereby paving the way for next-

step exploitation on this challenging disease.
2 The mucin family as biomarkers

Molecular markers, including genetic mutations, proteins, and

other molecular indicators, have revolutionized the practice of

oncology through early diagnoses and cancer treatments (32–34).

These biomarkers not only help in diagnosing cancer in its earliest

stages but are also highly useful in determining appropriate clinical

responses to the cancer via different therapies. Moreover, they are

helpful for evaluating the extent of the cancer and the progress of

the patients during their subsequent treatments and checkups.
2.1 Classification of mucins

Understanding mucins’ functions and structures is thus critical

to diagnosis and treatment (35). Mucins can be categorized into two

groups: membrane-bound mucins and secretory (or gel-forming)

mucins (Table 2), which are both types of mucin molecules (18).

Membrane-bound mucins are predominantly located on the surface

of epithelial cells. They typically exhibit a single-chain structure that

traverses the cell membrane and possesses an extracellular domain

that is extensively O-glycosylated (36). Secreted mucins are

primarily synthesized by goblet cells and certain glandular

epithelial cells. These mucins are distinguished by their extensive

glycosylation and their capacity to form large, gel-like structures

upon secretion, which are essential for the viscosity and protective

functions of mucus (37, 38). Both types possess the ability to form
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protective shields that are effective against toxic substances and

microorganisms potentially damaging the mucosa.

Despite the similarities in their roles, the synthesis of mucins

exhibits notable distinctions in localization, composition, and

regulation within the body (39). For instance, MUC1 is located on

chromosome 1q21, whereas MUC4 is found on chromosome 3q29

(40, 41). Membrane-bound mucins play a crucial role in regulating

hydration at mucosal surfaces, contribute to immune responses, and

facilitate cellular interactions with the external environment. Their

aberrant expression is frequently associated with various diseases,

particularly cancers, underscoring their importance in both health

and disease contexts (42–44). The functional significance of secreted

mucins extends beyond mere physical protection; they are integral to

the host’s defense mechanisms by trapping pathogens, preventing

their adherence to epithelial cells, and coordinating immune

responses through interactions with various immune cells.

Furthermore, the extensive glycosylation of secreted mucins

enhances their viscoelastic properties, which are essential for the

effective trapping and clearance of pathogens and particles from

mucosal surfaces (45, 46).
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In shorts, both types of mucins play important roles in

protecting the body from harmful substances, but dysregulation

can contribute to negative diseases outcomes such as cancer or

inflammation (47–50). Understanding the classification and roles of

mucins is essential for deciphering the complexities of mucosal

immunity, disease mechanisms, and potential therapeutic targets,

particularly in relation to respiratory system-related diseases.

Insights into mucin biology may lead to novel strategies aimed at

modulating mucin production or function, which could have

significant implications for the treatment of various pathologies.
2.2 Mucin expression in lung cancer

Members of the mucin family demonstrate varying levels of

expression in lung tissue. Specifically, MUC1, MUC2, MUC3A,

MUC3B, MUC4, MUC5AC, MUC5B, MUC6, MUC7, MUC8,

MUC11, MUC12, MUC13, MUC15, MUC16, MUC17, MUC19,

MUC20, MUC21, and MUC22 have all been identified in lung

tissue (51–54). In specific, study reported that tumor cells showed
TABLE 2 Chromosomal localization and tissue expression of the mucin gene.

Gene symbol Chromosome band Entrez gene ID Mucin form Expression section

MUC1 1q22 4582 Membrane-bound mucin Lung tissue

MUC2 11p15.5 4583 Secreted Goblet cell

MUC3 7q22 4584/57876 Membrane-bound mucin Lung tissue

MUC4 3q29 4585 Membrane-bound mucin Lung tissue

MUC5 11p15.5 4586/727897 Secreted Lung tissue

MUC6 11p15.5 4588 Secreted Gastrointestinal tissue

MUC7 4q13.3 4589 Secreted Salivary gland tissue

MUC8 12q24.33 100129528 Secreted Lung tissue

MUC9 1p13.2 5016 Secreted Lung tissue

MUC12 7q22.1 10071 Membrane-bound mucin Gastrointestinal tissue

MUC13 3q21.2 56667 Membrane-bound mucin Gastrointestinal tissue

MUC14 4q24 51705 Membrane-bound mucin Lung tissue

MUC15 11p14.2 143662 Membrane-bound mucin Lung tissue

MUC16 19p13.2 94025 Membrane-bound mucin Lung tissue

MUC17 7q22.1 140453 Membrane-bound mucin Intestinal tissue

MUC18 11q23.3 4162 Membrane-bound mucin Lung tissue

MUC19 12q12 283463 Secreted Salivary gland tissue

MUC20 3q29 200958 Membrane-bound mucin Kidney tissue

MUC21 6p21.33 394263 Membrane-bound mucin Lung tissue

MUC22 6p21.33 100507679 Membrane-bound mucin Lung tissue

MUC24 6q21 8763 Membrane-bound mucin Lung tissue
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expression levels of MUC1 (77%), MUC2 (2%), MUC5B (63%),

MUC5AC (36%) and MUC6 (21%) (55).
2.2.1 Expression patterns of mucins in lung
cancer

The expression patterns of mucins in lung cancer tissues exhibit

considerable diversity and significantly influence disease

progression. Notably, the expression levels of MUC1, MUC2,

MUC3A, MUC16, and MUC17 in NSCLC have been shown to

correlate with patient prognosis. MUC5AC is predominantly

expressed in the trachea and main bronchi, but is absent in

bronchioles and smaller alveolar epithelial cells. In contrast,

MUC5B is detected in the bronchial epithelium, mucus-

producing cells, and glandular ducts, while it is not expressed in

bronchiolar or alveolar epithelial cells.

Membrane-bound glycoprotein, is recognized for its role in

promoting tumor progression and modulating immune responses.

It has been implicated in enhancing tumor invasiveness and

protecting cancer cells from immune destruction. The

upregulation of MUC1 is a hallmark of lung cancer, particularly

in NSCLC, with its expression level closely associated with tumor

aggressiveness, dissemination, and recurrence (51). The altered

localization of MUC1, from its normal restricted patterns to a

ubiquitous presence on glandular epithelia and within the

cytoplasm, underscores its pivotal role in facilitating lung cancer

invasion, metastasis, and angiogenesis (52).

The MUC2 expression landscape in lung cancer is intricate,

varying significantly across tumor types and stages (56, 57), though

it is less frequently encountered compared to gastrointestinal

malignancies (58). Meanwhile, MUC4 is a ubiquitous player in

multiple tumor types, including pancreatic (59), lung (60), and

endometrial cancers (61). In lung cancer specifically, MUC4

expression aligns with histological subtypes, manifesting distinct

patterns in NSCLC subtypes like adenocarcinoma, squamous cell

carcinoma, and adenosquamous cell carcinoma (62, 63).

On the other hand, MUC5B has been observed to exhibit a

contrasting role in lung cancer. It is frequently overexpressed in

poorly differentiated adenocarcinomas and has been linked to worse

tumor differentiation and disease stage. Studies indicate that while

MUC5B serves a protective role in healthy epithelial tissues, its

aberrant secretion in lung cancer may promote aggressive cancer

behavior, particularly in lung adenocarcinomas (LUAD). High

levels of MUC5B not only correlate positively with worse clinical

features but are also associated with reduced survival rates, as

demonstrated by statistical analyses that employed multivariable

models to account for various confounding factors (23).

Further analysis indicates that the interplay between MUC4 and

MUC5B expression may hold valuable clinical implications. In lung

cancer diagnostics, the combination of MUC4 and MUC5B

expression patterns, especially when assessed in conjunction with

differentiation markers such as Thyroid Transcription Factor 1

(TTF-1), has been proposed to enhance diagnostic accuracy in

distinguishing lung adenocarcinoma from squamous cell

carcinoma. This integrated assessment may lead to improved
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stratification of patients based on aggressiveness and help in

tailoring personalized therapeutic strategies (23, 64).

Central to the airway mucin composition, MUC5AC and

MUC5B are intimately associated with invasive mucinous

adenocarcinoma of the lung (55, 65). MUC5AC’s presence in

lung cancer is predictive of tumor aggressiveness and adverse

prognosis, correlating directly with malignant features such as

lymphatic dissemination, tumor size, and radiographic indicators

like lobed and burr signs (66–68). Conversely, Several studies hint at

a potential link between MUC5B expression and specific

pathological subsets or stages of lung cancer, though definitive

conclusions await further validation (69).

MUC5B-AS1, a lncRNA, forms a protective double-stranded

structure in lung tissue, increasing the stability of MUC5B mRNA

and promoting carcinogenesis. The overexpression of this gene

leads to an upregulation of MUC5B expression, as well as the

promotion of cell migration and invasion. This is significantly

correlated with the Tumor-Node-Metastasis (TNM) stage in lung

cancer tissues (24, 70). Meantime, extracellular matrix (ECM)

components regulate the production of MUC5B and upregulate it

through integrin, extracellular signal-regulated kinase (ERK), and

NF-kB-dependent pathways (NF-kB: Nuclear factor kappa B) (20).
Additionally, the combined detection of MUC5B and TTF-1 can

greatly improve the accuracy of detecting lung adenocarcinoma by

distinguishing different cancer cell types (23).

MUC6 is highly expressed in LUAD, especially in CD74–

NRG1-rearranged LUAD, and has the ability to inhibit cell

proliferation, migration, and invasion (71). At the same time, the

inverse correlation between MUC6 and aGlcNAc (N-

Acetylglucosamine) may disrupt normal cell communication,

while reduced levels of MUC6 can also trigger or worsen

inflammatory responses (54).

Notably, MUC16 expression stands out in NSCLC, significantly

elevated compared to adjacent non-cancerous tissues, and tightly

correlated with clinicopathological parameters like tumor staging,

pathological grading, and lymph node involvement (64, 72).

MUC16 contains 16 SEA domains in its tandem repeat domain,

which potentially, perhaps initiate some of the tumor-related

signaling pathways. Additionally, the C-terminal domain of

MUC16 is formed of 32 amino acids in the cytoplasmic tail,

which may affect the function of the molecule in certain signaling

pathways through phosphorylation (73–75).

Additionally, MUC17, which plays a role in signal transduction

pathways, helps maintain luminal structure and provides cellular

protection in epithelial cells. Furthermore, MUC17 imparts anti-

adhesive properties to cancer cells that have lost their polarity and

are consequently compromised in their normal cell polarity (76).

MUC17 plays a role in maintaining the structural integrity of

luminal cells and providing protection for epithelial cells (77).

