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Background: Knee osteoarthritis (KOA) is a chronic inflammatory joint disorder

marked by cartilage degradation and immune microenvironment dysregulation.

While transcriptomic studies have identified key pathways in KOA, the interplay

between ferroptosis (an iron-dependent cell death mechanism) and immune

dysfunction at single-cell resolution remains unexplored. This study integrates

single-cell and bulk transcriptomics to dissect ferroptosis-driven immune

remodeling and identify diagnostic biomarkers in KOA.

Methods: We analyzed scRNA-seq data (GSE255460, n = 11) and bulk RNA-seq

cohorts (GSE114007: 20 KOA/18 controls; GSE246425: 8 KOA/4 controls).

Single-cell data were processed via Seurat (QC: mitochondrial genes >3 MAD;

normalization: LogNormalize; batch correction: Harmony) and annotated using

CellMarker/PanglaoDB. CellChat decoded intercellular communication, SCENIC

reconstructed transcriptional networks, and Monocle2 for pseudotime trajectory

mapping. Immune infiltration (CIBERSORT) and a LASSO-SVM diagnostic model

were validated by ROC curves. Functional enrichment (GSEA/GSVA) and

immunometabolic profiling were performed.

Results: Twelve chondrocyte clusters were identified, including ferroptosis-

active homeostasis chondrocytes (HomC) (p < 0.01), which exhibited 491 DEGs

linked to lipid peroxidation. HomC orchestrated synovitis via FGF signaling

(ligand-receptor pairs: FGF1-FGFR1), amplifying ECM degradation and

inflammatory cascades (CellChat). SCENIC revealed 10 HomC-specific

regulons (e.g., SREBF1, YY1) driving matrix metalloproteinase activation. A 7-

gene diagnostic panel (IFT88,MIEF2, ABCC10, etc.) achieved AUC = 1.0 (training)

and 0.78 (validation). Immune profiling showed reduced resting mast cells (p =

0.003) andmonocytes (p = 0.02), with ABCC10 correlating negatively with CD8+

T cells (r = -0.65) and M1 macrophages. GSEA/GSVA implicated HIF-1, NF-kB,
and oxidative phosphorylation pathways in KOA progression. Pseudotime

analysis revealed fibrotic transitions (COL1A1↑, TNC↑) in late-stage KOA cells.
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Conclusion: This study establishes ferroptosis as one of the key drivers immune-

metabolic dysfunction in KOA, with HomC acting as a hub for FGF-mediated

synovitis and ECM remodeling. The diagnostic model and regulon network

(SREBF1/YY1) offer translational tools for early detection, while impaired mast

cell homeostasis highlights novel immunotherapeutic targets. Our findings

bridge ferroptosis, immune dysregulation, and metabolic stress, advancing

precision strategies for KOA management.
KEYWORDS

knee osteoarthritis, ferroptosis, single-cell transcriptomics, immunemicroenvironment,
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1 Introduction

Knee osteoarthritis (KOA) is a chronic inflammatory disease of

the joint, characterized by degenerative changes in cartilage and

dysregulation of the immune microenvironment (1, 2). KOA has a

major adverse impact on patients’ quality of life and poses a

considerable economic burden on healthcare systems globally (3,

4). Current management strategies of KOA comprise medications

across various pharmacological classes, physical interventions, and

surgical procedures, which often show limited treatment efficacy

with varying adverse effects (5, 6). This exemplifies the urgent need

to develop new treatment approaches for KOA.

The recent use of transcriptomic approaches have generated

valuable information regarding gene expression profiles in KOA,

noting inflammatory pathways and immune cell infiltration as

contributors to disease progression (7, 8). However, these studies

mostly examine bulk tissue samples which mask the cellular

heterogeneity in the joint and do not illustrate the complex cell-

specific interactions that drive immune remodeling in KOA (9, 10).

At a cellular level, a number of types of immune cells, such as

macrophages, mast cells, and T-lymphocytes, may interact in the

synovial microenvironment to drive inflammation and matrix

degradation (11–13).

Ferroptosis, a form of iron-dependent regulated cell death, has

emerged as a critical mechanism in various diseases, including

osteoarthritis (14, 15). This process is characterized by lipid

peroxidation and oxidative stress, both of which are central to the

pathophysiology of KOA (16, 17). Despite its significance, the role

of ferroptosis in immune microenvironment remodeling and

cartilage degradation in KOA has not been explored in detail,

particularly at the single-cell level.

