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Background: Rheumatoid arthritis (RA) is an autoimmune disease characterized

by chronic synovitis and joint destruction. To systematically investigate the

regulatory relationship between key ferroptosis genes and gut metabolites in

RA, this study employed an integrative multi-omics approach combined with

machine learning algorithms and single-cell transcriptomic data, identifying and

validating GPX3 and MYC as potential critical ferroptosis regulators in RA.

Methods and results: First, 16 candidate genes were obtained by intersecting

WGCNA, differential expression analysis results, and targets related to ferroptosis

and gut microbiota. Following cross-validation with machine learning

approaches including LASSO, SVM, and RFE-RF, GPX3 and MYC were

ultimately identified as crucial genes. GSVA and GSEA analyses revealed that

high expression of GPX3 and MYC was enriched in interferon response and TNFA

signaling pathways, while their low expression was associated with fatty acid

metabolism and oxidative phosphorylation pathways. Further single-cell RNA

sequencing analysis demonstrated that MYC was expressed in multiple immune

cell types, particularly in CD4+ T cells and NK cells. Ferroptosis scoring for CD8+

T cells and subsequent cell communication analysis revealed stronger

interactions between CD8+ T cells with higher ferroptosis scores and other

immune cells through IFN-II and CCL signaling, further intensifying the activation

of the inflammatory microenvironment. Additionally, molecular docking analysis

of GPX3 and MYC with the gut metabolites Diosgenin and Differentiation-

inducing factor 3 (DIF-3) respectively showed that the GPX3-Diosgenin

complex had the lowest binding energy, and a 100 ns molecular dynamics

simulation was performed on this complex. Results showed good stability of

the complex across indicators such as RMSD, RMSF, SASA, and radius of gyration,

suggesting that Diosgenin may intervene in ferroptosis and inflammatory injury in

RA by binding to and modulating GPX3 function.
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Conclusion: This study elucidated the multifaceted mechanisms of GPX3 and

MYC in RA pathogenesis and preliminarily validated the potential role of gut

metabolites in mediating ferroptosis regulation, offering novel theoretical

foundations and potential strategies for diagnostic biomarker screening and

targeted therapy in RA.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune

disease characterized primarily by chronic inflammation and

progressive destruction of the joint synovium, often resulting in

joint deformity and functional disability, significantly impairing

patients’ quality of life (1, 2). The pathogenesis of RA is believed to

involve immune system abnormalities resulting from interactions

between environmental factors (such as smoking and infection) and

genetic susceptibility (3). Immune system dysfunction results in the

production of autoantibodies and excessive release of inflammatory

mediators, ultimately causing joint damage (4). Despite significant

advances in RA diagnosis and treatment in recent years, such as the

application of biologics and targeted synthetic disease-modifying

antirheumatic drugs, a subset of patients still exhibits poor response

to current treatments (1).

In recent years, the roles of gut microbiota and ferroptosis in RA

have gradually attracted attention. Gut microbiota interacts with the

host immune system through their metabolites, contributing to the

progression of RA (5). Studies have shown significant dysbiosis in

the gut microbiota of RA patients, characterized by an increase in

Lactobacillus and Streptococcus, and a decrease in Bacteroides and

Faecalibacterium (6). Short-chain fatty acids derived from gut

microbial metabolism regulate the differentiation and function of

regulatory T cells, thereby influencing immune tolerance and

inflammatory responses (7). Ferroptosis, a form of iron-

dependent cell death, plays a critical role in various pathological

processes, including neurodegenerative diseases, cancer, and

immune diseases (8). Ferroptosis not only promotes oxidative

stress but also exacerbates joint inflammation and injury by

inducing lipid peroxidation damage in cartilage and synovial cells

within joint tissues (9). Additionally, ferroptosis may influence

immune responses in RA by modulating immune cell functions,

including the activation and differentiation of T cells and

macrophages, during iron metabolism and oxidative stress (10).

Recent studies have confirmed a complex and close

interrelationship among gut microbiota, ferroptosis, and RA. Wang

et al. (11) found that modulating gut microbiota and short-chain fatty

acid metabolism could inhibit ferroptosis induced by lipid oxidative

stress in synovial tissues, thereby preventing RA-associated damage.

Furthermore, ferroptosis can exacerbate RA-associated inflammation
02
and joint injury by upregulating the expression of peptidylarginine

deiminase 4 (PAD4), thus influencing gut dysbiosis and metabolic

disturbances (12, 13). Thus, integrating multi-omics data to explore

the potential associations among gut microbiota, ferroptosis, and RA

could help elucidate RA’s complex pathogenesis and identify novel

targets for diagnosis and treatment.

This study aimed to deeply investigate the interrelationships

among gut microbiota, ferroptosis, and RA through integrated

multi-omics analysis combined with network pharmacology and

machine learning approaches. We obtained gut microbiota-related

genes from the gutMGene database and screened ferroptosis-related

genes from GeneCards, NCBI, and MSigDB databases.

Subsequently, RA-associated genes were identified by analyzing

RA-related datasets, including GSE12021, GSE55457, and

GSE55235, and intersection analysis was employed to uncover

potential associations among gut microbiota, ferroptosis, and RA.

Key genes were screened using machine learning methods such as

Least Absolute Shrinkage and Selection Operator (LASSO),

recursive feature elimination-random forest (RFE-RF), and

support vector machine (SVM), and further validated using a

multilayer perceptron (MLP) model. To further elucidate the

regulatory mechanisms of the key genes, molecular docking and

molecular dynamics simulations were performed on gut metabolites

influencing these genes, assessing their binding affinity and stability.