MUC16 and MUC21 exhibit specific expression patterns and

functions in lung cancer. Regarding MUC21, the literature on its

expression in lung cancer is scarce, but preliminary findings suggest

that its upregulation is associated with diminished infiltration and

activation of cytotoxic immune cells, possibly contributing to

immune evasion mechanisms in lung cancer (78). Some progress
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has also been made in the development of a detection antibody

related to MUC21 (79).

MUC13, on the other hand, displays elevated levels in LUAD tissues

and cells, indicating its potential significance in this tumor type (80, 81).

MUC18, also known as MCAM/CD146, is a ubiquitous marker in

various tumors, including lung cancer, where it has been implicated in

tumor aggressiveness, angiogenesis, and poor prognosis (82–84).

Nevertheless, a more exhaustive examination of MUC18’s specific

expression patterns in lung cancer tissues, along with its relationship

to different tumor types and stages, is warranted.

For other mucins in lung tissue, additional research is

imperative to elucidate their specific expressions and functions

within lung cancer tissues, contributing to a more comprehensive

understanding of the mucin family’s role in lung cancer biology.

2.2.2 Glycosylation of mucins and its impact on
lung cancer

The glycosylation of mucins serves as a pivotal regulatory

mechanism, influencing not only the biological functions of

mucins but also their expression patterns and subcellular

distributions. This intricate process ensures that mucins perform

their diverse roles efficiently within the physiological landscape

(85). For membrane-bound mucins, the glycosylation of mucins can

be divided into O-glycosylation and N-glycosylation based on the

sites to which the carbohydrate moieties are attached. These forms

of glycosylation occur on the extracellular domain of mucins and

involve various regulatory factors, such as glycosyltransferases,

glycosylases, and transcription factors (TFs), which are crucial for

initiating, progressing, and terminating the glycosylation process

(86, 87).

The glycosylation status of mucins is critical for their protective

functions on epithelial surfaces. For instance, MUC21, a

transmembrane mucin, has been demonstrated to protect cells

from apoptosis. Transfection of MUC21 into cells leads to

resistance against apoptotic signals when it is glycosylated with

sialyl T-antigen. This finding indicates that the presence of specific

glycan structures, such as sialic acid in the glycoprotein, is essential

for its protective function (88).

The glycosylation of mucin has a marked impact on the

expression of tumor markers as they are accessible on the cell

surface, potentially affecting their signaling and binding to target

receptors (87). In lung cancer, aberrant glycosylation results in the

expression of tumor-associated carbohydrate structures, notably the

Tn antigen. This antigen serves as a hallmark of epithelial tumors

and is correlated with increased cancer aggressiveness and poor

prognosis. Specifically, the Tn antigen is recognized by the

macrophage galactose/GalNAc lectin (MGL), which can modulate

immune responses and contribute to the establishment of an

immunosuppressive tumor microenvironment (89).

Glycosylation patterns of mucins are not only biomarkers but

also potential therapeutic targets. For example, inhibiting O-

glycosylation of MUC1 or MUC5AC sensitizes cancer cells to

chemotherapy and radiotherapy (18, 67). In lung cancer, targeting

glycosyltransferases like GALNT6, which initiates O-glycosylation

of mucins, could disrupt mucin-mediated signaling pathways.
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GALNT6 knockdown in pancreatic cancer cells reduces MUC4

expression and alters cadherin switching from P-cadherin to E-

cadherin, suggesting a similar strategy could be effective in lung

cancer (90). Furthermore, the glycan-binding properties of mucins

can be exploited for diagnostic purposes. For instance, chemical

exchange saturation transfer (CEST) MRI detects under-

glycosylated MUC1 (uMUC1) in malignant tissues, providing a

non-invasive method to assess tumor malignancy (91).

The broader implications of mucin glycosylation in lung cancer

extend to immune evasion and microenvironment modulation.

Mucin glycosylation has the potential to modify the function of

adhesion molecules involved in cell-cell and cell-matrix

interactions, which play critical roles in regulating processes such

as cell migration, invasion, and metastasis. Additionally, mucin

glycosylation may impact tumor growth and metastasis by affecting

the ability of tumor cells to evade detection by the immune system.

The overexpression and aberrant glycosylation of mucins can

inhibit T-cell interactions, allowing tumor cells to evade immune

surveillance. This phenomenon is particularly evident with MUC1,

where altered glycosylation can enhance its immunogenicity,

leading to modulation of the immune landscape within the tumor

(92). In the context of MUC1 and MUC2, MUC1 regulation has

been observed during the malignant transformation of cells,

resulting in alterations in the glycosylation and localization of the

protein, as well as interactions with certain growth factor receptors

(93). Sialylated glycans, such as sialyl-Lewis X (sLeX), are

overexpressed in lung cancer and interact with selectins on

endothelial cells, facilitating metastasis. The binding of sLeX to

selectins aids in the adhesion of tumor cells to endothelial cells,

thereby promoting the extravasation of tumor cells from the

bloodstream and their subsequent metastasis to distant organs

(94–96).

Enzymatic remodeling of cell surface glycans, such as the

overexpression of b-1,3-glucuronosyltransferase 1 (B3GAT1), has

been shown to reduce the expression of sialic acid on the cell surface

and inhibit the infection of viruses that rely on sialic acid for cellular

entry. Although this mechanism has primarily been explored in

virology research, it suggests the potential to modulate cellular

functions by altering cell surface glycosylation. In lung cancer

research, similar strategies may be explored to block mucin-

mediated tumor cell dissemination, thereby providing new

insights for the treatment of lung cancer (97). Additionally,

glycomic profiling of lung cancer tissues reveals distinct

glycosylation signatures, such as increased LacdiNAc and

polylactosamine structures, which could serve as prognostic

markers or therapeutic targets (98, 99).

Moreover, MUC2 is associated with glycosylation in lung

cancer, and its amount is associated with airway inflammation.

For patients with stable but severe COPD, MUC2 has been found to

play a significant role in airway defense (100).

Overall, the glycosylation status of mucins in lung cancer is not

just a marker of disease progression but also plays functional roles

in modulating tumor behavior, immune evasion, and resistance to

therapies. In the following section, we will delve deeper into the

glycosylation of mucins and its impact on lung cancer progression.
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2.2.3 Transcriptional regulation of mucins
The regulatory impact of mucin-associated TFs on their expression

in lung cancer tissue represents a critical yet underexplored axis in

oncogenesis. Emerging evidence highlights their pivotal roles in tumor

progression, immune evasion, and therapeutic resistance, with mucins

such as MUC1, MUC5AC, andMUC3A—heavily glycosylated proteins

governing cellular adhesion, signaling, and barrier function—showing

dysregulation in LUAD and lung squamous cell carcinoma (LUSC) that

correlates with aggressive phenotypes (101) (102).

For MUC1, its promoter region contains two Sp1, one Sp3, and

one E-box (E-MUC1) binding site (103). SP1 directly binds to the

MUC1 promoter (-99/-90 locus) to regulate its expression (104),

while under hypoxic conditions, HIF-1a interacts with the MUC1

promoter to enhance transcription (105). STAT3 acts as an

upstream regulator of MUC1, modulating its transcription via the

JAK/STAT signaling pathway (106). Additionally, DPP9 regulates

MUC1 expression at both the mRNA and protein levels (107). For

MUC4, PRDM16-DPRD influences its transcription by modifying

histone acetylation at the MUC4 promoter (108).

The MUC5B promoter harbors enhancer elements regulated by

STAT3 and SPDEF, which bind to specific sites to activate

transcription. Notably, the MUC5B enhancer region in lung

cancer cells exhibits chromatin accessibility, with RNA

polymerase II loading near the key SNP rs35705950—indicating a

direct role for this variant in enhancer function (109). This

regulatory network is further complicated by nuclear receptors

such as the vitamin D receptor (VDR) and retinoic X receptor

(RXR), which may modulate mucin gene expression via

heterodimeric interactions (30, 31, 69, 109). The MUC5B

promoter variant rs35705950 (a G/T transversion), located within

a −3 kb enhancer region, undergoes chromatin accessibility and

epigenetic reprogramming in idiopathic pulmonary fibrosis (IPF)—

a disease linked to lung cancer risk. This enhancer recruits RNA

polymerase II alongside TFs such as FOXA2 and XBP1, which bind

near the variant in a genotype-dependent manner to regulate

MUC5B expression (109–111). XBP1, a mediator of endoplasmic

reticulum stress, directly binds to the −3 kb region, while FOXA2

interacts with a conserved site 32 bp from the variant, underscoring

the combinatorial role of TFs in mucin dysregulation (112).

MUC5AC is negatively regulated by the circular RNA

circRABL2B. High-throughput sequencing of 141 lung cancer

patient samples revealed a significant inverse correlation between

circRABL2B and MUC5AC expression, with patients exhibiting low

circRABL2B and high MUC5AC levels showing the worst survival

outcomes (HR = 2.00; 95% CI = 1.12–3.57). Mechanistically,

circRABL2B interacts with the RNA-binding protein YBX1 to

suppress MUC5AC transcription, thereby inhibiting the integrin

b4/pSrc/p53 signaling axis—a cascade associated with enhanced

cellular stemness and chemoresistance. The transcriptional

downregulation of circRABL2B, partially mediated by EIF4A3,

further elucidates its dysregulation in carcinogenesis (113).

In NSCLC, the transmembrane mucin MUC3A—overexpressed

in tumor tissues—is regulated by the NF-kB pathway through its

interaction with RELA (p65). MUC3A stabilizes epidermal growth

factor receptor (EGFR) and promotes PD-L1 expression via the
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PI3K/Akt and MAPK signaling pathways, linking mucin-mediated

immune evasion to TF activity. Knockdown of MUC3A disrupts

RELA phosphorylation and nuclear translocation, attenuating NF-

kB activation and its downstream targets (e.g., BRCA-1/RAD51),

which are critical for DNA damage repair and radiation resistance.

Moreover, the EGF-like domain of MUC3A enhances EGFR

signaling, forming a feedforward loop that amplifies mucin-TF

interactions during tumor progression (30, 31). These findings

highlight TFs as both regulators and effectors of mucin signaling

pathways, with profound implications for therapeutic targeting.

The mechanism of action of above TFs offers a foundational

framework for elucidating the regulation of mucins in lung cancer.

However, more complex regulatory networks and additional

potential TFs may be involved, which will be further investigated

in the subsequent section. DNA methylation and histone

modification are some of the key epigenetic mechanisms that are

involved in regulating the expression of mucin genes in cancer

epithelial cells. These regulatory processes are critical for inhibiting

tumor suppressor genes and promoting oncogenes for the

uncontrolled cell growth and development of cancer (86, 114–117).

