
TYPE Original Research 
PUBLISHED 02 July 2025 
DOI 10.3389/fimmu.2025.1608407 

OPEN ACCESS 

EDITED BY 

Lisa Jia Tran,
 
Ludwig Maximilian University of Munich,
 
Germany
 

REVIEWED BY 

Chen Li, 
Free University of Berlin, Germany 
Kangjie Shen, 
Fudan University, China 
Tamer A. Addissouky, 
University of Menoufia, Egypt 
Wei Xu, 
The First Affiliated Hospital of Soochow 
University, China 
Josephine Anthony, 
Meenakshi Academy of Higher Education and 
Research, India 

*CORRESPONDENCE 

Jiajun Du 

dujiajun@sdu.edu.cn 

†These authors have contributed equally to 
this work 

RECEIVED 08 April 2025 
ACCEPTED 09 June 2025 
PUBLISHED 02 July 2025 

CITATION 

Chi Y, Ma G, Liu Q, Xiang Y, Liu D and Du J 
(2025) Multi-omics analysis reveals 
glutathione metabolism-related immune 
suppression and constructs a prognostic 
model in lung adenocarcinoma. 
Front. Immunol. 16:1608407. 
doi: 10.3389/fimmu.2025.1608407 

COPYRIGHT 

© 2025 Chi, Ma, Liu, Xiang, Liu and Du. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms. 

Frontiers in Immunology 
Multi-omics analysis reveals 
glutathione metabolism-related 
immune suppression and 
constructs a prognostic model in 
lung adenocarcinoma 
Yuxiang Chi1,2†, Guoyuan Ma3†, Qiang Liu1,2, Yunzhi Xiang1,2, 
Defeng Liu2 and Jiajun Du1,3* 

1Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China, 
2Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China, 3Department of 
Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 
Shandong, China 
Background: Metabolic reprogramming within the tumor microenvironment 
plays a pivotal role in tumor progression and therapeutic responses. 
Nevertheless, the relationship between aberrant glutathione (GSH) metabolism 
and the immune microenvironment in lung adenocarcinoma, as well as its 
clinical implications, remains unclear. 

Methods: We leveraged genome-wide association study (GWAS) data and 
applied genetic causal analysis to evaluate the causal relationships among 
plasma 5-oxoproline levels, lung adenocarcinoma (LUAD) risk, and 731 
immune phenotypes. We incorporated single-cell RNA sequencing data from 
LUAD to compare transcription factor activity, cell communication networks, and 
CD8+ T cell subset distributions across distinct GSH metabolic groups, followed 
by pseudotime analysis. Whole-transcriptome data from the TCGA database 
were analyzed for functional enrichment, immune infiltration, and immune 
functionality. Prognostic genes were identified using WGCNA and LASSO-Cox 
regression, and the expression was validated via qRT-PCR. Thereafter, 
immunotherapeutic efficacy and drug sensitivity were predicted using the TIDE 
platform and the oncoPredict package. A prognostic model was constructed to 
forecast patient survival, which was further validated in two independent 
GEO datasets. 

Results: Genetic causal analysis indicated a positive correlation between plasma 
5-oxoproline levels and LUAD risk. ScRNA-seq analysis revealed an increased 
proportion of exhausted CD8+ T cells in the high GSH metabolic group, 
accompanied by altered transcription factor activity and distinct cell 
communication patterns. Furthermore, whole-transcriptome data analysis 
demonstrated that patients with a high metabolic phenotype exhibited 
significantly diminished immune functionality and overall immune infiltration. 
Using WGCNA and LASSO-Cox regression, we ultimately identified three key 
genes (LCAL1, RHOV, and MARCHF4) and generated a gene risk score. This score 
effectively predicts both immunotherapy response and drug sensitivity. qRT-PCR 
confirmed the upregulation of MARCHF4 in LUAD cells. In addition, stratification 
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by gene risk scores revealed significant differences in immune cell infiltration, 
immunotherapeutic response, and drug sensitivity. The nomogram model 
demonstrated strong predictive accuracy in both the TCGA cohort and two 
independent GEO validation datasets. 

Conclusions: GSH metabolic reprogramming may suppress antitumor immunity 
by modulating transcription factor activity, remodeling cell communication 
networks, and regulating CD8+ T cells. The prognostic risk model developed 
herein effectively predicts immunotherapeutic response, drug sensitivity, and 
overall survival in patients with LUAD. 
KEYWORDS 

multi-omics, single-cell sequencing, glutathione metabolism, immunotherapy, 
prognostic model 
1 Introduction 

Among lung cancers, lung adenocarcinoma (LUAD) represents 
the predominant histological subtype, with an exceedingly complex 
pathogenesis that encompasses genetic, environmental, and lifestyle 
factors (1, 2). The development and progression of tumors depend 
not only on intrinsic genetic mutations and molecular abnormalities 
but also on the surrounding tumor microenvironment (TME) (3). 
Tumor cells frequently employ metabolic reprogramming to adapt to 
the evolving conditions of the TME, thereby facilitating their survival 
(3, 4). 