The schematic diagram of the research workflow and analytical

strategy is shown in Figure 1. Through these multidimensional

analyses, this study aims to provide novel theoretical insights into

the interactions among gut microbiota, ferroptosis, and RA.
2 Materials and methods

2.1 Data collection of gut microbiota
metabolites and ferroptosis-related genes

The gutMGene database is a comprehensive resource providing

extensive information on gut microbial metabolites and their

interactions with human genes (14). In this study, gut

microbiota-associated metabolites and their corresponding human

targets were systematically collected from the gutMGene database

(http://bio-computing.hrbmu.edu.cn/gutmgene) to establish a
frontiersin.org

http://bio-computing.hrbmu.edu.cn/gutmgene
https://doi.org/10.3389/fimmu.2025.1608262
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2025.1608262
metabolite-target association dataset. Additionally, to screen

ferroptosis-related genes, we searched the GeneCards (https://

www.genecards.org/), NCBI Gene (https://www.ncbi.nlm.nih.gov/

gene/), and MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/)

databases using “Ferroptosis” as a keyword, obtaining a

deduplicated candidate gene set. The authenticity of this article

has been validated by uploading the key raw data onto the Research

Data Deposit public platform (www.researchdata.org.cn), with the

approval RDD number as RDDB2025916508.
2.2 Screening and identification of RA-
associated genes

In this study, three RA-related synovial tissue expression

datasets—GSE55457, GSE55235, and GSE12021—were selected

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). To

guarantee data consistency and comparability, all datasets were

derived from the same chip platform (Affymetrix Human Genome

U133A Array, GPL96). The dataset selection was based on the

following criteria: (1) Synovial tissue samples must be clearly

identified as from RA patients and normal controls; (2) Each

dataset must include no fewer than 5 RA and 5 control samples;

(3) The datasets must originate from the same microarray platform

to ensure probe annotation consistency; (4) Both expression

matrices and sample annotation information must be

fully available.

To ensure consistency and comparability of expression matrices

across different datasets, we first extracted common genes from the

three datasets to unify analytical dimensions. Subsequently, we read
Frontiers in Immunology 03
the raw expression matrices and performed log2 transformation

based on their distribution characteristics to eliminate interference

from extreme values. Simultaneously, sample names were

standardized by applying a consistent naming format and adding

dataset-specific prefixes to differentiate their origins. Regarding data

normalization, each dataset was individually normalized using the

normalizeBetweenArrays function from the limma package, and

after adjusting expression distributions, they were horizontally

merged according to gene dimension. To control for systematic

biases arising from data sources, batch effects were further corrected

using the ComBat function from the sva package. Finally,

dimensionality reduction visualization was conducted via

principal component analysis (PCA) on data before and after

correction to assess the efficacy of batch correction and the

discriminative power of sample grouping, ensuring the quality of

data integration met the requirements for subsequent co-

expression analysis.

Subsequently, differential expression analysis was performed on

the merged dataset using the Limma R package with the criteria of |

logFC| > 1 and adj.P.Val < 0.05 to screen RA-related differentially

expressed genes, and a volcano plot was generated to visualize the

results. Additionally, a heatmap depicting the top 50 genes with the

most significant expression changes was created using the

pheatmap R package to visually illustrate gene expression

differences between RA patients and normal controls. To further

investigate gene modules associated with RA, weighted gene co-

expression network analysis (WGCNA) was conducted. By

constructing a gene co-expression network, modules significantly

correlated with the RA phenotype were identified, and hub genes

within these modules were extracted.
FIGURE 1

Schematic diagram of the research workflow and analytical strategy.
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2.3 Intersection gene screening and
functional enrichment analysis

To explore potential associations among gut microbiota,

ferroptosis, and RA, Venn diagram analysis was performed on

gut microbiota-related genes, ferroptosis-related genes, and RA-

related genes to identify intersection genes. To visually demonstrate

the expression patterns of intersection genes, bar plots were

generated using the ggplot2 package in R, illustrating the

differential expression of these genes between RA patients and

healthy controls. To further elucidate the biological functions and

signaling pathways of intersection genes, Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were conducted using the clusterProfiler R package. GO

enrichment analysis covered biological processes (BP), cellular

components (CC), and molecular functions (MF) to uncover the

biological characteristics of these genes, whereas KEGG enrichment

analysis identified key metabolic and signaling pathways. Finally,

results from GO and KEGG analyses were visualized using

bar plots.
2.4 Machine learning-based screening of
key genes

To further identify key genes with important regulatory roles in

RA, three machine learning methods—LASSO regression, RFE-RF,

and SVM—were employed for feature gene selection. First, feature

selection was performed using LASSO via the glmnet R package,

with the optimal l value used to identify relevant genes. Next, the

RFE-RF method was implemented using the caret and shap R

packages, with 10-fold cross-validation used to assess model

stability and ultimately select important feature genes. Finally, the

SVM method was applied for feature selection using the e1071 R

package, with 5-fold cross-validation performed to ensure model

robustness. SVM constructs a hyperplane in a high-dimensional

space to classify gene expression data and identifies genes that most

influence classification outcomes. We integrated the results from

LASSO, RFE-RF, and SVM, and used a Venn diagram to identify

genes commonly selected by all three methods.
2.5 Expression characteristics and
correlation analysis of key genes

To further validate the diagnostic value and biological

significance of the identified key genes in RA, a series of

multilevel analyses was conducted. The predictive ability of key

genes in distinguishing RA patients from healthy individuals was

assessed using receiver operating characteristic (ROC) curves, and

the area under the curve (AUC) was calculated. Next, the

correlation between key genes was analyzed using Pearson

correlation analysis to evaluate gene-gene expression

relationships, and scatter plots were generated to visualize the
Frontiers in Immunology 04
interaction patterns. Additionally, boxplots were created to

compare the expression levels of key genes between RA and

healthy control groups, highlighting differential expression.
2.6 Validation of key genes using the MLP
model

