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Melanoma frequently develops bone metastases, leading to skeletal-related

events and poor survival. The tumor microenvironment (TME) plays a pivotal

role in melanoma progression, bone metastasis, and immunotherapy resistance.

Key immunosuppressive cells including myeloid-derived suppressor cells

(MDSCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs),

and cancer-associated fibroblasts (CAFs) promote immune evasion and

osteolytic bone destruction via RANKL-dependent and -independent

mechanisms. Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 and

anti-PD-1/PD-L1 therapies, have revolutionized melanoma treatment, yet

resistance remains common due to TME immunosuppression. Emerging

strategies, such as combination therapies, aim to enhance efficacy by

reshaping the TME. This review synthesizes current knowledge on TME-driven

immunosuppression, bone metastasis mechanisms, and immunotherapeutic

advancements, offering insights into overcoming resistance and improving

patient outcomes.
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1 Introduction

Melanoma is an aggressive skin cancer characterized by early metastasis and accounts

for nearly 90% of deaths from malignant skin tumors despite its relatively low incidence (1,

2). While early-stage cases are surgically curable with favorable outcomes, advanced

melanoma exhibits high invasiveness, poor response to radiotherapy and chemotherapy,

and a five-year survival rate of only 30% (3, 4). Up to 17% of patients develop metastatic

bone disease, leading to skeletal-related events, reduced quality of life, and poorer survival

(5). Bone metastasis depends on interactions between tumor cells and the tumor

microenvironment (TME), particularly immune components (6, 7).
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Recent progress in immunotherapy has offered promising treatment

strategies for melanoma (8, 9). Its high immunogenicity enables the

immune system to recognize tumor-associated antigens, facilitating

immune checkpoint blockade (10). Agents targeting immune

checkpoint inhibitors (ICIs), including CTLA-4, PD-1, and PD-L1,

have significantly improved survival and are now the standard of care

for advanced melanoma (11). However, the immunosuppressive nature

of the TME remains a critical barrier, limiting treatment responses and

contributing to resistance in many patients (12). Consequently,

understanding the mechanisms of immunotherapy and the

composition and function of the TME is critical for effectively

controlling melanoma progression and improving overall patient

survival (13). This review focuses on how the TME shapes melanoma

development, bone metastasis, and immunotherapy response,

integrating current therapeutic approaches, analyzing their

mechanisms and limitations, and providing insight into novel

strategies for improving immunotherapy response in melanoma.
2 Immunosuppressive cells in tumor
microenvironment of melanoma

2.1 Myeloid-derived suppressor cells

MDSCs represent a heterogeneous population of immature

myeloid cells that exert immunosuppressive functions (14). During

tumor progression, MDSCs are recruited and activated by multiple

proinflammatory cytokines, such as prostaglandin E2 (PGE2),

granulocyte colony-stimulating factor (G-CSF), granulocyte-

macrophage colony-stimulating factor (GM-CSF), and CCR5, which

are released within the TME (15). In melanoma, MDSCs produce

immunosuppressive molecules including nitric oxide synthase, reactive

oxygen species, and arginase-1, thereby inhibiting T-cell activation and

inducing T-cell apoptosis and cell-cycle arrest (16). They also activate

the STAT3 pathway, promoting epithelial–mesenchymal transition

and expediting tumor immune escape (16). In addition to their

immunomodulatory functions, MDSCs exert tumor-promoting

effects through mechanisms independent of immune regulation,

including stimulation of angiogenesis and establishment of a

premetastatic niche (16). Clinically, an increased abundance of

MDSCs within the tumor microenvironment has been correlated

with poor responsiveness to immune checkpoint blockade in patients

with melanoma (17). Accordingly, targeting MDSCs hold potential to

improve treatment outcomes. Blattner et al. (18) showed that a CCR5-

Ig fusion protein blocked CCR5–CCL5 interactions, inhibiting MDSC

recruitment and prolonging survival in patients with melanoma.