Within the intricate process of tumor metabolic reprogramming, 
the regulation of redox balance in tumor cells is critically important (5). 
Glutathione (GSH), the primary intracellular antioxidant, is 
indispensable for scavenging reactive oxygen species (ROS) and 
maintaining redox homeostasis (6). Studies have shown that its levels 
are markedly elevated in various human tumors, including those in the 
head and neck, breast, ovary, colorectum, and lung, compared with 
normal tissues (7–9). Elevated GSH levels enable tumor cells to 
neutralize harmful peroxides and sustain redox balance, thereby 
creating a microenvironment that favors rapid cellular proliferation 
(7, 10). Consequently, the reprogramming of the GSH metabolic 
pathway is essential for tumor survival and progression. 

The metabolism of GSH is primarily dependent on the classical 
g-glutamyl cycle (10, 11). When glutathione synthesis is impaired or 
depleted, the intermediate 5-oxoproline can accumulate abnormally 
(10, 12, 13). Clinical reports have documented that impaired 
glutathione metabolism leads to the accumulation of 5­
oxoproline, which in turn precipitates metabolic acidosis in 
patients (12, 14). Therefore, the concentration of 5-oxoproline 
can, to some extent, reflect the activity and integrity of the 
glutathione cycle. Based on this evidence, analyzing the 
metabolite 5-oxoproline, which is an indicator of GSH levels, may 
elucidate its relationship with tumorigenesis and progression. 
02 
An increasing number of studies indicate that tumor metabolic 
reprogramming significantly impacts antitumor immune responses 
(4, 15–17). Within the tumor microenvironment, intense 
competition for nutrients, continuous accumulation of metabolic 
waste, and complex alterations in metabolic signals collectively 
affect immune cell infiltration, survival, and function (16–18). In 
particular, T lymphocytes, which are key effector cells in antitumor 
immunity, rely heavily on metabolic pathways to support their 
proliferation, differentiation, and cytotoxic activity (19, 20). 
Accordingly, a detailed analysis of the interplay between aberrant 
glutathione metabolism and immune suppression in tumors is of 
considerable theoretical and  practical significance for refining 
current therapeutic strategies. 

Given the close association between glutathione metabolism, 
the tumor microenvironment, and immune function, this form of 
metabolic reprogramming may substantially influence treatment 
responses in lung adenocarcinoma. In the field of immunotherapy, 
although immune checkpoint inhibitors such as PD-1/PD-L1 
blockers  have  demonstrated  a  degree  of  efficacy,  only  
approximately 20–30% of patients exhibit a favorable response 
(21). This variability may be attributable to differences in the 
tumor metabolic microenvironment, with glutathione metabolism 
emerging as a key factor (22, 23). Moreover, glutathione levels may 
affect tumor cell sensitivity to chemotherapy and targeted therapies 
(24). For example, elevated GSH can attenuate the cytotoxic effects 
of chemotherapeutic agents, such as platinum-based and 
anthracycline drugs, by neutralizing excess reactive oxygen species 
generated during treatment, thereby promoting drug resistance 
(24). Additionally, glutathione participates in drug metabolism 
and efflux, forming conjugates that facilitate drug excretion and 
lower intracellular drug concentrations (24). Hence, analyzing 
molecular features associated with glutathione metabolism holds 
promise for developing more precise predictive tools for 
drug sensitivity. 
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Although the TNM staging system is widely used for risk 
stratification in lung adenocarcinoma, patients within the same 
stage can experience disparate clinical outcomes, highlighting the 
critical influence of tumor-specific biological characteristics on 
prognosis. As an integral aspect of tumor metabolic reprogramming, 
glutathione metabolism and the expression of its related genes may 
serve as an indicator of a tumor’s invasive and progressive potential (7, 
24). Recent studies have demonstrated that the expression of various 
redox-related genes is closely associated with patient survival (25). By 
integrating molecular features related to glutathione metabolism, it is 
possible to develop prognostic models that not only enhance the 
accuracy of survival predictions but also offer a more comprehensive 
molecular basis for evaluating immunotherapy responses and drug 
sensitivity in lung adenocarcinoma, thereby facilitating personalized 
treatment decisions. 