To address this knowledge gap, we combine single-cell RNA

sequencing (scRNA-seq) and bulk transcriptomic data to provide a

multi-faceted overview of the immune microenvironment in KOA.

This multi-omics approach allows us to examine the interplay of

ferroptosis and immune dysregulation in KOA. The distinguishing

feature of scRNA-seq is its ability to demonstrate cell heterogeneity

and the subpopulations of immune cells that may be involved in the
02
pathogenic processes to an increasing degree of resolution (18, 19).

This will allow for a greater understanding of how ferroptosis impacts

immune remodeling and contributes to disease progression (20).

The primary aim of this study is to identify biomarkers

associated with ferroptosis driven immune microenvironment

remodeling in KOA. These biomarkers have the potential to be

used as early diagnostic tools and as targets for therapeutic

intervention for new treatment approaches (21). The hope is that

an enhanced understanding of the molecular mechanisms

occurring in KOA will provide new insights into disease

pathogenesis, as well as provide new therapeutic avenues for the

development of more efficacious treatments for KOA.
2 Methods

2.1 Data acquisition

GEO database (https://www.ncbi.nlm.nih.gov/geo/info/

datasets.html) the full name of GENE EXPRESSION OMNIBUS,

is by the us national center for biotechnology information (NCBI

database creation and maintenance of GENE EXPRESSION. To

ensure clarity, we explicitly detail the origin and characteristics of

each dataset used in this study. GSE255460 comprises single-cell

RNA sequencing data from human knee articular cartilage tissue of

11 patients with KOA. The annotation platform was GPL24676,

and batch effect correction was performed using the Harmony

algorithm. GSE114007 consists of bulk mRNA expression data from

knee articular cartilage tissue, including 20 samples from OA

patients and 18 samples from healthy controls, and served as the

model training set. GSE246425 provides mRNA expression profiles

of in vitro cultured human chondrocytes, incorporating samples

from both OA patients and healthy donors; chondrocytes were

cultured to replicative senescence (Hayflick limit) to establish a

senescent cell model. This dataset, also annotated with GPL24676,

was used as a validation cohort and comprised 8 OA samples and 4

control samples. Notably, both GSE255460 and GSE114007 were

sourced from knee cartilage tissue, whereas GSE246425 was derived
frontiersin.org
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from isolated chondrocytes cultured in vitro. For all differential

analyses involving two groups, the Wilcoxon test was employed.

Since only two groups (control vs. OA) were compared, ANOVA

was not applied. Detailed inclusion and exclusion criteria, OA

severity grading, sample collection, and single-cell isolation

methods for GSE255460 are available in the original publication.

All data were derived from publicly available datasets with original

ethical approvals documented in the primary studies.
2.2 Single cell data quality control

The expression profile was first read through the Seurat packet, in

which we filtered the cells according to the total UMI per cell, the

number of genes expressed (22), and the proportion of mitochondrial

expression per cell. The proportion of mitochondrial gene expression

refers to the percentage of the total expression of mitochondrial genes

in the total expression of all genes. Cells with a high proportion of

mitochondrial gene expression and a low amount of RNA expression

are entering the death process. For rigorous quality control, we

employed the median absolute deviation (MAD) method. Variables

(such as UMI counts, gene numbers, or mitochondrial content)

exceeding 3 MADs from the median were identified as outliers and

excluded from downstream analyses. Multiple-testing correction in

differential expression analysis was performed using the Benjamini-

Hochberg method to control the false discovery rate (FDR).
2.3 Single cell data dimensionality
reduction clustering and cell annotation

We adopt the globally standardized LogNormalize method, by

multiplying a coefficient s0, the total expression of each cell is adjusted

to 10000, and then logarithm is taken for standardization. Cell cycle

score was calculated using CellCycleScoring. FindVariableFeatures

Looks for highly variable genes; We used ScaleData function to

remove gene expression fluctuations caused by different

mitochondrial gene expression proportion, ribosomal gene

expression proportion and cell cycle. The expression matrix was

reduced linearly by RunPCA, and principal components were

selected for subsequent analysis. The batch effect was removed by

Harmony, and the non-linear dimensionality reduction was performed

by RunUMAP Unified Manifold Approximation and Projection

(UMAP). By searching CellMarker and PanglaoDB database and

literature mainly (23, 24), supplemented by automated annotation

by SingleR software, cell types existing in corresponding tissues and

corresponding marker genes were searched for cell annotation.
2.4 Ligand receptor interaction analysis
(CellChat)