STAT3 inhibitor napabucasin induced MDSC apoptosis and

extended survival in a murine melanoma model (16). These findings

underscore the value of targeting MDSCs in melanoma therapy.
2.2 Tumor-associated macrophages

TAMs constitute a major component of the TME and can be

broadly classified into M1 and M2 phenotypes based on their
Frontiers in Immunology 02
function and activation states (19). During melanoma

progression, the recruitment of M2 macrophages exceeds that of

M1 macrophages. M1-type TAMs secrete classical inflammatory

cytokines that induce tumor cell necrosis, promote immune-cell

infiltration into the TME, and eliminate tumor cells through

phagocytosis and destruction (20), whereas M2-type TAMs

exhibit immunosuppressive properties, facilitating tumor

progression and distant metastasis through multifaceted

mechanisms. First, they enhance tumor cell proliferation and

invasion by secreting cytokines such as tumor necrosis factor beta

(TNF-b), cyclooxygenase-2 (COX-2), and interleukin-10 (IL-10),

along with matrix metalloproteinases (MMPs) that degrade the

extracellular matrix and facilitate melanoma cell dissemination

(20). Second, they promote angiogenesis by modulating

adrenomedullin secretion, hypoxia-inducible factor-1a, and

vascular endothelial growth factor (VEGF)-A (21). Third, they

contribute to immune evasion by recruiting regulatory T cells

(Tregs) and secreting immunosuppressive molecules such as IL-

10, indoleamine 2,3-dioxygenase (IDO), and PD-L1 expression,

which collectively suppress effector T cell (Teff) activity (21).

Besides, they mediate resistance to targeted therapies via TNF-a-
induced activation of the nuclear factor-kB pathway and

upregulation of Sox family transcription factors in BRAF/MEK

inhibitor-resistant melanoma models (22). Collectively, M2-type

TAMs drive melanoma progression via the secretion of a broad

range of bioactive mediators, making their selective inhibition or

reprogramming toward the antitumor M1 phenotype an attractive

therapeutic strategy. Han et al. (20) demonstrated that a baicalin-

loaded nanocomplex targeting M2-type TAMs effectively inhibited

melanoma growth by inducing proinflammatory M1 polarization

and reshaping the TME, underscoring the therapeutic potential of

TAM phenotype modulation.
2.3 Tregs and CD8+ T cells

Tregs contribute to immunosuppression and weak

responsiveness to ICIs. They achieve immunosuppression by

secreting inhibitory cytokines such as IL-10, IL-35, and TGF-b, as
well as perforin and granzyme, which hamper the activation and

proliferation of Teff and neutrophils (12, 23). Tregs also express

multiple inhibitory checkpoint receptors, including lymphocyte-

activation gene 3 (LAG-3), PD-1, and CTLA-4, thereby promoting

immune tolerance (24). Hence, depleting Tregs within the TME has

emerged as a promising therapeutic approach. Studies have shown

that targeting Tregs in the TME restores Teff function and bolsters

antitumor immunity in mouse models of melanoma (23). Notably,

the intratumoral Teff/Treg ratio has been proposed as a predictive

biomarker for immunotherapy outcomes (20). Cytotoxic CD8+ T

cells recognize tumor antigens via MHC-I molecules and eliminate

malignant cells through perforin and granzyme B-mediated

apoptosis. They also secrete IFN-g and TNF, which sustain

antigen presentation and amplify T-cell responses (25). However,

the immunosuppressive milieu of the TME often impairs CD8+ T-

cell activity, facilitating tumor immune evasion.
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2.4 NK cells and dendritic cells

NK cells can recognize melanoma cells that are resistant to T cell–

mediated cytotoxicity and thus play an auxiliary role in anti-cancer

immunity. Conversely, melanoma cells can suppress NK-cell function to

evade immune surveillance. Studies have shown that melanoma cells

secrete IDO and PGE2 to downregulate the expression of activating

receptors (NKp30, NKp44, and NKG2D) on NK cells, thereby

impairing their tumor-killing activity (26). Furthermore, Lee et al.