These findings emphasize the need to understand the changes

in post-translational modifications and expression profiles of

mucins concerning lung cancer. Studying these mechanisms can

provide important information about how complicated the part

played by mucins is in lung cancer development, which not only

contributes to the availability of new diagnostic and therapeutic

approaches but also elucidates the relationship between mucins and

lung cancer. Moreover, employing mucins for the biomolecular

diagnosis of lung cancer and differentiating between cancer types in

patients allows for a more effective treatment plan. Individualizing

treatment plans can be a game changer in the diagnosis and

treatment of this disease, thus improving the chance of recovery

for patients. In light of these studies, more precise and efficient

treatments of lung cancer could be provided based on the

knowledge of the mechanisms involving mucins.
2.3 Clinical applications of mucin
biomarkers

Recent studies have demonstrated the promising potential of

mucins as cancer biomarkers. Mucin expression levels can be detected

in tumor tissues, serum, and other biological fluids using techniques

such as immunohistochemistry, ELISA, and mass spectrometry. The

use of mucin as biomarker can aid in early detection, tumor typing,

and patient stratification, ultimately guiding the selection of

appropriate treatment strategies. Recent studies on mucin as a

cancer biomarker have been quite encouraging, with investigations

showing the ability of mucin to differentiate between various types of

cancer based on the degree of expression of these molecules (118).

This advancement has led to greater interest in using mucin as a

biomarker for diagnosing diseases at the early stages and developing

treatments that are tailored to the individual patient. In conclusion,

biomarker studies of mucin are fundamental to the improvement of

cancer knowledge and control. With reference to the ongoing
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TABLE 3 Research hotspots in the treatment of cancer targeting members of the mucin family.

Mucin target Treatment strategy Specific drug/technology Mechanism of action Clinical trial phase Indications

hase I/II Metastatic colorectal cancer

Phase I Various metastatic solid tumors

– Triple - negative breast cancer, etc.

hase I/II

Various advanced solid tumors (including non -
small cell lung cancer, breast cancer, urothelial
cancer, ovarian cancer, cholangiocarcinoma, and

pancreatic cancer)

– –

– –

Phase I
Platinum - resistant ovarian cancer, unresectable

pancreatic cancer

Phase II Recurrent ovarian cancer

Phase II Recurrent ovarian cancer

Phase I Recurrent ovarian cancer

hase I/II Various tumors

Phase II
Ovarian cancer, peritoneal cancer, fallopian tube

cancer, and endometrial cancer

– Pancreatic cancer

Phase I Gastric cancer, esophageal cancer
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MUC1 ADC BM7 - PE

The anti - MUC1 antibody BM7 is
conjugated with Pseudomonas exotoxin A
(PE), and the toxin is brought into cancer
cells through endocytosis

P

MUC1 ADC M - 1231
A bispecific antibody - drug conjugate
targeting epidermal growth factor receptor
(EGFR) and MUC1

MUC1 Antibody Therapy Pab - 001 - MMAE

Targets the extracellular part of MUC1 - C,
overcoming the problem of antibody failure
caused by the shedding of MUC1 -
N subunits

MUC1 ADC DS - 3939
Targets tumor - specific sialyl - Tn
glycoprotein locus (TA - MUC1)

P

MUC1 Bispecific Antibody PM - CD3 - GEX
Recruits anti - tumor CD3+ T cells to
MUC1 - expressing cancer cells

MUC1 Immunocytokine PM - IL15 - GEX
Combines interleukin - 15 with PankoMab
- GEX to stimulate anti - tumor NK or
T cells

MUC16 ADC DMUC5754A (sofituzumab vedotin)
Human - derived anti - MUC16 antibody is
conjugated with the anti - mitotic agent
monomethyl auristatin E (MMAE)

MUC16
Bispecific T - cell
Engager (BiTE)

REGN4018 (MUC16/CD3 BiTE)
Targets MUC16 - positive cancer cells and
T cells, exerting an anti - tumor effect

MUC16 BiTE REGN5668 (MUC16/CD28 BiTE)
Targets MUC16 - positive cancer cells and
CD28+ T cells

MUC16
Chimeric Antigen Receptor
T - cell (CAR - T) Therapy

JCAR - 020
Targets MUC16 and carries interleukin - 12
receptor agonist

MUC16 Bispecific Antibody LBL - 033
Targets MUC16 and CD3, recruiting T cells
to attack cancer cells

P

MUC16 Bispecific Antibody Ubamatamab
Targets MUC16 and CD3, recruiting T cells
to attack cancer cells

MUC13 Antibody Therapy –
Targets MUC13 for the diagnosis and
treatment of pancreatic cancer

MUC17
Bispecific T - cell
Engager (BiTE)

AMG 211
Targets CD3 and MUC17 for the treatment
of gastric cancer and esophageal cancer
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research (Table 3), expectations are high for witnessing significant

progress in the early detection of cancer and improved therapeutic

interventions using these molecular biomarkers.

Furthermore, advancements in technology have led to the

application of even more precise and intricate techniques in the

detection of mucin biomarkers; for instance, liquid biopsy or

imaging techniques. These innovations have also contributed to

the development of mucin as a biomarker and provide a

tremendous opportunity to improve the quality of life for

oncology patients (119).
3 Significance of research on mucins
in lung cancer

The role of the mucins in lung cancer has been a long topic of

great importance for clinical practice. By understanding the

complex associations between mucins and lung cancer, the fields

can come up with better ways of determining the causative factors

of this deadly disease, which in turn help to identify novel

biomarkers for early diagnosis, new targets for treatment, and

promising treatment regimens. Furthermore, a deeper

understanding of the role of mucins could help in constructing

more accurate prognostic markers, which will be important to

individualized treatment plans and patient survival (86, 120).
3.1 Role of mucins in the occurrence and
development of lung cancer

At present, studies on the mucin family are still in the early

stages, and the role of mucins in the initiation and progression of

lung cancer is extremely complex. We thus categorize the impact of

mucins on lung cancer into several key processes (Figure 1):
Fron
1. Signal transduction: Mucins can interact with various

signaling proteins, such as kinases and TFs, impacting

downstream signaling pathways associated with tumor

growth (121).

2. Cell proliferation: Some mucins, like MUC1, can facilitate

the release of growth factors and prostaglandins, thereby

promoting cell proliferation (122).

3. Apoptosis: Certain mucins, such as MUC4 and MUC21,

have been shown to inhibit apoptosis and to promote

tumor cell survival (123, 124).

4. Migration and invasion: Some mucins can regulate cell

adhesion and motility via epithelial - mesenchymal

transition (EMT) (123, 125).

5. Immune evasion: The altered glycosylation of mucins can

help tumor cells avoid immune detection (126).
The illustration of several key members of the mucin family is

expanded in the following sections.

The intricate structure of MUC1 underscores its significance in

medical research and clinical assessment. In normal tissues, MUC1
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assumes a branched architecture, adorned with polysaccharides,

enhancing its surface area for interactions with the extracellular

environment. It primarily functions as a protective shield,

lubricating agent, and structural stabilizer, while also engaging in

cellular signaling and recognition processes (127–130). Its structure

encompasses: Amino Acid Sequence: Arranged in 5 repetitive units,

each containing approximately 20 amino acid residues, contributing to

its unique composition; Glycan Chain Composition: Rich in mannose

and galactose, intricately linked via both N-linked and O-linked

glycosidic bonds, adding to its complexity; Functional Domains:

Comprising a central repetitive region, along with distinct C-

terminal and N-terminal regions, each with specialized biological

activities; Expression Regulation: Subjected to intricate control by

hormones, growth factors, and tumor-associated signaling pathways,

highlighting its responsiveness to environmental cues. MUC1-C

(transmembrane-cytoplasmic segment) consists of an extracellular

domain of 58 amino acids, a transmembrane domain of 28 amino

acids, and a cytoplasmic tail region of 72 amino acids. Its cytoplasmic

tail region contains multiple phosphorylation sites (such as Tyr and

Ser residues) and can interact with signaling pathways such as EGFR,

PI3K/AKT, and b-catenin. Under normal physiological conditions,

MUC1-N and MUC1-C form a heterodimer through non-covalent

bonds and are localized to the apical membrane of the cell; in a tumor

environment, MUC1-N is prone to shedding, while MUC1-C remains

continuously activated and undergoes internalization (131–133).

In diseased tissues, particularly cancer, can lead to alterations in

MUC1 expression and structure, manifesting as overexpression and

formation of a dense membrane layer. These changes may hinder

drug penetration and disrupt normal physiological functions. In

disease states, MUC1’s role shifts toward facilitating cancer cell

growth, metastasis, and invasion, while simultaneously diminishing

the responsiveness of cancer cells to chemotherapy and

radiotherapy (134, 135). And its special structure is precisely the

main mechanism by which MUC1 promotes anaplastic apoptosis

resistance. MUC1’s extensive O-glycosylation facilitates its

interactions with various cell surface molecules that initiate

anoikis. By influencing the cell surface environment, MUC1

prevents the engagement of these anoikis-initiating signals that

would normally trigger cell death when anchorage to the ECM is

lost. Specifically, studies have shown that the suppression of Core

1Gal-transferase (C1GT), which leads to significant reductions in

MUC1 O-glycosylation, results in increased susceptibility to anoikis

in MUC1-positive cancer cells. This effect is linked to enhanced

accessibility to critical ligands on the cell surface, such as E-cadherin

and integrin b1, which initiate the anoikis process. Furthermore,

MUC1’s capability to create a supportive microenvironment

enables cancer cells to evade the initial signals that would

otherwise activate apoptotic pathways. Consequently, when

cancer cells detach, MUC1 aids in sustaining signals that promote

survival pathways, ultimately enhancing their metastatic potential

(136–138).

The cytoplasmic domain of MUC1 can physically associate with

numerous signal transduction proteins with kinase activity such as

PKCa (Protein Kinase C Alpha), PKCd (Protein Kinase C Delta),

GSK3b (Glycogen Synthase Kinase 3 Beta), EGFR, and cSrC (a
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proto-oncogene). It also binds to nonkinase active signal molecules,

including p53 (a tumor suppressor gene), Era (Estrogen receptor

a), and b-catenin, although they are not kinases. These interactions

engage signaling processes relevant to tumor formation (121).

MUC1 interacts closely with EGFR, which promotes cancer

progression and influences therapeutic responses, significantly

impacting the pathology NSCLC. Animal model studies have

demonstrated that MUC1 can enhance carcinogen-induced EGFR

activation in lung bronchial epithelial cells, indicating that MUC1

may lead to lung carcinogenesis by stabilizing activated EGFR. This

stabilization enhances cellular signaling pathways that contribute to

tumor growth and survival. Consequently, prolonged EGFR

activity, which is frequently upregulated in various lung cancers,

drives proliferation and metastasis (139).