To further validate the predictive ability of key genes in RA

diagnosis, a MLP neural network model was constructed for

classification analysis. MLP is a feed-forward neural network

consisting of an input layer, multiple hidden layers, and an

output layer, capable of recognizing complex nonlinear feature

patterns. First, we extracted the expression values of key genes

from the expression matrix across samples and applied Z-score

normalization to each gene to eliminate differences in scales among

features. According to sample classification labels (RA group vs.

normal group), the dataset was randomly split into training and

testing sets at a 7:3 ratio, ensuring roughly balanced class

distributions in both subsets. During model training, min-max

normalization was applied to further enhance convergence speed

and stability. The constructed MLP model consists of one input

layer, three hidden layers (containing 32, 16, and 8 nodes,

respectively), and one output layer. All hidden layers used ReLU

activation functions, with a dropout layer (rate = 0.2) added after

each to prevent overfitting; the output layer utilized a sigmoid

function for binary classification output. The model was iteratively

trained using the Adam optimizer, with binary cross-entropy as the

loss function, an initial learning rate set at 0.01, batch size of 16, and

training epochs set to 100. After training completion, the model’s

classification performance was evaluated on the test set by

measuring accuracy and loss, and its diagnostic effectiveness was

assessed via ROC curves and AUC values. Additionally, a confusion

matrix was used to visually present model predictions, and a

network structure diagram was created to illustrate layer

connections and weight distributions, thus validating the

diagnostic potential of key genes from multiple perspectives.
2.7 Single-gene Gene Set Enrichment
Analysis and Gene Set Variation Analysis
analysis of key genes

To explore the potential regulatory mechanisms of key genes in

RA, GSEA and GSVA were performed to evaluate the association

between key genes and HALLMARK pathways. GSEA was

performed using the clusterProfiler R package to conduct

enrichment analysis on HALLMARK pathways. Normalized

enrichment scores (NES) and adjusted P-values were calculated

based on the expression levels of key genes to identify significantly

enriched pathways. GSVA was performed using the GSVA R

package to calculate enrichment scores for each sample in

HALLMARK pathways. Samples were grouped into high- and

low-expression groups based on the expression level of the key
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gene, and differences in pathway activity were assessed to uncover

potential molecular mechanisms involving the key genes.
2.8 Immune infiltration analysis

To further explore the regulatory roles of key genes in the RA

immune microenvironment, CIBERSORT was used in conjunction

with the LM22 reference gene set to quantify the infiltration of 22

immune cell types, and immune cell composition was compared

between RA and healthy control groups. Furthermore, Pearson

correlation analysis was used to evaluate relationships among

immune cell types, and a correlation heatmap was generated to

reveal dynamic changes and potential regulatory networks in the

RA immune microenvironment. In addition, correlation analysis

was conducted to assess the associations between key gene

expression and immune cell infiltration levels. Correlation scatter

plots were generated to explore potential mechanisms by which key

genes may contribute to immune dysregulation in RA.
2.9 Single-cell transcriptomic analysis

To investigate the expression patterns of key genes across

different cell types and their dynamic changes within the RA

immune microenvironment, the GSE159117 dataset was

downloaded from the GEO database and subjected to systematic

single-cell transcriptomic analysis. The data were processed using

the Seurat R package, including steps such as quality control,

normalization, dimensionality reduction, and clustering. Cell

types were annotated based on known immune cell marker genes,

including: CD4+ T cells (CD2, CD4, CCR7, CD3D), CD8+ T cells

(CD8A, GNLY, GZMB), NK cells (LTB, NKG7), plasma cells

(XBP1, CD27), B cells (MS4A1, CD79A), and monocytes (CD14,

LYZ, FCGR3A). The FeaturePlot function was used to visualize the

expression of key genes across different cell types, providing an

intuitive view of their tissue distribution. To explore ferroptosis-

related mechanisms, the AddModuleScore function was used in

combination with a ferroptosis gene set to calculate a ferroptosis

score for each cell. Furthermore, using the CellChat R package, cell-

cell communication patterns were analyzed under high and low

ferroptosis score states across different cell types.
2.10 Molecular docking and molecular
dynamics simulation analysis

To investigate the potential role of gut microbiota-derived

metabolites in regulating ferroptosis in RA, gut metabolites

interacting with key genes were identified from the gutMGene

database, and molecular docking and molecular dynamics

simulation were employed to evaluate the stability of their

interactions. Molecular docking was conducted using AutoDock

4.2.3 by obtaining the 3D structure of the protein encoded by the
Frontiers in Immunology 05
key gene (in PDB format) and the structure of the candidate gut

metabolite (in SDF format) for docking score calculation. he

docking process included protein-ligand structure optimization,

grid box configuration, and flexible docking parameter

adjustment. The conformation with the lowest binding energy

was selected as the candidate complex. A lower binding energy

indicates a more stable interaction between the protein and

the metabolite.

To further evaluate the stability of the molecular docking

complex, a 100-nanosecond molecular dynamics simulation was

conducted using GROMACS 2022.3 (15). During the simulation,

the AMBER99SB force field was used, and the system was solvated

with the SPC/E water model. A suitable number of Na+ ions were

added to neutralize the total charge of the simulation system.