CellChat is a tool that enables quantitative inference and

analysis of intercellular communication networks from single-cell
Frontiers in Immunology 03
data (25). CellChat uses network analysis and pattern recognition

methods to predict the major signal inputs and outputs of cells and

how these cells and signals coordinate functions. In this analysis, we

used standardized single-cell expression profiles as input data, and

cell subtypes obtained from single-cell analysis were cell

information. Cell-related interactions were analyzed, and weights

and counts of inter-cell interactions were used to quantify the

closeness of interactions, so as to observe the activity and influence

of each type of cell in disease.
2.5 SCENIC analysis

SCENIC(single-cell regulatory network inference and

clustering) is a method for calculating gene regulatory network

reconstruction and cell state identification based on co-expression

and motif analysis of single-cell transcriptome data (26). It first

identified the set of genes co-expressed with transcription factors

through GENIE3, then carried out motif enrichment analysis for

each co-expression module, retained significantly enriched motifs,

and TF annotation of motifs using the database, and the annotation

results were rated as high and low confidence. TF for direct database

annotation and homologous gene inference are high confidence

results, TF for motif sequence similarity annotation is low

confidence results. The genes in the co-expression module are

scored with the retained motif, the genes with significantly high

scores are identified (understood as the motif is very close to the

TSS of these genes), the genes with low scores in the co-expression

module are deleted, and the remaining gene set is called regulon.

Each regulon is a transcription factor and the set of genes that

directly regulate its target genes, and SCENIC’s next job is to score

each regulon’s activity in individual cells. The score is based on the

expression value of the gene, the higher the score represents the

higher the degree of activation of the gene set, and the resulting

activity matrix can identify the cell type and state.
2.6 Construction of prediction model

Lasso regression was used to further construct the prediction

correlation model (27). After incorporating the expression value of

each specific gene, a risk score formula for each patient was

constructed, weighted by its estimated regression coefficient in

lasso regression analysis. The score for each patient was

calculated according to the risk score formula, and the ROC

curve was used to study the accuracy of the model prediction. At

the same time, SVM algorithm was used for feature selection of

disease diagnostic markers (28). Svm-rfe is a machine learning

method based on support vector machines, which seeks the best

variables by deleting the feature vectors generated by SVM, and

builds a support vector machine model through the “e1071”

software package to further identify the diagnostic value of these

biomarkers for diseases.
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2.7 Immune infiltration

CIBERSORT method is a widely used method to evaluate

immune cell types in microenvironment (29). Based on the

principle of support vector regression, the expression matrix of

immune cell subtypes was deconvolution analyzed. It contains 547

biomarkers that distinguish 22 human immune cell phenotypes,

including T cells, B cells, plasma cells, and myeloid cell subsets. In

this study, CIBERSORT algorithm was used to analyze patient data,

which was used to infer the relative proportion of 22 kinds of

immune infiltrating cells, and correlation analysis was conducted

for gene expression and immune cell content.
2.8 GSEA analysis

Gene Set Enrichment Analysis (GSEA) was conducted to assess

the differences in pathway enrichment among groups (30). In

accordance with the expression levels of the specific genes in the

samples, samples were assigned to either a high or low expression

group and differences between groups were further examined

through the GSEA process. The background gene sets were

annotation gene sets of version 7.0 downloaded from the MsigDB

database and were considered as annotation gene sets of the subtype

type pathways. The process involved differential expression analysis

of the pathways between the groups. All significantly enriched gene

sets, adjusted p value <0.05, were ranked based upon the

consistency scores. GSEA is frequently used to examine the close

assoc ia t ion of d i sease c las s ifica t ion wi th b io log ica l

process significance.
2.9 GSVA analysis

Gene set variation analysis (GSVA) is an unsupervised, non-

parametric method for assessing the enrichment of gene sets from

transcriptome data (31). GSVA examines the gene set of interest in

a cumulative score to convert the gene level change into pathway

level change, and then attempts to make biological function

assertions about the sample. In this study, gene sets were

downloaded from Molecular Signatures Database, and we

computed comprehensive scores for each of the gene sets using

the GSVA algorithm to assess potential biological functional

changes in the different samples.
2.10 Quasi-temporal analysis

Studies at the single-cell level have made it possible to describe

transcriptional regulation of complex physiological processes and

highly heterogeneous cell populations. These studies contribute to

the discovery of genes that recognize specific cell subtypes, genes

that mark intermediate states of biological processes, and genes that

transition states between two different cell fates. In many single-cell
Frontiers in Immunology 04
studies, individual cells perform the gene expression process in an