In the context of chemotherapy, particularly with paclitaxel-

based drugs, the expression of MUC1 is closely associated with the

drug resistance mechanism in lung adenocarcinoma. Research has

demonstrated that high-level expression of MUC1, through its

involvement in the NF-kB and MAPK signaling pathways, could

activate the EGFR signaling cascade, which linked to cancer stem

cell characteristics. This activation may contribute to maintaining a

chemo-resistant cell population. Furthermore, the interaction

between MUC1 and EGFR may partially promote drug resistance

by activating the IL-6 signaling pathway, which is implicated in

cancer stem cell enrichment and subsequent chemotherapy

failure (140).
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The regulatory dynamics between MUC1 and EGFR involve

multiple signal transduction pathways. Clinical and cellular studies

indicate that MUC1 overexpression enhances the stability of EGFR

and promotes ligand-independent activation, resulting in the

upregulation of downstream targets in the PI3K/Akt pathway,

including phosphorylated AKT and mTOR (56, 141). This

upstream regulation of EGFR signaling by MUC1 establishes a

pro-proliferative microenvironment, which is distinct from the

downstream effects of MUC1-C on PI3K/Akt described in other

research (56, 141).

MUC1 has been shown to play a pivotal role in inducing

prostaglandin and growth factor synthesis, which are crucial for

promoting cancer cell proliferation and survival. However, the

precise molecular mechanisms underlying these interactions

remain unclear, necessitating further investigation (93). The

molecular mechanism of oncogenic s ignal ing is the

phosphorylation of the cytoplasmic tail of MUC1, which then

acts as a receptor, binds to TFs, and translocates into the nucleus

to activate further signaling pathways (142). On the whole, MUC1

has a significant function in signal transduction throughout the

carcinogenic process and is strongly associated with EMT, invasion,

metastasis, and chemoresistance (122).

The C-terminal domain of MUC1, formerly described as

MUC1-C, has a disordered structure, while the cytoplasmic

domain of the CQCRRK sequence interacts with the cytoplasmic

membrane (143). In patients with NSCLC, an excessive expression
FIGURE 1

Mechanistic map of aberrantly expressed mucin family members driving cancer progression. Focuses on the mucin functional network, illustrating
their biological roles in supporting tumor progression through mechanisms such as disrupting immune responses, activating signaling pathways,
regulating apoptosis and proliferation, promoting cell migration and invasion, and interacting with the extracellular matrix.
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of MUC1-C is linked to the downregulation of genes related to

immunosuppression and a poor prognosis (144). As a cancer-

related protein, MUC1-C exerts its influence on downstream

signaling pathways by interacting with a variety of signaling

molecules. For instance, it activates the transcription factor

TCF7L2, thereby promoting the expression of cyclin D1 (145). In

addition, MUC1-C can be targeted to mitochondria through its

interaction with c-Src and the molecular chaperone HSP90 (146).

MUC1-C serves as a common mediator of osimertinib

resistance in NSCLC. Targeting MUC1-C has been shown to

reverse osimertinib resistance in various models (147). It also

promotes angiogenesis by upregulating vascular endothelial

growth factor (VEGF) expression, thereby providing nutrients for

tumor growth (148). At the same time, MUC1 is involved in

regulating the tumor microenvironment by modulating the

expression of CD274/PD-L1. Studies indicate that MUC1-C

directly activates PD-L1 expression in lung cancer cells, thereby

contributing to immune evasion (21). MUC1-C achieves this by

increasing NF-kB p65 occupancy on the CD274/PD-L1 promoter,

which enhances CD274 transcription and further suppresses the

activity of immune effectors such as TLR9 and IFNG. This interplay

suggests a feedback loop in which MUC1 not only inhibits immune

responses but also actively promotes pathways that protect the

tumor from immune clearance, a common characteristic of

malignant cells in lung cancer (149).

Altogether, MUC1-C has been observed to induce expression of

inflammatory cytokines, promoting a supportive environment for

tumor growth and survival. By influencing the activation of

immune cells within the tumor microenvironment, MUC1-C also

assists in establishing a pro-tumorigenic milieu that can help

tumors evade immune surveillance (150).

Importantly, MUC1-C’s role extends to the modulation of

apoptotic signals in lung cancer cells. By interfering with

apoptotic pathways, MUC1-C can protect tumor cells from

chemotherapy-induced death, contributing to the overall

resistance of lung cancer to treatment. This protective mechanism

illustrates why targeting MUC1-C could have therapeutic

implications, particularly in enhancing the efficacy of existing

lung cancer treatments (106, 151). Based on the above, combining

therapies that target MUC1-C with traditional chemotherapy or

immunotherapy could enhance treatment efficacy against lung

cancer. Such strategies have the potential to disrupt the functions

of MUC1-C, restore immune responses against tumors, and

circumvent resistance mechanisms that complicate lung cancer

management (147).

In paclitaxel-resistant NSCLC cells, the expression of MUC1-C

is upregulated, correlating with the activation of the PI3K/Akt

signaling pathway. Inhibition of MUC1-C can reverse this

resistance. In SCLC, MUC1 interacts with PP2A to enhance its

activity, thereby inhibiting the activity of PKCz. This ultimately

reduces the phosphorylation of NUMB, promoting the symmetric

division and expansion of cancer stem-like cells (CSCs), which

contributes to chemoresistance (152). Silencing MUC1-C in H1975

cells carrying the EGFR driver mutation L858R/T790M can inhibit

lung cancer cell proliferation by suppressing the protein kinase B
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(Akt) signaling pathway. The MUC1 inhibitors GO-201, -202, and

-203 can directly bind to the MUC1 cytoplasmic domain and slow

MUC1-induced cell proliferation. GO-203, in combination with

afatinib, can inhibit the growth of NSCLC cells with EGFR (T790M)

or EGFR (delE746-A750) mutations. MUC1 can also interact with

estrogen receptors a and b in the nucleus to inhibit the proliferation
of LUAD cells (143).

Phosphorylation of the MUC1 cytoplasmic tail is a pivotal step

in its oncogenic signaling. Once phosphorylated, MUC1 acts as a

receptor that binds to TFs and translocates to the nucleus to activate

downstream signaling pathways (153).After being phosphorylated

by tyrosine kinases such as EGFR, MUC1-C can directly bind to the

SH2 domain of PI3K, activate the AKT→mTOR signaling pathway,

and also stimulate the MEK/ERK signaling pathway (154). The

RAS-associated domain family IA (RASSF1A) is an inhibitor of the

MEK/ERK signaling pathway. Inhibiting the expression of

RASSF1A would indirectly promote the activation of the MEK/

ERK signaling pathway (16). In addition, the MEK/ERK signaling

pathway is also involved in the PD-L1 expression process induced

by MUC1-C, thereby affecting the immune escape of the

tumor (155).

MUC1 interacts with various cells in the TME, including

tumor-associated macrophages (TAMs), which are known to

promote cancer growth and metastasis through the secretion of

growth factors and cytokines. Research indicates that MUC1

expression is upregulated in TAMs, particularly in the M2

phenotype, which is associated with inflammation and tumor

progression. The presence of MUC1 in this context can enhance

cancer stem cell properties and contribute to the inflammatory

milieu that supports tumor growth (156).

Moreover, MUC1 has been linked to the secretion of tumor

necrosis factor-alpha (TNFa) from macrophages. This cytokine

promotes inflammatory conditions that are conducive to cancer

development. Additionally, MUC1 can regulate the differentiation

and function of immune cells, influencing the immune response in

the TME. For instance, high levels of MUC1 may suppress cytotoxic

T cell activity, thereby aiding tumor escape from immune

surveillance (156, 157). Therefore, MUC1-C therapy may enhance

the activation and killing ability of CD8(+) T cells by activating the

immune microenvironment (17). Besides, MUC1 influences the

uptake ability of dendritic cells (DCs) (158).

Notably, a study has revealed that higher expression of MUC1

can potentiate the tumor-promoting functions of TGF-b. In the

tumor microenvironment, MUC1 may cooperate with TGF-b
signaling pathways. For example, TGF-b, which exists in multiple

isoforms such as TGF-b1, TGF-b2, and TGF-b3, plays a complex

role in cancer. Initially, TGF-b can act as a tumor suppressor in

normal and early stage cancer cells by inhibiting cell proliferation

and inducing apoptosis. However, in advanced cancers, it switches

to a tumor-promoting factor, contributing to processes like EMT,

angiogenesis, and immune evasion. MUC1, with its aberrant

expression in cancer, can enhance the tumor-promoting aspects

of TGF-b. It might interfere with the normal regulatory

mechanisms of TGF-b signaling, perhaps by influencing the

phosphorylation of key components in the TGF-b pathway or by
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modulating the interaction between TGF-b receptors and their

downstream effectors (159–161).

The TME also encompasses interactions with fibroblasts, where

mucins can influence the production of growth factors and

cytokines that alter the behavior of surrounding cells. For

instance, MUC1 deficiency in fibroblasts has been associated with

increased production of EGFR ligands, enhancing EGFR signaling

and further facilitating lung carcinogenesis (139). This intricate

feedback loop demonstrates how mucins regulate the cross-talk

between tumor cells and the stroma, affecting the overall tumor

dynamics. Extracellular vesicles (EVs) derived from both lung

cancer cells and activated mast cells are another crucial aspect of

mucin interactions in the TME. These EVs can carry tumor-

promoting microRNAs (miRNAs), affecting gene expression in

recipient cells, including immune cells and tumor cells (162).

Such intercellular communication is vital in cancer progression

and emphasizes the role of mucins as not merely structural

components but active participants in signaling pathways that

drive tumorigenesis.

The immunosuppressive effects of MUC1 in the TME can also

be mediated through its influence on other mucins and cancer-

related pathways. For example, interactions between different

mucins—such as MUC5AC and other mucins—indicate a

network where these proteins might cooperate or antagonize each

other’s functions, further complicating the TME. MUC5AC has

been implicated in lung cancer cell metastasis and growth, and its

knockdown has led to decreased migration of cancer cells and

reduced tumor-promoting signaling pathways, particularly via

integrin-mediated pathways which are essential for cancer cell

adhesion and motility (67).

MUC4, characterized by its extensive glycosylated extracellular

region, has the ability to conceal immunogenic antigens on the cell

surface, thus shielding tumor cells from immune system recognition

(126). The MUC4 protein contains multiple identical tandem repeat

units, which are crucial for its structural and functional properties.