Simulation parameters included: Energy minimization using the

steepest descent method; NVT (constant volume and temperature)

and NPT (constant pressure and temperature) equilibrations, each

for 100 ps at 300K; Production run: 100 ns with a 2 fs time step,

recording the trajectory of protein–ligand interactions. The stability

and binding capacity of the protein–ligand complex were evaluated

by calculating root-mean-square deviation (RMSD), root-mean-

square fluctuation (RMSF), number of hydrogen bonds (H-bonds),

solvent-accessible surface area (SASA), radius of gyration (Gyrate),

and binding free energy (MM/GBSA).
3 Results

3.1 Collection and screening of target
genes

In this study, a total of 276 gut microbiota-derived metabolites

and 238 corresponding human gut targets were obtained from the

gutMGene database to construct a metabolite–target interaction

network. Additionally, 1033 ferroptosis-related genes were

identified from GeneCards, NCBI, and MSigDB databases

(Supplementary Table 1) as a crucial gene set for intersection

analysis between RA-related genes and gut microbiota metabolic

pathways. To ensure consistency and comparability of integrated

expression data from different GEO datasets, we performed

rigorous data cleaning and normalization on the three expression

datasets: GSE55457, GSE55235, and GSE12021. PCA was employed

to visualize samples to validate the effectiveness of normalization

and batch correction. Supplementary Figures 1A, B illustrate PCA

distributions grouped by dataset and disease status before batch

effect correction, respectively, clearly showing significant separation

among samples based on dataset origin, indicating a strong batch

effect. After correction using the ComBat method (Supplementary

Figures 1C, D), dataset differences among samples significantly

decreased, and the clustering structure of RA and normal control

groups in principal component space became clearer, indicating

that the data processing workflow effectively enhanced data quality

and the reliability of subsequent analyses.

To further identify RA-associated genes, we conducted

WGCNA and differentially expressed gene analysis. Figure 2A
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shows the selection of the soft-thresholding power (b) in network

topology analysis, used to construct a scale-free network.

Figures 2B, C shows the gene co-expression network divided into

four modules, with 254, 36, 36, and 2837 genes in the turquoise,

blue, brown, and gray modules, respectively. Genes in the blue

module were enriched in various inflammatory response-related

biological processes, such as response to lipopolysaccharide and

cytokine activity (Supplementary Figure 2A), and KEGG analysis

revealed significant enrichment in classical RA-related immune-

inflammatory pathways such as IL-17 signaling pathway, TNF

signaling pathway, and NF-kappaB signaling pathway

(Supplementary Figure 2B), suggesting that this module may

participate in the regulation of pro-inflammatory signaling in RA.

Genes in the turquoise module were broadly enriched in processes

such as immune cell activation, lymphocyte differentiation, and

immunological synapse formation (Supplementary Figure 2C), and

KEGG analysis demonstrated significant enrichment in immune

regulatory pathways closely related to RA pathogenesis, including

Th17 cell differentiation, cytokine–cytokine receptor interaction,

and chemokine signaling pathway (Supplementary Figure 2D).

Modules with a phenotype correlation coefficient greater than 0.5

and a P-value less than 0.05 were selected for subsequent analyses.

Specifically, genes from the turquoise, blue, brown, and gray

modules were selected for further investigation. Differential

expression analysis identified 698 differentially expressed genes,

including 382 upregulated and 312 downregulated genes

(Figures 2D, E). Finally, the union of WGCNA module genes and
Frontiers in Immunology 06
differentially expressed genes was taken and duplicates removed,

yielding 3,222 candidate RA-related genes.

3.2 Screening of intersecting genes and
functional enrichment analysis

By performing Venn diagram intersection analysis of gut

microbiota targets, ferroptosis-related genes, and RA-associated

genes, a total of 16 intersection genes were identified (Figure 3A).

A bar plot of gene expression levels (Figure 3B) showed that all

intersecting genes were significantly differentially expressed

between RA and normal tissues, with antioxidant genes such as

GPX3 and NQO1 significantly downregulated in RA tissues. To

elucidate the biological functions and pathways associated with the

intersecting genes, GO and KEGG enrichment analyses were

performed. GO analysis revealed that these genes were mainly

involved in oxidative stress response, regulation of cell

proliferation, and lipid metabolism, with oxidative stress and

reactive oxygen species responses potentially playing key roles in

RA-related inflammation and ferroptosis (Figure 3C). In addition,

these genes were enriched in molecular functions such as

antioxidant enzyme activity, phospholipase regulation, and

peroxidase activity, suggesting their crucial roles in immune

regulation and metabolic processes in RA. KEGG enrichment

analysis further revealed that these genes were broadly involved

in inflammation- and immune-related pathways, including the IL-

17 signaling pathway and FoxO signaling pathway (Figure 3D).
FIGURE 2

WGCNA and differential expression analysis of RA-related genes. (A) Soft-threshold selection plot. The left panel shows the scale independence of
the network topology; the right panel illustrates the average connectivity under different soft-thresholding powers. (B) Dendrogram and module
identification from WGCNA. Different colors represent distinct co-expression gene modules. (C) Heatmap showing the correlation between gene
modules and clinical phenotypes (RA vs. normal control groups). (D) Volcano plot of RA-related differentially expressed genes. Red indicates
significantly upregulated genes, blue indicates significantly downregulated genes, and gray denotes non-significant genes. (E) Heatmap of
significantly differentially expressed genes.
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3.3 Machine learning-based identification
of key genes