unsynchronized manner, and each cell is a moment of the

transcription process being studied. Monocle introduced the

strategy of sequencing individual cells within pseudotime (32),

using the non-synchronous processes of individual cells to place

them on a trajectory corresponding to biological processes such as

cell differentiation.
2.11 Statistical analysis

All statistical analyses were conducted using R language

(version 4.3.0), with p<0.05 being statistically significant.
3 Results

3.1 Integration of single-cell data and
identification of cellular subpopulations

Considering the data quality of multiple samples, the captured

outliers of the cells will be filtered. In the end, a total of 74,182 cells

were retained, and the violin diagram and scatter diagram after

quality control (Supplementary Figures 1A, Figure 1B) were

obtained. We then analyzed 2000 highly variable genes and

showed the 10 genes with the highest standard deviation among

them (Supplementary Figure 1C). Subsequently, the data were

standardized, homogenized, PCA and harmony analyzed and

processed successively (Supplementary Figures 1D–F). UMAP

plots before and after Harmony correction in the Supplementary

Figures 1E, F, which demonstrate that cell clustering by batch has

been effectively minimized. After dimensionality reduction by

unified manifold approximation and projection (UMAP), a total

of 18 subgroups are obtained (Figure 1A). The study further

annotated each cell subtype. In total, 12 cell types were identified

and annotated: preHTC (prehypertrophic chondrocytes), FC

(fibrocartilage chondrocytes), EC (effector) chondrocytes), HomC

(homeostasis chondrocytes), proC (proliferation chondrocytes),

InfC (inflammatory) chondrocytes), HTC (hypertrophic

chondrocytes), preInfC (pre-inflammatory chondrocytes), RepC

(reparative) There were 12 types of cells, namely chondrocytes,

RegC (regulator chondrocytes), preFC (prefibrocartilage

chondrocytes) and cycle cells (Figure 1B). The classic marker

genes for each of the 12 cell types are shown in a bubble plot

(Figure 1C), and the proportions of each cell type are illustrated

in Figure 1D.
3.2 Ferroptosis mechanisms and
identification of key cell types

Then we gain the iron from iron death database (http://

www.zhounan.org/ferrdb) death related genes, a total of 484 iron

death related genes, AUCell, UCell, singscore, ssGSEA and Add
frontiersin.or
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algorithms were used to evaluate iron death at the level of scRNA-

seq, and the scores of the above algorithms were averaged to

evaluate the expression of iron death in different cell types.

According to the results, the cell subsets with a small number of
Frontiers in Immunology 05
cells were eliminated. In the control group and the disease group,

the expression of iron death was significantly different in HomC

and the total quantified score was the highest in the two groups, so

HomC was taken as the key cell (Figure 1E). Subsequently, we
FIGURE 1

Cellular annotation and differences in ferroptosis scores. (A) Cells were grouped into 18 clusters using UMAP algorithm based on important
components available from PCA. (B) Annotation of the 18 clusters, categorized into 12 cell types: preHTC (prehypertrophic chondrocytes), FC
(fibrocartilage chondrocytes), EC (effector chondrocytes), HomC (homeostasis chondrocytes), proC (proliferation chondrocytes), InfC (inflammatory
chondrocytes), HTC (hypertrophic chondrocytes), preInfC (pre-inflammatory chondrocytes), RepC (reparative chondrocytes), RegC (regulator
chondrocytes), preFC (prefibrocartilage chondrocytes), and cycle cells. (C) Bubble plot of 12 cell types and their corresponding cell markers in the
Doplot. (D) Pie chart illustrating the proportion of 12 cell types.(E) Differential expression of ferroptosis scores across the 12 cell types.
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extracted HomC and used pseudo bulk to analyze the difference

between the high and low HomC scores according to the median

value of its iron death quantization score. The differential gene

screening conditions were p-value < 0.05 and |logFC| > 1. A total of

491 differential genes (Candidate_Genes.txt) were obtained.
3.3 Intercellular communication analysis
reveals critical pathways

First, HomC was divided into high-low scores according to

quantitative scores. Then, we analyzed the ligand-receptor

relationship of feature in single cell expression profile using the

software package cellchat. We found complex interaction pairs

among these cell subtypes (Figure 2A). Then, we calculated the

signal receiving and sending intensity of all cells for all signaling

pathways (Figures 2B, C), and found that for HomC, the signal

receiving and sending intensity of FGF signaling pathway was

higher, pretending to be a critical signaling pathway analysis. Our

analysis highlighted the significance of FGF signaling in mediating

intercellular communication between HomC and synovial

fibroblasts. Scatterplot analysis demonstrated robust FGF-

mediated interactions between these cell types (Figure 2D). Chord

diagram analysis further identified FGF1-FGFR1 as the most active

ligand-receptor pair (Figure 2E), a finding that was corroborated by

significantly elevated FGF1 expression in HomC (P < 0.001,

Figure 2F). Functionally, HomC-derived FGF1 was found to

promote the expression of MMP-13 and ADAMTS5 in synovial

fibroblasts (Figure 2G), implicating this signaling axis in the

degradation of the extracellular matrix (ECM).
3.4 Transcriptional regulatory network
reconstruction identifies core regulators