(27) demonstrated that tumor cells can bind immunosuppressive

receptors on the NK-cell surface to inhibit NK-cell activation.

Consequently, promoting NK-cell infiltration and activation, via

binding to tumor-cell surface ligands, targeting NK-cell–activating

receptors, or blocking inhibitory receptors on NK cells, can enhance

NK-cell–mediated tumor immunity and immune surveillance.

Dendritic cells (DCs), the most potent antigen-presenting cells,

orchestrate antitumor immunity through efficient cross-presentation

and T cell priming. In melanoma, mature DCs expressing CD80 and

CD86 are essential for activating tumor-specific T cells (28). However,

melanoma cells within the TME secrete IL-6, IL-10, VEGF, and TGF-b,
which disrupt DC recruitment andmaturation, thereby impairing T-cell

activation and promoting melanoma progression (28). However,

tumor-derived cytokines and growth factors, notably IL-10, VEGF,

and TGF-b, can skew DC differentiation toward a tolerogenic

phenotype characterized by reduced expression of costimulatory

molecules, impaired antigen presentation, and increased secretion of

immunosuppressive cytokines (29–31). These tolerogenic DCs suppress

effector T cell activation, promote the expansion of regulatory T cells,

and contribute to immune evasion. Prokopi et al. (32) observed a

significant reduction in DCs in human primary melanoma lesions,

which was associated with poorer prognosis. A study by Tucci et al. (33)

showed that metastatic melanoma patients have lower DC counts than

non-metastatic patients; the number of DCs was negatively correlated

with Treg count and positively correlated with low melanoma

recurrence risk. Hence, enhancing DC activity in the TME is an

effective therapeutic approach. Prokopi et al. (32) further developed a

DC-boosting therapy that increases both the quantity and activation

status of intratumoral DCs and Teff cells, thereby augmenting tumor

immunogenicity and sensitizing melanoma to immunotherapy.
2.5 Cancer-associated fibroblasts

CAFs are themost abundant stromal cells in the TME of cutaneous

malignant melanoma. They are highly heterogeneous and plastic, and

can influence melanoma initiation, progression, metastasis, and drug

resistance in various ways. First, CAFs secrete cytokines that favor

melanoma invasion, including IL-6, IL-8, transforming TGF-b, b-
catenin, fibroblast growth factor-2 (FGF-2), and VEGF (34). Second,

CAFs suppress CD8+ T cells and NK cells. Érsek et al. (12) reported

that CAFs inhibited CD8+ T cell cytotoxicity by depleting L-arginine.

Romano et al. (34) further showed that CAF-derived matrix

metalloproteinases and prostaglandin E2 reduced expression of

activation receptors on NK cells, resulting in NK-cell inactivation.

Third, CAFs promote resistance to immunotherapy and targeted
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therapy. Zhao et al. (35) discovered that CAFs secreted MMP9,

which cleaved PD-L1 on the surface of melanoma cells and

contributed to diminished responses to anti–PD-1 therapy. Diazzi

et al. (36) found that CAFs produced neuregulin 1, along with large

amounts of collagen and fibronectin, rendering melanoma cells

unresponsive to MAPK inhibitors. Targeting CAFs may therefore

offer a novel therapeutic strategy by improving antitumor immunity

and immune surveillance in melanoma. Indeed, inhibiting MMP9/

TGF-b expression reversed CAF-induced resistance to anti–PD-1

therapy and increased the ratio of CD8+ T cells to Tregs in vivo (35).
3 The role of immune cells in
melanoma bone metastasis

Importantly, beyond their role in immune evasion,

immunosuppressive cells such as MDSCs and TAMs also actively

shape the metastatic niche in bone (37, 38). These cells secrete pro-

osteoclastogenic cytokines (IL-6, TNF-a) and growth factors that

promote osteoclast differentiation, thereby facilitating bone

resorption (39, 40). Specifically, M2-polarized TAMs drive

osteoclastogenesis via converging mechanisms. They secrete RANKL,

M-CSF, IL-6 and TNF-a, which directly induce the differentiation and

activation of osteoclast precursors. Concurrently, the release of matrix

metalloproteinases and VEGF facilitates bone matrix remodeling and

generates permissive niches for osteoclast function. Moreover, by

shaping a cytokine-rich microenvironment, these TAMs sustain

osteoclastic activity and promote persistent bone resorption (41, 42).