Against this backdrop, this investigation represents the first 
comprehensive integration of multi-omics data, combining genetic 
causal inference, single-cell RNA sequencing, and global 
transcriptome analysis to explore the relationship between 
glutathione metabolic dysregulation and tumor immunosuppression 
in LUAD. Furthermore, the study develops a prognostic risk model 
based on identified glutathione metabolism-related differential genes 
to evaluate its potential applications in predicting immunotherapy 
efficacy, determining drug sensitivity, and stratifying prognostic risk. 
This approach provides novel theoretical foundations and clinical 
decision-making  tools  for  precision  treatment  of  lung  
adenocarcinoma patients. 
2 Materials and methods 

2.1 Genome-wide association study data 
acquisition 

We obtained the GWAS dataset for 5-oxoproline levels (ebi-a­
GCST90200280) from the GWAS Catalog, originating from the 
Canadian Longitudinal Study on Aging (CLSA) (26, 27). We 
acquired comprehensive GWAS data for 731 immune phenotypes 
from the largest study to date, which involved 3,757 Italian Sardinian 
residents (accession numbers ebi-a-GCST90001391 to ebi­
aGCST90002121) (28). We obtained data for lung adenocarcinoma 
from FinnGen R11 (29). On June 24, 2024, the FinnGen project 
released the 11th version (R11), including genotype and health data 
for 453,733 participants, covering 21,311,942 variant sites and 2,447 
disease endpoints (phenotypes). Compared to previous versions, R11 
offers increased sample size, more phenotypes, and broader genetic 
variant coverage. The populations used for the GWAS data analysis 
were non−overlapping. 
2.2 Instrumental variables selection 

We employed a multi-step filtering approach to identify valid 
instrumental variables for genetic causal analysis. First, Single 
Nucleotide Polymorphisms (SNPs) showing significant associations 
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were identified using a P-value threshold of less than 5 × 10-6. Second,  
to ensure independence among genetic variants, we conducted 
linkage disequilibrium (LD) clumping using PLINK with a 10,000 
kb window and an r² threshold of 0.001, referencing the European 
population from the 1000 Genomes Project. Finally, to mitigate bias 
from weak instruments, we calculated the F-statistic for each 
remaining SNP and retained only those with values greater than 10. 
2.3 Genetic instrument-based mediation 
analysis 

We conducted genetic causal analyses using the TwoSampleMR 
package. We applied five genetic causal inference methods: inverse 
variance weighted (IVW), MR-Egger, weighted median, weighted 
mode, and simple mode. Among these, IVW was the primary 
method (30, 31). 

We performed mediation analysis using genetic instruments to 
assess whether immune cells mediate the effect of 5-oxoproline on 
lung adenocarcinoma (32, 33). First, we estimated the total effect of 
5-oxoproline on lung adenocarcinoma (Beta 0) using conventional 
genetic instrumental variable analysis. Subsequently, the total effect 
was decomposed into a direct effect (Beta 3) and an indirect effect 
mediated by immune cells. The indirect effect was calculated as the 
product of the effect of 5-oxoproline on immune cells (Beta 1) and 
the effect of immune cells on lung adenocarcinoma (Beta 2). To 
assess the significance of the mediation, we calculated the ratio of 
the  indirect  effect  to  the  total  effect ,  known  as  the  
mediation proportion. 
2.4 Sensitivity analysis 

Sensitivity analyses included tests for heterogeneity, pleiotropy, 
leave-one-out analysis, and MR-PRESSO. The consistency of the 
genetic instrument effects was assessed using the IVW method and 
MR-Egger regression. A p-value < 0.05 in the heterogeneity test 
indicates significant heterogeneity in the analysis. The MR-Egger 
intercept test was used to detect pleiotropy and evaluate the 
robustness of the results. A p-value < 0.05 indicates pleiotropy. 
The leave-one-out method was employed to identify outliers by 
sequentially removing each SNP and assessing the stability of the 
results. MR-PRESSO offers a global test to evaluate the significance 
of pleiotropy. 
2.5 Single-cell data source and 
preprocessing 

We integrated two independent scRNA-seq datasets from LUAD 
patient samples (GSE131907 and PRJNA632939) using the Seurat 
package (34–36). Initial quality control was performed using the 
following criteria: cells with gene counts between 300 and 5,000; 
unique molecular identifiers (UMIs) between 500 and 40,000; 
mitochondrial gene proportion below 8%; and hemoglobin gene 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1608407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chi et al. 10.3389/fimmu.2025.1608407 

 
proportion below 3%. Genes expressed in fewer than three cells were 
excluded. After quality control, each cell’s total UMI count was 
normalized to 10,000 and then log-transformed. The top 2,000 
highly variable genes were identified using a variance-
stabilizing transformation. 