We selected HomC for SCENIC analysis and output all

regulatory units in this subpopulation, and we drew a heat map

to visualize the regulon activity score for each cell (Figure 3A). We

then show the relationship between a gene’s Rank and its residual

sum of squares (RSS), which reflects the relative importance of each

gene in the network. The results showed that SREBF1, DBP, YY1,

MXD4, BHLHE41, ZNF135, MSX2, ZNF732, EGR4, TCF4 and

other genes ranked first, and the regulator with higher RSS value

may be specifically related to this cell population. Through RSS

scores, we identified these 10 regulons as key regulatory elements in

KOA (Figures 3B, C).
3.5 Multi-omics feature integration and
construction of the diagnostic model

We downloaded the dataset of GSE114007 related to KOA from

GEO database as the training set, and used the dataset GSE246425

as the validation set, and performed feature screening on 491
Frontiers in Immunology 06
differential genes by Lasso regression. The results showed that

Lasso regression consensus identified 7 genes as characteristic

genes, as key genes for subsequent research, and built a

prediction model (Figures 4A–C). The model formula is as

follows: RiskScore = IFT88 (0.1082) + MIEF2 (0.0795) + STK32B

(0.0356) + KCTD14 (0.0053)+ZNF81×0.0274+SPTSSB×0.0538

+ABCC10×0.0848. The results showed that the prediction model

constructed by 7 genes had better diagnostic efficiency, and the area

under the AUC curve was 1 (Figure 4D). We further verified the

diagnostic model against external data sets, and the results showed

that the model had strong stability, and the area under the AUC

curve of the verification set was 0.7812 (Figure 4E).
3.6 Correlation of model genes with the
immune microenvironment

The microenvironment is mainly composed of fibroblasts,

immune cells, extracellular matrix, various growth factors,

inflammatory factors and special physicochemical characteristics,

which significantly affect the diagnosis, survival outcome and

clinical treatment sensitivity of diseases. We showed the level

distribution of immune infiltrations and the correlation of

immune cells in different forms (Figures 5A, B). Compared with

the control group, the levels of mast cells resting and monocytes in

the samples from the disease group were significantly lower

(Figure 5C). We further explored the relationship between key

genes and immune cells, and found that IFT88 was significantly

positively correlated with mast cells resting and negatively

correlated with T cells gamma delta and macrophages M2. MIEF2

was positively correlated with mast cells resting and negatively

correlated with Macrophages M2 and Dendritic cells activated.

STK32B was positively correlated with mast cells resting and

negatively correlated with Macrophages M2. KCTD14 was

positively correlated with mast cells resting. ZNF81 was

significantly positively correlated with Neutrophils, and negatively

correlated with monocytes. SPTSSB was positively correlated with T

cells gamma delta. ABCC10 is positively correlated with

Macrophages M2 and mast cells activated, and negatively

correlated with T cells CD8, Macrophages M1 and mast cells

resting (Figure 5D). In addition, we analyzed the associations

between key genes and different immune factors, including

immunosuppressors, immunostimulators, chemokines, and

receptors. These analyses suggest that key genes are closely

related to the level of immune cell infiltration and play an

important role in the immune microenvironment (Figures 6A–E).

We used AUCell to quantitatively score genes related to

immune metabolism in single cells, and used bubble map to show

the differences in the activity of key genes in immune metabolism

related pathways. The results showed that SPTSSB, STK32B,

ABCC10, ZNF81, KCTD14, IFT88 and MIEF2 were coagulation,

mtorc1_signaling, unfolded_protein_response, myc_targets_v1,

oxidative_phosphorylation and other pathways have higher

activity (Supplementary Figure 2).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1608378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1608378
3.7 Trajectory evolution and functional
mechanism validation

Next, we investigate the specific signaling pathways involved in

key genes and explore the underlying molecular mechanisms by

which key genes influence disease progression. GSEA results
Frontiers in Immunology 07
showed that IFT88 was enriched in HIF-1 signaling pathway,

Insulin signaling pathway, Notch signaling pathway and other

signaling pathways (Figure 7A). MIEF2 is enriched in FoxO

signaling pathway, Glucagon signaling pathway, Longevity

regulating pathway and other signaling pathways (Figure 7B).