TAMs, particularly the M2 phenotype, accumulate in the bone

microenvironment where they enhance osteoclast activation (43, 44),

while MDSCs serve as osteoclast precursors that, under the influence of

RANKL and inflammatory cytokines, differentiate into mature

osteoclasts and secrete IL-1b and cathepsin K, further amplifying

bone resorption (45, 46). This dual role in immune suppression and

skeletal remodeling establishes a permissive microenvironment for

melanoma bone metastasis. Melanoma cells secrete various factors

that induce TAMs recruitment, including VEGF-C, GM-CSF, M-CSF,

and MCP-1 (47). Tumor-associated macrophages represent the

predominant inflammatory cell population within both primary and

metastatic melanoma lesions.
3.1 RANKL-dependent osteoclast formation

Clinical studies have demonstrated a significant correlation between

increased TAM infiltration and enhanced melanoma aggressiveness

(48). Functionally, these TAMs secrete a variety of pro-tumorigenic

mediators such as IL-8, VEGF, and fibroblast growth factor (FGF),

which collectively contribute to tumor progression and

neovascularization in melanoma (49–51). Metastatic melanoma

lesions are primarily osteolytic, driven by osteoclasts rather than

tumor cells themselves (52, 53). Osteoclasts originate from

hematopoietic mononuclear progenitor cells and belong to the

mononuclear phagocyte system (54). These osteoclast precursor cells

circulate among monocytes and exhibit characteristic monocyte/
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macrophage surface markers (52, 55). Their differentiation process is

regulated by two essential factors: M-CSF and the RANK-RANKL

signaling pathway. Osteoclast precursors expressing RANK interact

with RANKL-presenting cells in bone tissue, while this interaction can

be negatively regulated by osteoprotegerin secreted by osteoblasts and

other cell types (56, 57). TAMs in melanoma metastases express CD14

but lack osteoclast markers (TRAP, VNR) and resorptive capacity until

exposed to RANKL andM-CSF, inducing TRAP+VNR+multinucleated

osteoclast formation. Melanoma-stromal interactions critically influence

tumor progression andmetastasis.Melanoma-associated fibroblastsmay

promote osteoclast formation and activation via soluble RANKL, akin to

fibroblasts in giant cell tumors of bone (58), unlike normal fibroblasts

from skin or bone marrow stroma (59–61). Tumor-associated stromal

cells in primary melanoma not only promote cancer progression but

also potentially contribute to bone metastasis by inducing osteoclast

differentiation and subsequent bone destruction (62). The precise

mechanisms underlying osteolytic lesions in melanoma remain

unclear but involve RANKL-dependent crosstalk between tumor cells,

stromal components, and osteoclast precursors.
3.2 RANKL-independent osteoclast
formation

Emerging evidence suggests that osteoclastogenesis can be activated

through RANKL-independent mechanisms mediated by various

cytokines and growth factors, such as TNF-a, IL-6, IL-8, and TGF-b,
which promote the differentiation of both bone marrow-derived and

circulating osteoclast precursors (63–65). Notably, these cytokine-

induced osteoclasts exhibit distinct morphological and functional

differences compared to their RANKL-stimulated counterparts. While

RANKL stimulation typically produces large multinucleated osteoclasts

capable of extensive lacunar resorption, exposure to TNF-a and IL-1

results in the formation of significantly smaller osteoclasts containing

fewer than four nuclei (48). These cytokine-derived osteoclasts

demonstrate limited resorptive capacity, typically creating only single

resorption pits, reflecting their alternative differentiation pathway. In the

melanoma TME, these pro-osteoclastogenic cytokines activate

intracellular signaling pathways that further amplify bone destruction

and immune suppression (6). TNF-a engages TNF receptor 1/2, leading

to activation of the NF-kB pathway through the IkB kinase (IKK)