MUC4 comprises distinct domains that contribute to its diverse

functionality. Its structure is highlighted by: N-Glycosylated Region:

Essential for protein folding and stability, this region carries crucial N-

glycan chains at the amino terminus; Core Region: Harboring

conserved sequences and functional domains, it serves as the

primary active segment of MUC4; C-Terminal Region: Incorporates

signal peptides and transmembrane helices, guiding MUC4’s

positioning and function; Glycan Chain Diversity: Including O-

glycosylation and Sialylation, enhancing its complexity and

potentially modulating function; Post-Translational Modifications:

Acetylation and phosphorylation significantly impact MUC4’s

activity and behavior; Molecular Interactions: It engages with

various molecules like TGF-b and IFN-g (interferon-g) (123, 163,

164). The expression of the glycosyltransferase ST6GAL1 (ST6 Beta-

Galactoside Alpha-2,6-Sialyltranferase 1) is closely associated with

MUC4 expression and plays a role in the glycosylation process. The

overexpression of ST6GAL1 in bronchial epithelial cells led to an

increased expression of MUC1 and MUC4, while the silencing of

ST6GAL1 resulted in a decreased MUC4 expression (144).The highly

glycosylated tandem repeat (TR) domain of MUC4 has been
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hypothesized to impede tumor cell interaction with ECM proteins,

suggesting a mechanism by whichMUC4 could modulate the physical

and biochemical environment of the tumor. Moreover, MUC4 has

distinct extracellular and cytoplasmic tail domains that work together

to promote EGFR signaling, which is essential for cancer cell behaviors

such as invasion and metastasis (165).

In addition, MUC4 suppressed the growth of lung cancer cells

via the modulation of the cell cycle and the GSK3b/p-Akt protein.
Moreover, it influences cell invasion and metastasis via FAK activity

and EMT markers (16). Furthermore, MUC4 has been shown to

modulate the phosphorylation and activation of ERK, which in

turn, prevents cell apoptosis. It is also involved in the activation of

the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling, which

are necessary for cancer cell proliferation and immune evasion (166,

167). And MUC4 is capable of physically interacting with EGFR,

thereby influencing its stability and activity. This interaction is

crucial in sustaining oncogenic signaling within the TME,

particularly as it pertains to the trans-differentiation of pancreatic

acinar cells into ductal phenotypes, a process that is also indicative

of lung cancer progression. MUC4’s juxtamembrane EGF-like

domains are responsible for preventing EGFR ubiquitination and

degradation upon ligand stimulation, which allows for persistent

activation of downstream signaling pathways essential for tumor

development, such as the ERK and PI3K/Akt pathways (168).

In addition, MUC4 enhances tumor cell migration and invasion

by suppressing the expression of the intercellular adhesion molecule

and the integrin receptor (165, 169). MUC4 also increases the

activity of EGFR family proteins, which in turn activate cancer cell

proliferation, growth, motility, and invasion through actin filaments

(30, 170). These studies indicate that MUC4 plays a role in

enhancing tumor growth by initiating various pathways that

promote tumor sustenance while suppressing the apoptotic

process in cancer cells (123). In the lung cancer TME, MUC4

reinforces its influence through an array of biological functions,

including the promotion of inflammation and immune evasion.

TAMs, particularly those polarized to the M2 phenotype, produce a

microenvironment that supports CSCs generation. Studies indicate

that MUC4 expression is elevated in the presence of M2-TAMs,

which enhances the stemness characteristics of lung cancer cells.

This suggests that MUC4 plays a vital role in promoting an

inflammatory microenvironment that is conducive to CSCs

generation, thereby supporting tumor malignancy and treatment

resistance (156).

In MUC4 knockout cells, researchers observed the upregulation

of COL4A5 (Collagen Type IV Alpha 5 Chain), SMAD6 (SMAD

Family Member 6), CXCL1 (C-X-C Motif Chemokine Ligand 1),

DUSP2 (Dual Specificity Phosphatase 2), and other genes, while

S100A4 (S100 Calcium Binding Protein A4), PDGFRB (Platelet

Derived Growth Factor Receptor Beta), CAV1 (Caveolin 1), CAV2

(Caveolin 2), and other genes were downregulated (171). Studies

have shown that the expression of MUC4 is incrementally increased

during the progression of pancreatic cancer and correlates with the

activation of Wnt/b-catenin signaling pathways, which are known

to interact with MUC4 and contribute to the modulation of the

tumor microenvironment. The presence of MUC4 can enhance
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cancer cell migration and promote EMT, thus facilitating metastasis

through increased plasticity of tumor cells (172).

The ErbB receptor family, consisting of ErbB1 (HER2/neu),

ErbB2 (also HER2), ErbB3, and ErbB4, interacts with MUC4.

MUC4-ErbB binding triggers downstream signaling cascades,

modulating cell growth, differentiation, survival, and more. The

interaction may involve ErbB receptor tyrosine phosphorylation,

catalyzing a biochemical sequence that elicits a targeted cellular

response (173–175). Investigations into lung cancer cell lines have

indicated that MUC4’s effect on ErbB signaling can lead to the

activation of downstream pathways, including the MAPK and

PI3K/Akt pathways. These pathways are pivotal for processes

such as cell growth, survival, and motility. High expression levels

of ErbB and its ligands in the TME correlate with enhanced cancer

aggressiveness, highlighting the importance of MUC4’s role in the

modulation of this signaling axis (176). This is crucial in

tumorigenesis, as HER2 signaling is often implicated in the

aggressive nature of various cancers, including lung cancer.

Studies have indicated a correlation between MUC4 expression

and the degree of differentiation, tumor stage, and ErbB2 expression

in NSCLC. The binding of MUC4 to ErbB2 receptor tyrosine kinase

involves the three EGF-like domains of MUC4b (Figure 2). This

binding forms an oncogenic complex that promotes cell

proliferation and migration and is highly expressed on the surface

of cancer cells (176). The role of MUC4 in NSCLC tumor cells

appears to be limited to apoptosis and the inhibition of

differentiation, with no impact on the proliferation of the cells.

Excessive MUC4 expression is strongly associated with poor

differentiation, advanced tumor stage, and high ErbB2 expression

(179). MUC4 can modulate the signaling potential of ErbB2 by

stabilizing and directly interacting with the ErbB2-ErbB3

heterodimer, thereby promoting the autophosphorylation of

ErbB2 (180).

Additionally, MUC4 has been found to influence the tumor-

associated immune response by modulating the recruitment and

activity of various immune cell types. Tumors with high MUC4

expression may show altered infiltration patterns of immune cells

such as T cells and macrophages, which can contribute to a pro-

tumor microenvironment (164, 181, 182). Specifically, MUC4’s role

in enhancing ErbB signaling pathways is linked to creating a

microenvironment that promotes the accumulation of immune

suppressive cells, thereby hindering effective anti-tumor

immunity. The silencing of MUC4 inhibits TGF-b1-induced EMT

through the ERK1/2 pathway and induces EMT in human airway

epithelial cells (158).

Overall, the role of MUC4 in lung cancer development is

complex and multifaceted, involving significant interactions with

various pathways and cell types within the TME. Its dual role in

promoting tumor growth while also impacting immune response

underscores the necessity for further research in this area, to

elucidate the mechanisms through which MUC4 can be effectively

targeted for cancer therapy.

The expression of MUC5AC is closely associated with tumor

aggressiveness and poor prognosis in various types of cancer. In

lung cancer, particularly LUAD, MUC5AC expression is
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significantly upregulated and correlates with tumor invasiveness,

lympho-vascular invasion, tumor heterogeneity, and poor

prognosis (Human lung cancer cohort study) (68). In LUAD,

MUC5AC expression is notably linked to aggressive subtypes

such as Invasive Mucinous Adenocarcinomas (IMA) (183). High

MUC5AC expression is associated with KRAS-mutated LUAD,

whereas i t i s lower in LUAD with EGFR mutat ions

(183).MUC5AC-positive tumors are associated with poorer

prognosis and are an independent factor for adverse outcomes.

The mechanisms underlying the role of MUC5AC in lung

cancer are complex and multifaceted, involving tumor promotion,

brain metastasis, cell migration, and chemoresistance (184). Specific

signaling pathways activated by MUC5AC vary across studies.

Some emphasize the importance of the EGFR/Ras/Raf/ERK

signaling cascade (183), while others focus on the interaction

between NECTIN2 and PRRC1. MUC5AC interacts with

NECTIN2 to influence T-cell function and tumor angiogenesis,

thereby promoting tumor immune evasion. Additionally,

MUC5AC interacts with PRRC1 to enhance tumor glycosylation,

which in turn boosts angiogenesis and metastatic potential

(184).Overexpression of MUC5AC has been associated with

cisplatin resistance in lung cancer cells. In contrast, silencing

MUC5AC leads to decreased migratory capacities and increased

cytotoxicity to cisplatin, suggesting that abnormal glycosylation

confers resistance to therapeutic agents (67, 69).

Studies have demonstrated that MUC5AC is not only elevated

in tumorous tissues but can also influence various immune

processes within the TME. One of the notable findings is that

MUC5AC impacts the behavior and interaction of immune cells

within the TME. The interaction between MUC5AC and integrin

b4 activates downstream signaling pathways by recruiting

phosphorylated FAK (Y397), leading to lung cancer cell migration

(67). The phosphorylation of FAK at tyrosine 397 was found to be

reduced in MUC5AC knockdown cells, indicating that MUC5AC

may enhance metastatic potential through integrin-mediated

signaling pathways. This process is post-transcriptionally

regulated by the SNHG16/mir-145 axis (185). Researchers have

meticulously categorized the intricate involvement of abnormal

MUC5AC secretion and production, revealing the complex role

of NF-kB and IL-13–STAT6–SPDEF signaling in cell differentiation

processes related to mucus secretion (19).

The pivotal role of the MUC5AC/ANXA2 signaling axis in

facilitating brain metastasis from lung adenocarcinoma underscores

its significance in cancer progression. ANXA2, a calcium-

responsive phospholipid-binding protein, exhibits ubiquitous

upregulation in diverse tumor types, notably lung malignancies,

where it orchestrates pivotal functions. These include fostering

angiogenesis, facilitating extracellular matrix remodeling, and

serving as a crucial receptor for tissue plasminogen activators,

thereby potentiating plasminogen activation and metastatic

cascades (186, 187).

A notable interaction between MUC5AC and ANXA2 on

cellular membranes fosters migration and colonization within

cerebral niches, mediated by astrocyte-secreted CCL22. This

chemokine not only triggers MUC5AC expression through the
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ERK1/2-SP1 signaling cascade but also binds to its receptors on

lung adenocarcinoma cells, activating the ERK1/2 pathway and

enhancing SP1 binding to the MUC5AC gene promoter.