STK32B is enriched in HIF-1 signaling pathway, Notch signaling
FIGURE 2

Cell-cell interactions. (A) The number and strength of interactions between cell subpopulations. (B, C) Cell communication through signaling
pathways, with FGF signaling as the major ligand-receptor docking pathway. (D) Signal intensity from THomC is higher than other cells.
(E) Interaction network between cells and the FGF signaling pathway in chord diagram format. (F) Violin plot of the expression level of FGF signaling
pathway in cells. (G) Bubble plot showing receptor-ligand interactions between cells.
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pathway, AMPK signaling pathway and other signaling pathways

(Figure 7C). KCTD14 is enriched in HIF-1 signaling pathway,

Notch signaling pathway, IL-17 signaling pathway and other

signaling pathways (Figure 7D). ZNF81 is enriched in HIF-1
Frontiers in Immunology 08
signaling pathway, Biosynthesis of amino acids, Nucleotide

metabolism and other signaling pathways (Figure 7E). SPTSSB is

enriched in TGF-beta signaling pathway, PI3K-Akt signaling

pathway, N-Glycan biosynthesis and other signaling pathways
FIGURE 3

SCENIC analysis. (A) Heatmap displaying the regulon activity scores of each cell in the HomC subpopulation. SCENIC analysis identified all regulons
in this subpopulation, and their activity distribution is visualized. (B, C) Scatter plots showing the specificity ranking of transcription factors in high-
score and low-score groups.
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(Figure 7F). ABCC10 is enriched in PI3K-Akt signaling pathway,

MAPK signaling pathway, Longevity regulating pathway and other

signaling pathways (Figure 7G).

GSVA analysis showed that IFT88 was enriched in

TNFA_SIGNALING_VIA_NFKB and NOTCH_SIGNALING

pathways (Figure 8A). MIEF2 is enriched in ESTROGEN_

RESPONSE_EARLY, TNFA_SIGNALING_VIA_NFKB and other

signaling pathways (Figure 8B). STK32B is enriched in

NOTCH_SIGNALING, ANGIOGENESIS and other signaling

pathways (Figure 8C). KCTD14 is enriched in ANGIOGENESIS,

ESTROGEN_RESPONSE_EARLY and other signaling pathways

(Figure 8D). ZNF81 is enriched in signal pathways such as

UV_RESPONSE_DN and E2F_TARGETS (Figure 8E). SPTSSB is

enriched in signal pathways COAGULATION, BILE_ACID_

METABOLISM, etc. (Figure 8F). ABCC10 is enriched in

signal pathways COAGULATION and EPITHELIAL_

MESENCHYMAL_TRANSITION (Figure 8G). This suggests

that key genes may influence disease progression through

these pathways.

We used the Dotplot, FeaturePlot and VlnPlot functions in the

SeuratR package to check the expression of key genes in single cells

(Figures 9A, B). Then we carried out a quasi-time series analysis,

firstly calculating the similarity between cells and constructing the
Frontiers in Immunology 09
cell differentiation trajectory. Then, by visualizing the trajectory, a

picture of cell differentiation trajectory constructed in pseudo-time

can be generated to show the development process of cells, which

can be used to study the process of cell differentiation and gene

expression patterns at different time points. pseudotime value

(Pseudotime is the probability calculated by monocle based on

cell gene expression information, indicating the order of time), state

(the block distinguished by path branches) and cell color pictures of

different groups were output respectively. The results showed that

the control group was mainly distributed in the early stage of cell

differentiation. The disease group was mainly distributed in the late

stage of cell differentiation (Figures 10A–C). Through the

calculation, we also selected and visualized the batch of genes that

changed the most along the pseudo-time difference. The horizontal

coordinate is the pseudo-time value, and the vertical coordinate is

the selected gene, which is divided into 3 clusters by default

according to the changes of genes. We found that C2orf40,

GGTA1P, FAM129B, KDELC2, SEPT7 and other genes were

expressed in the early stage of locus differentiation. COL1A1,

TNC, ASPN, COL1A2, S100A4 and other genes were expressed at

the end of locus differentiation (Figure 10D). Finally, we also show

changes in the expression of key genes during cell differentiation

trajectories (Figure 10E).
FIGURE 4

Construction of predictive models. (A) LASSO coefficient distribution of prognostic genes and gene combinations at the minimal lambda value.
(B) Ten-fold cross-validation of the LASSO model to select the optimal lambda value. (C) Lasso coefficients for selected genes. (D, E) ROC curves for
training and validation sets.
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4 Discussion

KOA is a complex and progressive disease driven by a

combination of mechanical, inflammatory, and metabolic factors

(33). While extensive research has focused on the inflammatory

processes within KOA, the emerging role of non-apoptotic forms of

cell death, specifically ferroptosis, in shaping the disease’s immune

microenvironment is only now beginning to be understood (34, 35).