To accurately identify core regulatory genes in RA, three

machine learning algorithms were integrated to optimize analysis

of the 16 intersecting genes. LASSO regression identified 11 key

genes, and the coefficient shrinkage trajectory and cross-validation

curve indicated good model stability (Figures 4A, B). RFE-RF

analysis revealed that the model achieved the highest accuracy

when two feature genes were selected, suggesting optimal

performance in terms of gene selection accuracy and stability

(Figure 4C). The SVM algorithm selected 8 genes and achieved a

classification accuracy of 0.988 under this model (Figures 4D, E). By

integrating results from the three machine learning methods, a

Venn diagram was constructed to identify overlapping key genes,

ultimately yielding GPX3 andMYC (Figure 4F). Expression analysis

showed that GPX3 was significantly downregulated in RA tissues,

with a single-gene ROC AUC of 0.913 (Figures 4G, H). MYC also

showed significantly reduced expression, with an AUC of 0.890

(Figures 4I, J), indicating high sensitivity and specificity for RA

diagnosis. Correlation analysis further revealed a significant positive

correlation between GPX3 and MYC expression (R = 0.57, p = 1.2e-
Frontiers in Immunology 07
08) , sugge s t ing a po ten t i a l s ynerg i s t i c ro l e in RA

pathogenesis (Figure 4K).
3.4 MLP model validation of key genes
GPX3 and MYC

To further validate the diagnostic value of GPX3 and MYC in

RA, an MLP-based classification model was constructed and its

predictive performance evaluated. Figure 5A shows the trends of

loss and accuracy during MLP training. As training epochs

increased, the loss steadily decreased and accuracy improved and

stabilized, indicating good training performance without signs of

overfitting or underfitting. The confusion matrix showed that the

MLP model based on GPX3 and MYC achieved an accuracy of

0.917, sensitivity of 0.833, and recall of 0.833 on the test set,

indicating strong classification performance between RA and

normal groups (Figure 5B). Figure 5C further compares predicted

outcomes with true labels, demonstrating that GPX3 and MYC can

effectively distinguish between RA and normal tissues. The neural

network visualization (Figure 5D) shows that GPX3 and MYC serve

as input features, with classification completed through multiple
FIGURE 3

Screening and functional enrichment analysis of intersecting genes among RA, gutMGene, and ferroptosis. (A) Venn diagram showing the
intersecting genes. (B) Boxplot comparing expression levels of intersecting genes between the RA and normal control groups. (C) Bar plot of GO
enrichment analysis of intersecting genes, including BP, MF, and CC. (D) Bar plot of KEGG pathway enrichment analysis, showing the top 10
significantly enriched pathways of the intersecting genes. Significance: ****p < 0.0001.
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hidden layers, highlighting their importance in RA diagnosis. The

ROC curve of the model yielded an AUC of 0.972 (Figure 5E),

indicating excellent discriminatory ability of the GPX3 and MYC-

based model in RA prediction.
3.5 Single-gene GSEA and GSVA analysis of
key genes

To further explore the potential functions of GPX3 and MYC in

RA, GSVA and GSEA were employed to analyze their associated
Frontiers in Immunology 08
pathways. GSVA results showed that high expression of GPX3 and

MYC was significantly associated with immune-related pathways,

such as allograft rejection, interferon response, and inflammatory

response, suggesting their involvement in remodeling the RA

immune microenvironment (Figures 6A, B). Additionally, both

genes showed negative correlations with lipid metabolism,

cholesterol homeostasis, and the P53 pathway, suggesting they

may influence RA progression by modulating metabolic

homeostasis. GSEA analysis further confirmed the significance of

GPX3- and MYC-associated pathways. GPX3 was mainly enriched

in TNF-a mediated NF-kB signaling, steroid metabolism, and fatty
FIGURE 4

Screening and validation of RA–gut microbiota–ferroptosis key genes based on machine learning algorithms. (A, B) Feature selection of key genes
using the LASSO regression algorithm. (C) Optimal number of feature genes determined by the RFE-RF algorithm. (D, E) Feature gene selection
process using the SVM algorithm. (F) Venn diagram showing overlapping key genes identified by the three machine learning methods (LASSO, RFE-
RF, and SVM). (G–J) Validation of GPX3 and MYC expression levels and ROC curve analyses. (K) Scatter plot showing the correlation between GPX3
and MYC expression levels.
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acid metabolism pathways (Figure 6C), while MYC was primarily

enriched in chromoprotein phosphorylation, TGF-b binding, and

TNF-a mediated NF-kB signaling (Figure 6D). These findings

indicate that GPX3 and MYC may play central roles in RA-

related immune-inflammatory regulation and metabolic

imbalance, potentially influenced by gut microbiota and their

metabolites. In particular, lipid metabolism and NF-kB mediated

inflammatory signaling, as key regulators of ferroptosis, further

support the essential roles of GPX3 and MYC in the ferroptosis-

related regulatory network in RA.
3.6 Immune infiltration analysis

To investigate the potential roles of GPX3 and MYC in the RA

immune microenvironment, CIBERSORT was used to estimate the

infiltration of 22 immune cell types in RA and normal tissues

(Figure 7A). The results showed that M1 macrophages and CD8+ T

cells were significantly increased in RA tissues compared to normal

tissues, while M2 macrophages, resting mast cells, and dendritic

cells were decreased, indicating substantial alterations in the RA

immune microenvironment characterized by increased pro-

inflammatory and decreased anti-inflammatory cells, potentially

contributing to persistent inflammation. Figure 7B shows

correlations among immune cell types, revealing that M1
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macrophages were positively correlated with CD8 T cells and

negatively correlated with M2 macrophages, further supporting

the presence of immune imbalance in RA. Additionally, we

analyzed the correlations between GPX3 and MYC expression

levels and the infiltration of different immune cell types

(Figures 7C, D). GPX3 expression was significantly positively

correlated with regulatory T cells (Tregs) and activated NK cells,

and negatively correlated with CD8+ T cells and plasma cells.