complex, which induces nuclear translocation of NF-kB subunits and

transcription of osteoclastogenic and inflammatory genes (66, 67). IL-6

signals primarily via the gp130/JAK complex, activating both the JAK/

STAT3 and MAPK (ERK1/2) pathways, thereby promoting osteoclast

precursor differentiation and survival (68, 69). Similarly, CXCL8

interacts with CXCR1/CXCR2 receptors, triggering downstream

PI3K–Akt and MAPK cascades, which synergize with NF-kB to

enhance osteoclast maturation and the release of pro-angiogenic

factors (70–72). These pathways not only promote osteoclastogenesis

but also contribute tomelanoma cell survival, invasiveness, and immune

evasion by reshaping the bonemetastatic niche (73, 74). Thus, cytokine-

driven NF-kB and MAPK activation represents a crucial molecular

bridge between immunosuppression and bone destruction in metastatic

melanoma (75).
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4 Melanoma-associated
immunotherapy

4.1 Monotherapy with immune checkpoint
inhibitors

CTLA-4, an inhibitory checkpoint receptor, suppresses T-cell

activation by competing with CD28 for ligands CD80/CD86,

depriving costimulatory signals (76). Ipilimumab, the first FDA-

approved ICI, blocks CTLA-4-ligand interaction, enhancing tumor-

infiltrating T-cells while suppressing Tregs in the TME (77). It

significantly improves OS in metastatic melanoma versus

chemotherapy, enabling durable disease control (11). PD-1/PD-L1

inhibitors are widely used ICIs. PD-1, expressed on T-cells, binds

PD-L1 on tumor cells to inhibit T-cell function, facilitating immune

evasion. Melanomas often overexpress PD-L1, correlating with poor

prognosis. Anti-PD-1/PD-L1 antibodies (nivolumab, pembrolizumab,

atezolizumab) disrupt this axis, enhancing antitumor immunity.

Pembrolizumab shows superior response rates, PFS, and OS versus

ipilimumab with reduced toxicity (78). Since 2017, anti-PD-1

monotherapy has served as adjuvant therapy for high-risk resected

melanoma (50), though predictive biomarkers remain elusive. Despite

these advances, the immunosuppressive TME frequently leads to

primary or acquired ICI resistance (79). Mechanistically, melanoma

cells upregulate alternative checkpoint receptors such as TIM−3, LAG

−3, and TIGIT, which maintain T−cell exhaustion even after PD−1/PD

−L1 or CTLA−4 blockade (80–82). In addition, activation of WNT/

b−catenin signaling excludes dendritic cells and effector T cells from

tumor lesions, generating a “cold” microenvironment that fails to

respond to ICIs (83). Furthermore, metabolic suppressive pathways,

including IDO1–mediated tryptophan depletion and arginase−1–

driven arginine catabolism, diminish T−cell proliferation and effector

function, further reinforcing immune evasion. Beyond PD-1/PD-L1

and CTLA-4, other checkpoints like TIM-3, TIGIT, and VISTA are co-

expressed in melanoma TME, particularly on Tregs, marking them as

potential targets (12) (Figure 1).
4.2 Combination therapies with ICIs

4.2.1 Combination of multiple ICIs
Despite the survival benefits of ICI monotherapy, low response

rates often require combination strategies. CTLA-4 and PD-1

inhibit T-cell activation via distinct mechanisms: CTLA-4

modulates early priming (lymph nodes), while PD-1 suppresses

effector-phase proliferation (84). Their complementary actions

suggest dual blockade may yield synergistic effects. A phase III

trial demonstrated improved overall survival (OS) with

ipilimumab-nivolumab combination versus monotherapy, but

severe (grade 3/4) treatment-emergent adverse events (TEAEs)