This study provides novel insights into the ferroptosis-driven

remodeling of the immune microenvironment in KOA by

integrating single-cell transcriptomics with bulk RNA sequencing

data. Our findings highlight the critical involvement of ferroptosis
Frontiers in Immunology 10
in the pathogenesis of KOA, demonstrating its influence on

immune cell polarization, synovial inflammation, and

extracellular matrix (ECM) degradation.

The identification of ferroptosis-active homeostasis

chondrocytes (HomC) as key players in KOA pathogenesis is a

major finding of this study. These cells were found to exhibit

significant lipid peroxidation, a hallmark of ferroptosis, and were

shown to orchestrate synovitis through fibroblast growth factor

(FGF) signaling. Specifically, FGF1 and FGFR1 were identified as

ligand-receptor pairs responsible for promoting ECM degradation

and inflammation, amplifying the disease process. These results are

consistent with previous studies suggesting that ferroptosis
FIGURE 5

Immune infiltration analysis. (A) Relative percentages of immune cell subpopulations. (B) Correlation of immune cells, with blue representing
negative correlation and red representing positive correlation. (C) Differences in immune cell content between control and disease samples.
(D) Correlation between key genes and immune cells. ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p < 0.001.
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contributes to tissue damage and inflammation in other models of

chronic disease (36, 37), but this is the first study to link it directly

with chondrocyte behavior in KOA.

Our analysis using SCENIC revealed that HomC exhibit a

unique regulon profile, with transcription factors such as SREBF1
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and YY1 driving the activation of matrix metalloproteinases

(MMPs). These findings are crucial because MMPs are central to

cartilage degradation, and their dysregulation in KOA leads to the

breakdown of the ECM, exacerbating joint degeneration (38, 39).

This ferroptosis-mediated regulatory network offers a new
FIGURE 6

Relationship between key genes and immune factors. (A–E) Correlation of key genes with chemokines, immunoinhibitors, immunostimulators, MHC,
and receptors.
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perspective on how ferroptotic stress in chondrocytes may be a

central mechanism that exacerbates inflammation and tissue

degradation, driving KOA progression.

In addition to the direct effects on chondrocytes, we also observed

alterations in immune cell profiles within the synovial

microenvironment. Specifically, we found reduced resting mast cells

and monocytes in KOA, which may indicate an imbalance in immune

cell function. The negative correlation between ABCC10 expression

and CD8+ T cells as well as M1 macrophages further underscores the

interplay between ferroptosis and immune cell activity in KOA (40).

This finding suggests that ferroptosis may influence the activation and

polarization of immune cells, potentially contributing to the chronic

inflammation observed in KOA (41). The role of mast cells, in

particular, may be of interest for future research, as their

involvement in tissue remodeling and immune modulation could

open new avenues for immunotherapeutic interventions (42, 43).
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To further explore the cellular dynamics, we employed CellChat

and pseudotime trajectory analysis. These approaches revealed that

ferroptosis is central to immune ecosystem remodeling in KOA,

driving myeloid cell polarization, lymphocyte infiltration, and

disruption of stromal-immune metabolic coupling. Our CellChat

analysis prioritized the FGF signaling pathway due to its exceptional

ligand-receptor intensity in ferroptosis-active homeostasis

chondrocytes (HomC) (Figures 2B, C), a finding mechanistically

supported by the established role of FGF1–FGFR1 interactions in

promoting synovial fibroblast activation, MMP-13 secretion, and

extracellular matrix (ECM) degradation (44–46).

Integration with pseudotime trajectory analysis demonstrated

that the transition from homeostasis to a fibrotic, inflammatory

phenotype in late-stage KOA coincided with elevated FGF1

expression in HomC and increased markers such as COL1A1 and

TNC (39, 47). This suggests that ferroptosis-driven FGF signaling
FIGURE 7

GSEA analysis of key genes. (A–G) KEGG signaling pathways involving key genes, including pathway regulation and associated genes.
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amplifies both ECM remodeling and fibrotic reprogramming,

linking chondrocyte ferroptosis to synovitis and tissue fibrosis.