Intriguingly, ERK inhibitors have been found to attenuate

CCL22-induced upregulation of MUC5AC and SP1, highlighting

the intricate regulatory mechanisms underlying this signaling

network. In summary, the MUC5AC/ANXA2 signaling pathway,

modulated by CCL22, exerts a profound influence on the

development of brain metastases from lung adenocarcinoma

(188–191). Furthermore, the pathological effects of MUC5AC in

lung cancer go beyond immune modulation. It has been reported

that high mucin levels correlate with increased metastatic potential

and worse overall clinical outcomes in patients, highlighting its role

as a biomarker in the progression of LUAD, particularly in KRAS-

mutant subtypes. Studies using genetically engineered mouse

models of LUAD have shown that the depletion of MUC5AC

leads to a substantial reduction in tumor growth and metastasis,

underscoring its functional importance in tumor evolution and

progression (192).

The MUC5B gene exhibits pronounced upregulation in LUAD,

forming intricate gene networks with others, implicated in diverse

functions encompassing o-glycosylation, immune system dynamics,

and Golgi apparatus functions (193). These findings provide

potential clues for early diagnosis of lung adenocarcinoma.

Studies have revealed that MUC5B is significantly upregulated in

LUAD, with a gene expression profile showing a logFC of 2.36 and a

p-value of 0.01. The median OS is less than 50 months, and the

hazard ratio is 1.4. These findings suggest that MUC5B may serve as

a diagnostic biomarker for LUADmetastasis. Moreover, researchers

have found that mutations in MUC5B are positively correlated with

immune cells in the TME, such as cancer-associated fibroblasts and

myeloid-derived suppressor cells (193).

Notably, the impact of MUC5B mutations on prognosis varies

across different tumors. In LUAD, endometrial cancer, and bladder

cancer, MUC5B mutations are associated with favorable prognosis,

whereas in head and neck squamous cell carcinoma, the opposite is

observed. This discrepancy may arise from differences in cellular

characteristics, microenvironment, and genetic background among

various tumors (193, 194). These studies elucidate the role of

MUC5B in lung cancer development from multiple dimensions,

including immune regulation and gene expression control.

Although conclusions vary, they complement each other and
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deepen the understanding of the complex mechanisms underlying

MUC5B’s actions. This knowledge provides a multifaceted

perspective and theoretical support for lung cancer research and

the development of targeted therapies. It also highlights the need for

further exploration of MUC5B’s specific mechanisms in different

tumor contexts and its potential therapeutic targets.

MUC6, a secretory mucin, is aberrantly expressed in various

cancers, including lung cancer. Research has demonstrated that

MUC6 expression is significantly elevated in LUAD, particularly in

the IMA subtype. In a specific study, MUC6 expression was

correlated with tumor invasiveness, lympho-vascular invasion,

tumor heterogeneity, and poor prognosis. Conversely, high

MUC6 expression was associated with smaller tumor size, female

patients, and better prognosis. Additionally, MUC6 expression was

linked to KRAS wild-type (KRAS-WT) tumors, suggesting its

potential as a prognostic biomarker (71, 195).

In contrast to MUC1 and MUC21, which are strongly

correlated with macrophages, MUC6 is significantly positively

correlated with CD4(+) T-cell infiltration. This finding suggests

potential differences in the immune microenvironment associated

with these mucins. Through immunohistochemical staining, studies

have indicated that the level of MUC6 expression is linked to the

degree of malignancy and metastatic tendency in lung

adenocarcinoma but not in lung squamous cell carcinoma

(196, 197).

Investigations leveraging transplanted tumor models have

conclusively shown that silencing MUC13 delays the progression

of lung cancer xenografts and curbs the expression of Ki-67, a

pivotal proliferation marker. Subsequent mechanistic insights have

elucidated that MUC13 facilitates lung cancer advancement by

stimulating the ERK/JNK/p38 signaling cascade (80).

MUC16, also known as CA125, is a large transmembrane mucin

that exhibits aberrant expression in a variety of cancers, including

lung cancer (198, 199). Research has shown that its expression is

significantly upregulated in lung cancer, particularly in NSCLC.

Moreover, elevated levels of MUC16 are associated with tumor

invasiveness, lympho-vascular invasion, tumor heterogeneity and

poor prognosis (200). It may impact the growth and metastasis of

lung cancer cells by regulating TSPYL5 (TSPY Like 5) expression

via the JAK/STAT3/GR pathway. Additionally, MUC16 can induce

migration from epithelial cells to mesenchymal cells through the Src

signaling pathway and can affect p53 degradation, leading to
FIGURE 2

Schematic diagram of MUC4 structure. The NIDO domain, situated in the middle of the protein, may facilitate interactions with other proteins or
binding to molecules. Downstream of the NIDO domain is the AMOP domain, which likely participates in protein folding, stability, and localization. At
the end of the protein lies the vWD domain, potentially involved in glycosylation and modification processes. Additionally, downstream of the vWD
domain are Egf-like repeats that may participate in binding to cell surface receptors (177, 178).
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chemotherapy resistance. Through its glycan chains, MUC16

interacts with various molecules such as integrins and growth

factor receptors, participating in cellular signaling, adhesion, and

migration processes (201, 202). These findings shed light on the

potential mechanisms underlying lung cancer progression (203). A

study unveiled a pronounced elevation in MUC16 levels among

patients with NSCLC upon disease progression, contrasting with a

marked reduction from baseline upon treatment response. Notably,

patients presenting with stage IV disease at baseline demonstrated a

heightened likelihood of exhibiting elevated MUC16 levels,

highlighting the potential of this biomarker to reflect disease

status and response to therapy (204).

In the lung cancer tumor microenvironment, MUC16

suppresses innate immune responses through multiple

mechanisms, thereby promoting tumor immune evasion. In

murine models, MUC16 inhibits the cytolytic functions of natural

killer (NK) cells and macrophages, mimicking its effects on human

immune cells and enabling cancer cells to evade innate immune

surveillance (205). Simultaneously, MUC16 binds to the Siglec-9

receptor on NK cells, inhibiting their cytotoxic function. This

inhibition not only diminishes the direct killing capacity of NK

cells against tumor cells but also impairs NK cell-mediated

antitumor activity by disrupting immune synapse formation (206,

207). Furthermore, the extensive glycan structures of MUC16 create

a physical barrier on the surface of tumor cells, hindering effective

immune synapse formation between immune cells and tumor cells.

This physical obstruction further restricts immune cell recognition

and attack of tumor cells, providing an additional protective

mechanism for tumor cells (74, 208). Additionally, aberrantly

glycosylated forms of MUC16 may reduce the presentation of

tumor-specific peptides via HLA-A and HLA-B molecules,

enabling tumor cells to escape immune system recognition and

facilitating tumor immune evasion, thus promoting tumor cell

survival, proliferation, growth, and metastasis within the immune

microenvironment (209).

The ability of MUC16 to activate the JAK2/STAT3 pathway

exacerbates this immunosuppressive environment. The JAK2/

STAT3 pathway not only drives tumor cell proliferation and

metastasis but also upregulates PD-L1 expression. Moreover, the

STAT3-driven transcriptional program induced by MUC16

suppresses pro-inflammatory cytokines such as IFN-g and TLR9,

thereby inhibiting both innate and adaptive immune responses. A

particularly innovative aspect of the interaction between MUC16

and the lung cancer tumor immune microenvironment (TIME) is

its regulation of the RNA-binding protein HuR, which post-

transcriptionally stabilizes oncogenic transcripts such as c-Myc.

This mechanism promotes tumor progression while indirectly

inhibiting immune surveillance by altering the expression of

immunomodulatory genes (149, 210).

In patients with LUAD, MUC16 mutations are significantly

associated with higher TMB. High TMB is typically linked to

stronger immunogenicity, as nonsynonymous mutations generate

neoantigens that can be recognized by the immune system to elicit

an antitumor immune response (211, 212). In another study,

MUC16 was found to be significantly upregulated in ovarian
Frontiers in Immunology 15
cancer cells, and delivery of MUC16 via dendritic cell (DC)-based

vaccines could stimulate CD8+ cytotoxic T lymphocytes (CTLs) to

eliminate tumor cells, highlighting the close association between

MUC16 and DC-mediated immune responses (213). However, even

in the presence of high TMB, T cell activation may be limited if

antigen presentation mechanisms are impaired. Effective T cell

responses via neoantigens are likely only when MUC16 mutation

burden is extremely high and accompanied by an intact antigen

presentation mechanism.

In the context of the TME with MUC16 mutations, the

expression of immune checkpoint molecules PD-L1, LAG3,

PDCD1, and SIGLEC15 is significantly upregulated. This

immunosuppressive microenvironment may counteract the

immune advantages conferred by high TMB, leading to poor

prognosis. Furthermore, in the tumor microenvironment of high-

risk LUAD patients, although the abundance of CTLs and pro-

inflammatory immune signals increases, the functions of these

immune cells may be constrained by MUC16-mediated

immunosuppression (211, 214, 215).

Moreover, in air pollution-related lung cancers, MUC16

mutations have been shown to be particularly prevalent,

indicating that environmental factors may influence its expression

and, subsequently, the tumor-associated immune responses. The

presence of increased MUC16 mRNA levels in lung cancer tissues

from heavily polluted areas correlates with poor prognosis, further

establishing a link between MUC16 expression, environmental

carcinogens, and immune system interactions in lung cancer

development (216, 217).

While MUC16 as a standalone biomarker does not significantly

impact survival outcomes in NSCLC patients, albeit with a

discernible trend, its integration with IL-24 into a biomarker

panel reveals a substantial improvement in OS. This finding

underscores the potential of leveraging the MUC16-IL-24

combination in screening protocols to enhance the efficacy of

early detection for NSCLC (218).

In NSCLC patients receiving EGFR TKIs, MUC17 is

downregulated in drug-resistance-acquired cells. Moreover,

MUC17 is reported to increase NF-kB activity through the

enhancement of DNMT1/UHRF1 complex-mediated promoter

methylation. This implies that MUC17 could be an epigenetic

biomarker for measuring resistance to EGFR-TKIs in drug-

resistance-acquired cells. In addition, MUC21 upregulates the

expression of Bcl-2 and downregulates the expression of BAX and

cleavage of caspase-3 through the activation of the JAK2/STAT3

signaling pathway, preventing cell apoptosis. Related study shows

that the deglycosylation of MUC21 diminishes its anti-apoptotic

properties and that sialidase treatment reverses this effect. These

considerations point to the possibility of employing both MUC17

and MUC21 as further targets for studying drug resistance and

possible approaches to addressing this issue in NSCLC patients

receiving EGFR-TKI (88, 124, 219–221).