rose to 55.0% versus 27.3% with ipilimumab alone (85). This

toxicity likely reflects systemic immune overactivation,

necessitating optimization of dosing and sequencing to mitigate

off-target effects. Beyond PD-1/CTLA-4 combinations, Opdualag

(relatlimab-nivolumab) for unresectable/metastatic melanoma,
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targeting LAG-3, a next-generation checkpoint suppressing

immunity via: (1) MHC II binding on antigen-presenting cells

and (2) interaction with liver sinusoidal endothelial cell lectin on

tumors, inhibiting CD4+/CD8+ T-cell function (86, 87). This

innovation highlights the potential of novel dual-checkpoint

strategies to broaden therapeutic efficacy while underscoring the

need for improved safety profiles. Oncolytic virus (OV) therapy

offers a distinct modality by selectively lysing tumor cells and

initiating systemic immune activation. Upon intratumoral

replication, OVs release tumor antigens and virions, triggering

adaptive immunity against surrounding malignancies (88). The

first OV for unresectable melanoma, has been shown to enhance

T - c e l l i n fi l t r a t i o n a n d r e v e r s e PD - L 1 –med i a t e d

immunosuppression (88). Hence, combining OVs with ICIs may

overcome drug resistance caused by high PD-L1 expression and

restore antitumor immune responses (89).

4.2.2 ICIs combined with chemotherapy or
radiotherapy

Due to melanoma’s limited chemosensitivity, combining ICIs

with chemotherapy is often used in advanced cases resistant to PD-
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1 blockade (90). Chemotherapeutics like dacarbazine,

temozolomide, and platinum agents induce immunogenic cell

death (ICD), releasing DAMPs and converting immunologically

“cold” tumors into “hot” ones, enhancing ICI efficacy (88, 91).

Preclinical studies show that ipilimumab combined with melphalan

improves survival, reduces Tregs, and increases CD8+/Treg ratios in

melanoma models (92). However, chemotherapy’s nonspecific

cytotoxicity risks leukopenia, careful evaluation is warranted

when combining ICIs and chemotherapy. Radiotherapy also

exhibits immunomodulatory effects, promoting antigen

presentation, type I interferon release, and a pro-inflammatory

TME (93). Notably, radiotherapy induces the release of tumor-

specific antigens, thus boosting T-cell–mediated tumor recognition

(93). Clinical data indicate that radiotherapy and ICIs have

synergistic effects. Saieg et al. (94) observed both local tumor

regression and abscopal responses with ipilimumab-radiotherapy

co-treatment. In unresectable or locally advanced melanoma, such

combinations improved objective response and disease control

without significantly increasing severe toxicity (95). For

BRAFV600E-mutant melanoma, MAPK inhibitors achieve rapid

responses, yet median progression-free survival remains under 12
FIGURE 1

Immunosuppressive tumor microenvironment and advance in immunotherapy in melanoma bone metastasis.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1608215
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1608215
months (96). In contrast, ICI offer more durable immunologic

memory. Mechanistically, BRAF inhibition enhances tumor antigen

presentation, synergizing with PD-1/PD-L1 blockade (97). The

IMspire150 phase III trial confirmed that adding atezolizumab to

vemurafenib and cobimetinib significantly improved median

progression-free survival over dual-target therapy (98).
5 Conclusion

Melanoma’s aggressive progression and bone metastasis are

orchestrated by a dynamic interplay between tumor cells and the

immunosuppressive TME. Immunosuppressive cells including

MDSCs, M2-polarized TAMs, Tregs, and CAFs drive immune

evasion, osteoclast activation, and therapy resistance. While ICIs

have transformed melanoma management, their efficacy is limited

by the TME’s inhibitory landscape. Combination strategies, such as

dual checkpoint blockade, ICI-targeted therapy, or oncolytic

viruses, show promise in overcoming resistance by modulating

immune cell function and enhancing antigen presentation. Future

research should focus on identifying predictive biomarkers,

optimizing therapeutic sequencing, and developing novel TME-

targeted agents to improve durable responses. A deeper

understanding of TME-immune crosstalk will be critical for

advancing precision immunotherapy and mitigating skeletal

complications in metastatic melanoma.
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