Similarly, MYC expression was positively correlated with

activated NK cells and monocytes, and negatively correlated with

CD8+ T cells and M1 macrophages. GPX3 and MYC may influence

the RA immune microenvironment by regulating macrophage

polarization, T cell function, and NK cell activation.
3.7 Single-cell expression and cell
communication analysis of GPX3 and MYC

To further investigate the cell-specific expression patterns of

GPX3 and MYC in the RA immune microenvironment and their

roles in ferroptosis regulation, this study analyzed the cellular

localization, ferroptosis scores, and cell communication patterns

based on single-cell RNA sequencing (scRNA-seq) data. Based on

known cell markers, we performed t-SNE dimensionality reduction

clustering to classify RA peripheral blood mononuclear cells
FIGURE 5

Validation of key gene-based RA diagnosis using the MLP model. (A) Loss and accuracy curves during MLP model training. (B) Confusion matrix of
MLP model predictions. The x-axis represents actual classes, and the y-axis shows predicted classes. (C) Bar chart comparing real labels and model
predictions. (D) Schematic of the MLP network structure, where nodes represent neurons and lines indicate inter-layer connections. (E) ROC curve
analysis of the MLP model for RA classification.
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(PBMCs), identifying CD4+ T cells, CD8+ T cells, NK cells,

monocytes, B cells, and plasma cells (Figures 8A, B). Further

analysis of single-cell expression patterns of GPX3 and MYC

(Figures 8C, D) showed GPX3 had very low expression restricted

mainly to monocytes, while MYC was widely expressed in CD4+ T

cells, NK cells, and B cells, suggesting MYC plays a critical role in T

cell-mediated immune dysregulation in RA. Ferroptosis scores

calculated using a ferroptosis-related gene set showed higher

scores in monocytes and CD8+ T cells (Figure 8E). CD8+ T cells

were further divided into high and low ferroptosis score groups, and

cell communication analysis was performed using CellChat to

construct interaction networks among RA immune cells

(Figure 8F). Results showed extensive cellular communication

between monocytes, CD8+ T cells, and B cells, indicating these

cells may mediate RA immune regulation via ferroptosis-related

signaling. Specific ligand-receptor analysis (Figure 8G) further

revealed monocytes may influence T cell function through

signaling axes such as CCL3-CCR1 and ANXA1-FPR1. Further

analysis of key immune signaling pathways, such as the IFN-g
pathway (Figure 8H) and CCL signaling pathway (Figure 8I),

revealed crucial cell-cell interactions involving CD8+ T cells,

monocytes, and NK cells within the RA immune network.
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3.8 GPX3–gut metabolite interactions:
stability validation and dynamics
characterization

To investigate interactions between gut microbiota metabolites

and key genes, molecular docking was performed initially, followed

by molecular dynamics simulations to evaluate the binding stability

and dynamic behavior of l igand–receptor complexes.

Supplementary Table 2 provides comprehensive details on critical

binding residues, binding energies, and related parameters obtained

during the molecular docking procedure. Figure 9A showsmolecular

docking results between GPX3 (2r37) and gut metabolite Diosgenin,

indicating stable hydrogen bonds and hydrophobic interactions at

the active site involving key residues GLY-61 and ARG-21, with a

binding energy of -8.40 kcal/mol. Similarly, MYC (6g6k) interacted

with gut metabolite Differentiation-inducing factor 3 (DIF-3),

primarily via residues GLU-957 and GLU-964 (Figure 9B), with a

binding energy of -5.41 kcal/mol. Based on this, a 100 ns molecular

dynamics simulation of the GPX3-Diosgenin complex was

conducted to further evaluate stability. Hydrogen bond analysis

indicated the complex maintained a stable number of hydrogen

bonds during simulation, suggesting strong binding of Diosgenin at
FIGURE 6

Functional enrichment analysis of key genes GPX3 and MYC via GSVA and GSEA. (A, B) GSVA results of GPX3 and MYC across different pathways.
(C, D) GSEA enrichment plots for key genes GPX3 and MYC.
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GPX3’s active site (Figure 9C). RMSD trajectory analysis indicated

that the overall structure of GPX3 stabilized upon Diosgenin

binding, without significant conformational drift (Figure 9D).

RMSF results showed that the core structure of GPX3 remained

stable, with only minor fluctuations observed at the C-terminal

region (Figure 9E). SASA analysis indicated that the solvent-

accessible surface area of the GPX3–Diosgenin complex ranged

from 95 to 110 nm², with no significant change in structural

exposure after binding (Figure 9F). Rg analysis demonstrated that
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the complex maintained high structural compactness, remaining

within the 1.65–1.85 nm range, further confirming that GPX3

retained a stable 3D conformation upon Diosgenin binding

(Figure 9G). Additionally, the MMGBSA binding free energy of

the GPX3-Diosgenin complex was -23.52 kcal/mol (Supplementary

Table 3), indicating good conformational stability and reliable

binding affinity of the complex. In summary, Diosgenin may

modulate the function of GPX3 through stable binding, thereby

influencing ferroptosis-related processes in RA.
FIGURE 7

Differences in immune cell infiltration and correlation analysis between key genes and immune cells in RA. (A) Boxplot comparing the proportions of
immune cell infiltration between the RA and normal control groups. (B) Heatmap showing the correlation analysis among immune cell types.
(C, D) Correlation scatter plots between GPX3 and MYC expression levels and significantly altered immune cells. Significance: *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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4 Discussion

By integrating RA-related genes, gut microbiota-associated

genes, and ferroptosis-related genes, this study systematically

identified GPX3 and MYC as key genes using network

pharmacology and various machine learning approaches. Further

bioinformatics analyses revealed their potential mechanisms in RA,
Frontiers in Immunology 12
providing essential clues for understanding how gut microbial

metabol i tes might influence RA progress ion via the

ferroptosis pathway.