Based on what we know so far, the changes in the level of

mucins can be considered an auxiliary diagnostic criterion in the

case of lung cancer. Therefore, for the purpose of establishing new

strategies for therapeutic interventions, understanding the
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regulatory mechanism of the mucin family and its intricate

association with the development of lung cancer becomes

imperative. For future research on this subject, creating a detailed

map of the lesions and the microenvironment where they exist may

be helpful. This approach could reveal more information of the

dynamic changes in the lesions in lung cancer and may have

implications for earlier diagnosis and treatment of the disease. In

conclusion, further studies in this area can help to enhance our

understanding of the mucin involvement in lung cancer; discover

novel therapeutic targets for the treatment of lung cancer; and most

importantly, contribute to betterment of patient prognosis.
3.2 Prognostic value of mucins in patients
with lung cancer

The relationship between the presence of mucins and the

occurrence of lung cancer is significant. Both enhance survival

and proliferation of lung cancer cells by maintaining cell division

and death. These mucins are also responsible for the cell cycle and

assist the cells in avoiding apoptosis, and hence, they are responsible

for the formation of tumors. Moreover, mucins are implicated in

the invasion and metastasis of lung cancer cells since they affect the

adhesion and motility of cancer cells, thus enhancing the ability of

cancer cells to invade surrounding tissues and organs (222).

Of all the mucins, MUC1 has been found to be significantly

linked to poor survival and prognosis. Inappropriate levels of

MUC1 cause a disruption in the epithelial cell polarity and

change the downstream signals through the cytoplasmic domain

of MUC1, leading to an enhanced malignant potential of cancer

(223). In these mucin family members associated with lung cancer.

The significant upregulation of MUC1 expression in LUAD has

important clinical implications, as it may serve as a diagnostic

marker and guide personalized treatment strategies for this subtype

of lung cancer. MUC1(+) tumors are more likely to have lymph

node metastasis and cleaved caspase-3 expression, as well as a larger

tumor diameter than those that are MUC1(-). Thus, evaluating the

prognostic significance of MUC1 in lung cancer is a very significant

task. In addition, poor-prognosis tumor types also exhibit

nonpolarized MUC1 expression patterns, further illustrating the

critical role of MUC1 in the prognostic assessment of lung

cancer (224).

Likewise, the critical role of MUC4 in tumor biology must be

acknowledged and considered. MUC4 has gained increasing

recognition for its involvement in tumor progression and

immune evasion mechanisms. Its expression levels exhibit

significant variation across different types of lung cancer; studies

have demonstrated that elevated MUC4 expression is associated

with adverse clinical outcomes in lung adenocarcinoma and lung

squamous cell carcinoma. Findings further indicate that MUC4 is

closely linked to lymphatic and vascular invasion, thereby

positioning it as a potential biomarker for aggressive tumor

behavior. Specifically, an analysis of a patient cohort revealed that

high MUC4 expression correlates with reduced overall survival

(OS) rates among lung cancer patients, underscoring its prognostic
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significance (181, 225). Additionally, evidence showing an inverse

correlation between MUC4 expression and survival outcomes

further demonstrates that its overexpression negatively impacts

cancer progression (123, 226).

Another study also showed that a high MUC5B expression is

prognostic for poor survival in lung cancer patients, particularly

those with IMA (23, 227). MUC5B is controlled by many TFs like

NKX2-1, SPDEF, and FOXA3, and any distortion in the expression

of these TFs directly impacts the IMA (228). Moreover, certain

mutation sites of the MUC5B gene are significantly correlated with

the response and survival rate of NSCLC patients after

radiotherapy, which will offer valuable implications for the

individualized treatment of lung cancer. MUC5AC is also an

important gene involved in the development of IMA, and IMA

samples with a high expression of MUC5AC are commonly

associated with a poor prognosis (229). The expression of

MUC5AC is also under the regulation of a series of regulatory

factors including DNA methylation. Thus, if the genes that are

involved in the development of lung cancer are better regulated,

then there will be more control over the growth of the disease (230).

The expression pattern of MUC6 gives new insight regarding its

use as a prognostic factor for IMA patients (231). However, MUC6

is not detected in normal lung tissues, while it is overexpressed in

IMA and related to certain IMA types. The results suggest that

MUC6 is highly expressed in IMA, and its high expression is

associated with better prognosis, which adds it as a new marker

to the classification and prognosis of IMA (195).

MUC16 can also be used as a biomarker to assess the prognosis

of patients with lung cancer, as suggested by data obtained

throughout the course of a study by Zhang et al. (232). Pre-

chemotherapy MUC16 levels correlate strongly with patient

outcomes and treatment responsiveness, with lower baseline

values predictive of extended progression-free survival, suggesting

the biomarker’s prognostic value in NSCLC management strategies

(233). Other researchers have developed an immune prognostic

model (IPM) to ensure that MUC16 is commonly mutated in

LUAD with a rate of 43.4% and comes the third rank,

significantly correlating with a high TMB (211). Researchers have

found that MUC16(+) is an independent risk factor for poor

survival in some cancer patients, and the OS of patients with

MUC16(+) cholangiocarcinoma (27.4 months) is significantly

lower than that of patients with MUC16(-) (56.1 months) (234).

The same conclusion was found in NSCLC, where MUC16(+)

patients had a median survival of 18.84 months, and expression

levels were inversely correlated with survival (235).

However, present studies about the correlation of mucin with

the survival of the patients with lung cancer have certain limitations.

Although a strong mucin expression is associated with poor

prognosis in patients with lung cancer, the molecular mechanism

has not been elucidated yet and further investigations are required

to clarify the molecular basis. Moreover, given the diversity of lung

cancer, the association between mucin and the outcome of patients

may not be the same for all subtypes of the disease. Despite

promising findings, significant challenges remain in accurately

determining the association between mucin expression and
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clinical outcomes across diverse lung cancer subtypes. These

challenges include the heterogeneous nature of lung cancer, the

complexity of mucin signaling pathways, and the need for larger,

well-controlled studies. Addressing these challenges will be crucial

for the development of mucin-targeted therapies.

Hence mucins have predictive values for the prognosis of lung

cancer, but the specific molecular mechanism and clinical

application of mucin remain to be further explored. Further

studies should be undertaken to explain the exact function of

mucin in the development of lung cancer in order to enhance the

utilization of mucin as a diagnostic marker or prognostic indicator

for lung cancer and to provide a theoretical foundation for the

individualized treatment of lung cancer.
4 Breakthroughs in the use of mucins
as therapeutic targets for lung cancer

The field of using mucin as a therapeutic target for lung cancer

is making rapid progress, with significant advancements in

fundamental research and notable developments and challenges

in clinical research. Randomized controlled trials are currently

under way to determine whether novel treatments designed to

address mucin dysregulation are effective; the results of some of

these trials are positive in specific instances. However, challenges

still need to be overcome, for instance, how to deliver therapeutic

agents specifically to tumor tissues and how to minimize the adverse

effects of the treatment (236, 237).
4.1 Limitations of traditional targets

Lung cancer, a highly lethal malignant tumor, is typically

treated with surgical intervention, chemotherapy, radiotherapy,

and targeted therapy (238). Over the past few years, targeted

therapy has been identified as an essential strategy for lung

carcinoma since it focuses on the molecular markers found on

cancerous cells (239). However, existing approaches to selectivity

remain problematic today.

Current targeted therapies are primarily based on a small panel

of gene mutations like EGFR and ALK, which are detectable in a

small proportion of lung cancer patients in the clinic. By inference,

currently available targeted therapies for lung cancer may not be

effective for most patients (240). Furthermore, the same treatment is

often prescribed to address a particular target, but the response of

patients is quite diverse (241). The major cause of this difference is

the heterogeneity of lung cancer cells, which is apparent not only in

the differences in their gene expression profiles but also in the

differences within their tumor microenvironment (242).

In addition, many drugs in targeted therapy often face the

problem of drug resistance. This includes typical clinical scenarios,

including platinum drug resistance and EGFR TKI resistance (243,

244). During the course of treatment, the cancer cells may undergo

genetic changes that make them resistant to these targeted drugs
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(245). The emergence of drug resistance not only reduces the long-

term efficacy of targeted therapy but also explains why it is costly.

In conclusion, the current targeted therapies for lung cancer

have been found to be partly effective. Therefore, investigations into

new targets for treatment, for instance mucins, have the potential to

bring about significant progress in the management of lung cancer.

Improving the quality of treatment and extending the range of

interventions for patients with lung cancer would thus be possible.

In the search for new targets for therapy, scientists have also

turned to immunotherapy in tackling lung cancer. Immunotherapy

is a type of cancer treatment that uses a person’s immune system to

fight cancer cells (246). This approach has been found to have some

efficacy in some patients, increasing survival and reducing side

effects compared with conventional therapy (247).

Moreover, developments in precision medicine and genetic

testing have enabled treating patients with more targeted

treatment plans (248). For instance, through sequencing patient’s

tumors, doctors can see the different mutations that exist in a tumor

and can develop new treatments that can target these mutations,

thereby enhancing patient survival (249).

Further research and clinical trials, which would help expand on

our knowledge of these new therapies and their compatibility with

other targeted therapies, should be funded. As long as people

remain committed and eager to find new methods of fighting the

disease, the possibility for further success remains possible.
4.2 Advances in mucin as novel therapeutic
targets

Mucins could be of interest for the development of new

molecular therapies for lung cancer because of their possibilities

as diagnostic and therapeutic biomarkers, their impact on tumor

progression, and their link with patient survival. These biological

molecules can be considered to have benefits over traditional

therapeutic strategies due to the lower incidence of side effects

and drug resistance. Although the role of mucins in lung cancer has

not been fully understood due to the complex and multifaceted

nature of the connection, the immune map of mucin-dominant

precancerous lesions and the microenvironment surrounding them

is anticipated to open a new perspective on and a new way of

diagnosing and treating lung cancer lesions. Several studies have

been conducted to support this research (35, 49, 171, 220, 250).

The opportunity of using mucin as the target of treatment of

lung cancer becomes clear in several aspects. First, the abnormal

expression of mucins in lung cancer cells acts as the basis for the

identification and treatment of this disease. The expression level of

mucins in lung cancer cells is higher/lower than that of normal cells,

which opens up the possibility of using mucins in the diagnosis and

treatment of lung cancer.

Second, mucin is crucial for the tumorigenesis and development

of lung cancer, which indicates its potential as a therapeutic target.

The overexpression of mucin in lung cancer cells not only

stimulates its proliferation and invasion but also enhances its

ability to resist apoptosis, which poses a problem for the
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treatment of the disease. Thus, current therapies focusing on mucin

can be considered promising for increasing the effectiveness

of treatment.

Additionally, mucin has been closely associated with the

survival of patients with lung cancer, which makes it a potential

target for enhancing patients’ outcomes. High levels of mucin were

observed to be more common in lung cancer patients and may be

related to shorter survival (251).