Collectively, these findings delineate a mechanistic framework in

which FGF signaling bridges ferroptosis and immune remodeling in

KOA, exacerbating cartilage degradation, inflammation, and

fibrosis (48, 49).Furthermore, we observed upregulation of

oxidative stress pathways, particularly those regulated by NF-kB
and HIF-1, implicating immune-metabolic dysregulation as a

central driver of KOA progression (50).

A major strength of this study is the identification of a robust 7-

gene diagnostic panel, which achieved an AUC of 1.0 in the training

set and 0.78 in the validation cohort. These genes—including IFT88,
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MIEF2, and ABCC10—are involved in mitochondrial dynamics,

inflammatory response, and iron metabolism (51–54), highlighting

their potential for non-invasive early detection of KOA and for

guiding future biomarker-based interventions.

In terms of therapeutic applications, our findings point to several

potential targets. Ferroptosis inhibitors, which are currently under

investigation in cancer therapies (55), could offer a novel approach to

modulating cell death in KOA. Targeting immune cell dysfunction,

particularly mast cells andmacrophages, may help to restore immune

balance within the joint and reduce chronic inflammation (56–58).

Furthermore, inhibiting the FGF signaling axis—which has been

identified as central to HomC-driven synovitis and ECM degradation
FIGURE 8

GSVA analysis of key genes. (A–G) GSVA analysis for key genes, with blue representing high-expression genes involved in signaling pathways and
green representing low-expression genes. The hallmark gene set is used as the background.
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—also represents a promising therapeutic strategy. Recent studies,

such as that by Xu et al. (59), have further demonstrated that

ferroptosis inhibitors can protect chondrocytes while reducing the

expression of pro-inflammatory mediators, thereby supporting the

therapeutic value of targeting ferroptosis and its associated immune-

metabolic crosstalk in KOA.
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While this study provides valuable insights, several limitations

must be considered. First, although batch effect correction for the

single-cell RNA-seq data (GSE255460) was performed using the

Harmony algorithm and visually assessed by UMAP, quantitative

kBET analysis showed only a 2% acceptance rate post-correction,

likely due to biological variability and uneven cell type distribution.
FIGURE 9

Single-cell expression. (A) Scatter plot showing the expression profile of key genes in single cells. (B) Violin plot of key gene expression in single
cells.
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Second, the validation cohort was small (GSE246425, n=12), which

may limit statistical power and generalizability, and no a priori

sample size calculation was possible since our work is a secondary

analysis of public datasets. Third, all findings are based on

computational analysis without direct experimental validation.

We have outlined future plans to address this, including lipid

peroxidation assays, iron content measurement, and ferroptosis
Frontiers in Immunology 15
inhibition experiments. Future studies with larger cohorts and wet-

lab experiments are needed to confirm our conclusions and further

explore the underlying mechanisms.

Additionally, while the single-cell transcriptomic analysis provides

high-resolution data on immune cells and chondrocytes, the spatial

organization of these cells within the tissue is not fully addressed. Future

studies integrating spatial transcriptomics or immunohistochemistry
FIGURE 10

Cellular developmental trajectories. (A–C) Pseudotime analysis and developmental trajectories of cells. (D) Gene expression dynamics in each
pigment cell branch. (E) Relationship between key gene expression and cell developmental trajectories.
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could provide more context on how ferroptosis and immune cells

interact in the native tissue environment.

Furthermore, while we focused on ferroptosis as a key driver of

immune dysfunction in KOA, other forms of non-apoptotic cell

death, such as necroptosis or pyroptosis, may also contribute to the

disease process. Future studies exploring these pathways could offer

a more comprehensive understanding of the molecular mechanisms

underlying KOA. Moreover, the role of ferroptosis in other joint

diseases, such as rheumatoid arthritis, should be investigated to

determine whether the findings in KOA are broadly applicable to

other inflammatory conditions.
5 Conclusion

In summary, this study establishes ferroptosis as a key driver of

immune-metabolic dysfunction in KOA, linking it to synovitis,

ECM remodeling, and disease progression. By integrating single-cell

transcriptomics and bulk RNA-seq, we have uncovered novel

mechanisms by which ferroptosis influences immune

microenvironment remodeling in KOA, providing potential

biomarkers and therapeutic targets. Our findings not only

enhance the understanding of KOA pathogenesis but also open

new avenues for developing precision diagnostic and therapeutic

strategies to better manage this debilitating disease.
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