First, this study identified 3,222 RA-related genes through

WGCNA and differential expression analysis. Intersection analysis

using a Venn diagram of RA-related, gut microbiota-related, and

ferroptosis-related genes identified, for the first time, 16 genes
FIGURE 8

Single-cell analysis of GPX3 and MYC expression and their association with ferroptosis and the immune microenvironment. (A) Dot plot illustrating
marker gene expression across different cell populations from single-cell data. (B) t-SNE dimensionality reduction clustering showing distribution
and annotation of distinct immune cell clusters in RA single-cell data. (C, D) Expression patterns of key genes GPX3 and MYC across different cell
clusters. (E) Violin plots showing differences in ferroptosis scores among immune cell populations. (F) Intercellular communication network, where
edge colors and thickness represent the strength and frequency of cell-cell interactions. (G) Bubble plot displaying ligand–receptor interactions.
(H, I) Network diagrams of IFN and CCL signaling pathways.
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potentially mediating RA pathology and involved in gut microbiota

metabolism and ferroptosis (EGFR, MAPK8, NQO1, APOE,

TGFB1, LCN2, HMOX1, NR1H4, PLIN2, PTGS2, CDKN1A, IL6,

FFAR2, GPX3, JUN, and MYC). Functional enrichment analysis

indicated these intersecting genes are primarily involved in

biological processes including oxidative stress responses, smooth

muscle cell proliferation, and reactive oxygen species (ROS)

responses, closely matching RA pathological features such as

excessive inflammatory factor release and oxidative stress injury

(16). Furthermore, these genes were mainly associated at the

molecular function level with antioxidant activity, oxidoreductase

activity, and lipase activity, further supporting their potential

involvement in oxidative stress and inflammation regulatory

pathways in RA pathogenesis. KEGG pathway analysis indicated

these intersecting genes were significantly enriched in pathways

including IL-17 signaling, FoxO signaling, and several viral

infection-related pathways, with IL-17 and FoxO pathways

playing critical roles in RA pathogenesis (17, 18). These findings

suggest these genes may participate in RA pathogenesis through
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regulating immune-inflammatory responses and apoptosis-

related pathways.

We further applied three classical machine learning algorithms

(LASSO, RFE-RF, and SVM) to cross-validate and identify two core

genes, GPX3 andMYC, which were subsequently validated using an

MLP model. Both genes showed significant differential expression

between RA patients and healthy controls, with ROC curve analysis

demonstrating strong diagnostic performance (AUC values of 0.913

and 0.890, respectively). The three machine learning methods

mentioned above have been widely used in feature selection and

disease biomarker identification, each with its own strengths and

limitations. LASSO provides strong variable selection capability, is

suitable for handling high-dimensional data, and effectively reduces

the risk of overfitting, though its results can be sensitive to the

regularization parameter and performance may decrease in the

presence of multicollinearity (19). RFE-RF combines the nonlinear

modeling capability of random forests with a recursive feature

selection mechanism, enabling it to capture complex relationships

between features and the target variable, although stability may be
FIGURE 9

Molecular docking and molecular dynamics simulation analysis of gut microbiota metabolites and key genes. (A, B) 3D molecular docking
visualization of gut microbiota metabolites with key proteins GPX3 (A) and MYC (B). (C) Curve showing the changes in hydrogen bond numbers
between metabolite and GPX3 during molecular dynamics simulations. (D) RMSD plot from molecular dynamics simulation of the GPX3–Diosgenin
complex. (E) RMSF analysis plot of the GPX3–Diosgenin complex. (F) SASA change curve of the GPX3–Diosgenin complex during molecular
dynamics simulation. (G) Gyration radius (Rg) plot of the GPX3–Diosgenin complex.
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limited when sample size is small (20). SVM, as a powerful

classification tool particularly suitable for high-dimensional,

small-sample data, demonstrates strong classification performance

and generalization capability (21); however, it lacks interpretability

and its feature selection depends heavily on kernel function

selection and parameter tuning. Utilizing multiple algorithms for

cross-validation can enhance the robustness of selection results

from different perspectives, reduce bias risks associated with any

single method, and increase the reliability of key gene identification.

Results from this study suggest that GPX3 and MYC have potential

diagnostic value in RA.

GPX3 encodes glutathione peroxidase 3, an important

antioxidant enzyme primarily responsible for reducing oxidative

damage by catalyzing the conversion of hydrogen peroxide into

water (22). Although few studies have examined the relationship

between GPX3 and RA, existing evidence suggests GPX3 has

significant antioxidant activity and may protect synovial tissues

from oxidative stress damage in RA (23). Additionally, GPX3 can

resist autophagy-related ferroptosis via the AMPK/mTOR signaling

pathway (24). Synovial cells in RA patients remain chronically

inflamed, exhibiting significantly elevated iron metabolism disorder

and oxidative stress levels, potentially exacerbating joint damage

and inflammatory cell infiltration (25). Thus, decreased GPX3

expression might impair tissue antioxidative capacity,

exacerbating pathological damage (26). Future studies should

investigate GPX3’s specific impact on oxidative stress-related RA

pathology in greater detail. MYC, a critical transcription factor,

plays an essential role in biological processes such as cell

proliferation, differentiation, and apoptosis (27). Studies have

demonstrated that MYC participates in various pathological

aspects of RA, including synovial cell proliferation, osteoclast

activation, immune inflammation, and cartilage damage.

Specifically, elevated MYC expression in RA synovial fibroblasts

significantly enhances abnormal cell proliferation, migration, and

invasion, worsening synovial inflammation and joint destruction

(28, 29). Additionally, MYC can enhance osteoclast differentiation

and bone-resorption activity by regulating transcription of

glutamine transporter (Slc1a5) and glutaminase (Gls1),

accelerating bone erosion in RA patients (30, 31). Furthermore,

MYC mediates macrophage metabolic reprogramming, elevating

glycolysis levels and promoting M1 pro-inflammatory macrophage

polarization and inflammatory cytokine expression, thus

exacerbating synovial inflammation in RA (32).