Furthermore, mucin is a relatively newly identified target for

therapy, and we envision that treatments using this target may have

fewer side effects and be safer than many other targets. Such a

treatment is also associated with fewer issues with drug resistance,

making it a promising new avenue for attacking lung cancer.

Currently, further research into targeted therapies for lung

cancer concentrates on mucin, including anti-mucin therapy and

mucin modulators. However, these studies have faced some

limitations: insufficient information regarding the regulatory

mechanisms of mucin and the lack of a standard method to

assess the therapeutic benefits of targeting mucin (252).

Further research should prioritize investigating the specific

mechanisms through which mucin affects lung cancer, as well as

its potential side effects and interactions with other treatments.

Clinical trials will be crucial for determining the optimal dosage and

administration of mucin-targeted therapies, as well as their long-

term impact on patient outcomes. Additionally, exploring the

potential for combination therapies involving mucin-targeted

drugs and other treatment modalities, such as chemotherapy or

immunotherapy, will be important.

Concurrently, developing reliable diagnostic tools for

identifying patients who are most likely to benefit from mucin-

targeted therapies will be essential. This may entail the discovery of

specific biomarkers or genetic signatures capable of predicting a

positive response to treatment.

In general, while targeting mucin for lung cancer therapy shows

promise, further research is required to fully comprehend its

potential benefits and limitations. Collaborations among

researchers, clinicians, and pharmaceutical companies will be

crucial in advancing this field and ultimately enhancing the

outcomes of patients with lung cancer.

However, some steps in the investigations of mucins as

potential targets for therapeutic intervention in lung cancer have

been encouraging. For example, anti-mucin treatments have been

discovered, like monoclonal antibodies and small molecule

inhibitors, such as NCT00157209, NCT02140996, NCT04695847,

NCT04020575, are mucin-related clinical studies registered with

ClinicalTrials.gov. Furthermore, some scholars are considering the

application of mucin modulators to control the synthesis and

activity of mucin as a lung cancer therapy (Tables 4, 5).

Here, we highlight the potential of these approaches through

several representative clinical trials. NCT00157209, a Phase IIb

randomized controlled trial, evaluated the safety and efficacy of

Tecemotide, a MUC1-targeting vaccine, in combination with best

supportive care (BSC) for patients with stage IIIb or IV NSCLC who

had stable disease or response after first-line therapy (chemotherapy

± radiotherapy). Although the overall trial did not meet its primary
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endpoint of OS, a subgroup analysis revealed a significant

improvement in median OS for patients receiving Tecemotide

plus BSC compared to BSC alone (30.8 months vs. 20.6 months,

HR = 0.78, p = 0.016) among those who had undergone concurrent

chemoradiotherapy, suggesting the potential of MUC1 vaccines in

specific patient populations.

NCT04695847 is a Phase I study assessing the safety and

preliminary efficacy of M1231, a bispecific antibody-drug

conjugate (ADC) targeting MUC1 and EGFR, in patients with

metastatic solid tumors, including NSCLC. Utilizing Sutro’s non-

natural amino acid conjugation technology, M1231 links the

Hemiasterlin toxin to a bispecific antibody.

NCT02587689, a Phase I/II trial, investigated the use of anti-

MUC1 chimeric antigen receptor T-Cell Immunotherapy (CAR-T)

cells for the treatment of MUC1-positive advanced solid tumors,

including NSCLC, enrolling 20 patients. Post-infusion, 11 patients

achieved stable disease, while 9 experienced disease progression.

However, symptom improvement was noted in all patients, with no

grade 3 or higher toxicities or cytokine release syndrome (CRS).

NCT04020575 features the second-generation CAR-T therapy

(HUM NC2-CAR 22) developed by Minerva Biotechnologies. This

therapy, incorporating a CD3-z signaling domain mutation (1XX

mutation), significantly extends T cell survival and enhances the

killing capacity against low MUC1-expressing tumor cells.

Demonstrating durable responses in breast cancer models, it is

now being expanded to a lung cancer cohort, with preliminary data

indicating persistent CAR-T cells in the body and partial responses

in some patients.

AICAR (5-Aminoimidazole-4-Carboxamide Ribonucleoside),

an endogenous purine metabolite, has been found to inhibit lung

tumor growth by targeting MUC1 (282). Furthermore, the

construction of an MUC1-DNA vaccine expressing 42 tandem

repeats inhibited the growth of MUC1-expressing tumors in

BALB/c mice following an injection of pcDNA-MUC1. Dual-

specificity CAR-T cells, known as Tan CAR-T cells, targeting

MUC1 in combination with an anti-PD-1 antibody showed

promise for the treatment of NSCLC (283). Study has elucidated

the potent effect of DCs pulsed with WT1 and/or MUC1 peptide

vaccines in prolonging survival among patients diagnosed with

advanced NSCLC, underscoring their therapeutic potential (284).

Additionally, the L-BLP25 vaccine, which consists of a 25 amino

acid sequence (STAPPAHGVTSAPDTRPAPGSTAPP) derived

from MUC1, the BL25 fat peptide, the TLR4 (Toll-like receptor4)

agonist monophosphoryl lipid A (MPLA), and three lipid A

adjuvants, has been shown to activate peripheral blood

lymphocytes and to induce strong Cytotoxic T-Lymphocyte

(CTL) responses in Phase III clinical trials involving NSCLC

patients (276, 285).

In a case report, a patient with advanced LUAD received DC

vaccines (loaded with WT1 and MUC1 antigens) in combination

with erlotinib. The treatment led to a 65.7% reduction in tumor

volume, with no recurrence within 587 days. Mechanistically, the

vaccine induced a MUC1-specific CD8(+) T cell response, while

erlotinib enhanced immune cell infiltration by inhibiting the EGFR

signaling pathway (286).
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Synthetic glycopeptide vaccines, such as ONT-10, mimic

tumor-specific Tn antigens to induce high-affinity IgG

antibodies. Preclinical studies have shown that the efficacy of

the vaccine is associated with the glycosylation level of MUC1. Tn
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antigen-modified vaccines significantly inhibited tumor growth

in MUC1 transgenic mice (287).Self-adjuvant glycopeptide

vaccines (MUC1-Tn-Pam3CSK4) enhance immune responses

via TLR2 agonists, inducing robust humoral and cellular
TABLE 4 Summary of clinical development status of mucin-targeted therapies for NSCLC.

Research status Tumor type Source

Monoclonal antibody

PankoMab-GEX(IgG1) Phase I clinical trial NSCLC (253)

DS6 Preclinical study NSCLC (254)

SAR566658 Preclinical study NSCLC (254)

DF3 Preclinical study NSCLC (255)

KL-6 Preclinical study NSCLC (256)

HMFG1 Preclinical study NSCLC (257)

Antibody coupled
ADC therapy

16A+MMAE Preclinical study NSCLC (258)

anti-MUC1-C/NPs Preclinical study NSCLC (259)

mAb 3D1-MMAE Preclinical study NSCLC (260)

mJAA-F11 Preclinical study NSCLC (261)

CH129 Preclinical study NSCLC (262)

GT-00AxIL15 Preclinical study NSCLC (263)

Qbeta-MUC1 Preclinical study NSCLC (264)

Vaccine

M-1-PL-co-GA-PEG-sHA-NPs Preclinical study NSCLC (265)

TG4010 Phase III clinical trial NSCLC (266)

Tecemotide Phase III clinical trial NSCLC (267)

Ad-sig-hMUC1/ecdCD40L Phase I clinical trial NSCLC (268)

MUC1-Vax Preclinical study NSCLC (269)

CpDV-IL2-sPD1/MUC1 Preclinical study NSCLC (270)

CV9202 Phase IV clinical trial NSCLC (271)

ncRNA
miR-145 Preclinical study NSCLC (272)

miRNA-29b Preclinical study NSCLC (273)

Protein inhibitor GO-203 Preclinical study NSCLC (274)

Combined treatment bevacizumab + tecemotide Phase III clinical trial NSCLC (275)
TABLE 5 Examples of mucin-based therapeutic strategies for NSCLC.

Target Content Tumor type Source

Tan CAR-T Constructe a bivalent tandem CAR-T (Tan CAR-T), which can simultaneously target MUC1 and PSCA NSCLC (276)

MUC-1/CD3 BsAb combine EpCAM/CD3 BsAb and MUC-1/CD3 BsAb to target both EpCAM and MUC-1 NSCLC (277)

epitope APDTRP
Be recognized by multiple anti-MUC1 antibodies and then activate tumor antigen-specific cytotoxic
T lymphocytes

NSCLC (278)

16-amino-acid
MUC1 peptide

Couple to keyhole limpet haemocyanin (KLH) (BP16-KLH) plus DETOX adjuvant elicited evident
class-I restricted CTL activation

NSCLC (279)

25-amino-acid VNTR
MUC1 peptide

Liposomal vaccines targeted to the mucinous carcinoma-associated glycoprotein MUC1—L-BLP25 NSCLC (280)

MUC1 glycopeptide
Consist of MUC1 glycopeptide antigen and a T-cell epitope for the induction of a highly specific
humoral immune response

NSCLC (281)
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immunity in tumor-bearing mice without the need for exogenous

adjuvants (193).

TG4010 is an MVA-MUC1-IL2 vaccine. Researchers evaluated

the efficacy of TG4010 in combination with chemotherapy in a

Phase II trial for advanced NSCLC. Patients were randomly

assigned to receive either TG4010 plus cisplatin/vinorelbine or

sequential treatment (TG4010 monotherapy followed by

chemotherapy upon progression). The combination group

achieved an objective response rate (ORR) of 29.5%, with

desirable disease control and MUC1-specific immune responses.

The median OS was 12.7 months, and the safety profile was

manageable (288).
5 Conclusion

Overall, the significance of mucins in lung cancer has attracted

increasing attention due to their potential role in the development,

progression, and metastasis of tumors. As research on the role of

mucins in lung cancer continues, considering the potential

implications for clinical practice will be important. The profound

understanding of the specific roles played by different mucin family

members in lung cancer holds immense potential for revolutionizing

the diagnosis, prognosis, and treatment of this devastating disease. By

unraveling the intricate web of mucin signaling pathways, researchers

can pave the way for the development of highly personalized and

effective therapies that will ultimately improve patient outcomes.

In conclusion, ongoing research into the role of mucins in lung

cancer has the potential to significantly impact clinical practice by

providing new tools for diagnosis, prognosis evaluation, and

treatment. This could ultimately bring about improved outcomes

for patients with this challenging disease, as advancing our

understanding of the complex disease could result in personalized

treatment strategies.
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