This study further elucidated the potential mechanisms of

GPX3 and MYC in RA through GSVA and GSEA analyses. High

expression of GPX3 and MYC was significantly enriched in

interferon-a/g responses and TNF-a/NF-kB signaling pathways,

whereas low expression was enriched in metabolic pathways such as

fatty acid metabolism, bile acid metabolism, and oxidative

phosphorylation. These pathways have been widely reported to

play crucial roles in RA inflammation and metabolic disorders

(33–35). Previous studies indicated that persistent activation of

interferon and TNF-a signaling directly results in sustained

activation of inflammatory cells in RA synovial tissues,
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exacerbating inflammation and tissue damage (36, 37).

Meanwhile, lipid metabolism abnormalities and mitochondrial

oxidative phosphorylation dysfunction may trigger ferroptosis,

exacerbating RA synovial t issue damage through the

accumulation of lipid peroxides (38). These results suggest that

GPX3 and MYC might regulate ferroptosis in RA through the

aforementioned inflammatory and metabolic pathways, thereby

exacerbating disease progression. To further explore the specific

roles of GPX3 and MYC in the immune microenvironment, we

performed single-cell sequencing-based ferroptosis scoring of

different immune cell populations in RA patients, particularly

focusing on communication differences between high and low

ferroptosis-scoring CD8+ T-cell subpopulations and other

immune cells. Analysis revealed significantly enhanced IFN-II

and CCL signaling interactions between high ferroptosis-scoring

CD8+ T cells and monocytes, NK cells, and CD4+ T cells, while

CD8+ T cells with low ferroptosis scores exhibited weaker

intercellular signaling. These findings align with the GSEA

analysis results mentioned above, where enhanced interferon

signaling pathways significantly promoted inflammatory cell

infiltration and synovial tissue damage (36, 39, 40). Additionally,

CCL3 signaling is closely associated with inflammatory infiltration

and immune cell recruitment in RA synovial tissues (41, 42).

Therefore, the cell communication results clearly support the

hypothesis that CD8+ T cells with high ferroptosis levels enhance

interactions with other immune cells through these inflammatory

signaling pathways, exacerbating synovial inflammation and injury.

Finally, we explored the potential interaction mechanisms

between gut microbial metabolites and GPX3 protein through

molecular docking and molecular dynamics simulation analyses.

Molecular docking indicated that the gut metabolite Diosgenin

binds tightly to GPX3, forming multiple stable hydrogen bonds at

residues GLY-61 and ARG-21. DIF-3 also showed strong binding

affinity to MYC. This suggests that gut metabolites may directly

modulate the function or expression of GPX3 and MYC, thereby

affecting the pathological processes of RA. Subsequently, molecular

dynamics simulations of the GPX3-Diosgenin complex were

conducted, with RMSD, RMSF, SASA, and Gyrate analyses

revealing a compact and stable conformation.

Existing studies indicate that gut microbiota metabolites

participate in regulating host ferroptosis through various

mechanisms, such as modulating glutathione metabolism, reactive

oxygen species (ROS) clearance, and lipid peroxidation (43).

Combining the previously discussed analyses of GPX3 and MYC

with GSVA and GSEA pathway enrichment results, the

downregulation of GPX3 can lead to ROS accumulation, inducing

lipid peroxidation and subsequently triggering ferroptosis in

synovial cells. Conversely, MYC upregulation may enhance

glycolytic activity in macrophages, promoting their polarization

toward the M1 phenotype, thereby creating a vicious cycle of

inflammation, metabolism, and cell death, exacerbating local

immune imbalance and tissue destruction in RA. Gut-derived

metabolites such as Diosgenin and DIF-3 demonstrated strong

binding stability in molecular docking and molecular dynamics
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simulations, suggesting their potential role in regulating GPX3 and

MYC functions, thus modulating oxidative stress and ferroptosis

processes in synovial cells. Based on the above assumptions, we

propose a novel potential intervention strategy: targeting GPX3 and

MYC by modulating specific gut microbiota metabolites (such as

Diosgenin and DIF-3), thus achieving multi-level regulation of the

RA pathological process. On one hand, developing small-molecule

modulators targeting GPX3/MYC could enhance antioxidant

defense capabilities or intervene in immunometabolic

reprogramming; on the other hand, approaches such as oral

probiotic administration or dietary polyphenol intake could

modulate gut microbiota composition, optimizing its metabolite

profile. In the future, it will be necessary to systematically validate

the “gut microbiota–metabolite–ferroptosis” axis by combining

animal experiments with integrated metagenomic and

metabolomic analyses, providing theoretical foundations and

practical pathways for precision treatment of RA.

In conclusion, through comprehensive bioinformatics analysis

and multiple machine learning methods, this study successfully

identified and validated GPX3 and MYC as two key genes related to

gut microbial metabolism and ferroptosis in RA progression. Both

key genes showed significant differential expression in RA patients,

were closely associated with immune cell infiltration and

inflammatory signaling pathways, and exhibited high clinical

value for disease diagnosis. Furthermore, this study elucidated the

specific mechanisms by which GPX3 and MYC may contribute to

RA from the perspectives of gut microbial metabolism and

ferroptosis, providing valuable clues for further exploring RA

pathogenesis and discovering novel therapeutic targets.
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15. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS:
High performance molecular simulations through multi-level parallelism from laptops
to supercomputers. SoftwareX. (2015) 1-2:19–25. doi: 10.1016/j.softx.2015.06.001
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