To minimize technical variation and batch effects between 
datasets, we applied an integrated strategy. We first normalized 
the data and performed principal component analysis (PCA). We 
then conducted batch correction using the Harmony algorithm, 
with dataset origin as the batch variable. Ultimately, we combined 
data from two datasets, encompassing 41 lung tissue samples from 
25 patients, resulting in a single-cell cohort of 150,063 cells for 
further analysis. 
2.6 Cell-clustering and annotation 

LUAD samples were normalized to identify the top 2,000 highly 
variable genes. Subsequently, the data underwent scaling and initial 
dimensionality reduction. A neighborhood graph was then 
constructed using the first six principal components, and cells 
were clustered at a resolution of 0.5. We manually annotated each 
cluster based on known cell marker gene expression in combination 
with the SingleR algorithm (37). To improve the accuracy of cell 
type annotation in single-cell RNA sequencing data, we employed 
the DeepSeek large−model Application Programming Interface 
(API) as an ancillary tool. We also generated a DotPlot of marker 
genes to display characteristic gene expression across cell 
subpopulations, aiding in further validation of annotation accuracy. 
2.7 Single-cell sequencing data glutathione 
metabolism grouping 

We downloaded the Kyoto Encyclopedia of Genes and 
Genomes(KEGG) glutathione metabolism GMT file from 
Molecular Signatures Database (MSigDB) (https://www.gsea­

msigdb.org/gsea/msigdb/) and loaded the relevant genes using the 
read.gmt function. We used the AddModuleScore function in the 
Seurat package to calculate a module score for each cell. We applied 
the extracted gene set as a feature list for scoring, generating a 
metabolic module score for each cell that reflects the overall activity 
of the glutathione metabolism pathway. We then compared 
glutathione metabolism scores across different sample types, such 
as normal tissues and LUAD samples. We grouped tumor samples 
into high GSH metabolism group and low GSH metabolism group 
based on the median glutathione metabolism module score. 
2.8 Transcription factor activity prediction 

To predict transcription factor activity in LUAD cells, we 
utilized the human transcription factor regulatory network from 
the DoRothEA database, selecting transcription factors and target 
genes with confidence levels A, B, and C (38). We inferred 
Frontiers in Immunology 04
transcription factor activity using  the Virtual  Inference of

Protein-activity by Enriched Regulon analysis (VIPER) algorithm 
in the decoupleR package. After integrating inference results with 
cell population data, we calculated the mean activity and standard 
deviation of each transcription factor across different cell types. We 
identified the 20 transcription factors with the greatest activity 
changes between high and low GSH metabolism groups, illustrating 
their expression patterns across cell populations. Furthermore, we 
highlighted immune-related transcription factors (e.g., BATF, 
BCL6, EOMES) to reveal their potential roles in immune 
regulation and T cell function. 
2.9 Cell communication 

We conducted cell communication analysis on cells with high 
GSH metabolism group and low GSH metabolism group in LUAD 
using the CellChat package (39, 40). We estimated communication 
probabilities for ligand–receptor pairs using a truncated mean and 
retained only those interactions detected in at least ten cells to 
ensure robust results. Thereafter, we aggregated and categorized 
these interactions to build intercellular communication networks, 
comparing network strength and pathway activities between the 
two metabolic groups to identify pathways with significantly altered 
activity. We calculated network centrality metrics for each CellChat 
object to identify senders and receivers within the communication 
network, highlighting changes in communication roles across 
different metabolic groups. 
2.10 T cell-clustering and annotation 

To further analyze CD8+ T cell subsets in lung adenocarcinoma 
samples, we first extracted the T cell subset from the manually 
annotated Seurat object, isolating T cells with CD8A expression 
greater than 50% as CD8+ T cells. We preprocessed the CD8+ T cell 
subset by normalizing the data, identifying highly variable genes, 
and correcting for batch effects. We then performed principal 
component analysis and, guided by the elbow plot, selected the 
first six components for subsequent neighbor‐graph construction 
and clustering. Finally, we clustered cells at a resolution of 0.5. 
Based on prior research and expression patterns of cell marker 
genes, we manually annotated each cluster as effector CD8+ T cells, 
memory CD8+ T cells, naive CD8+ T cells, and exhausted CD8+ T 
cells (41, 42). Furthermore, we generated a DotPlot of marker genes 
to display characteristic gene expression across CD8+ T cell subsets, 
serving to further validate the accuracy of the annotations. 
2.11 Trajectory analysis of single cells 

To investigate the developmental trajectory of CD8+ T cells, we 
performed pseudotime analysis using the Monocle2 package (43). 
To avoid batch effects, we extracted and analyzed the CD8+ T cell 
subset from “GSE131907.” To assess the functional state of T cells, 
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we calculated the Naïve Score based on the expression of a 
characteristic gene set including SELL, LEF1, and CCR7. We 
conducted dimensionality reduction using the DDRTree 
algorithm with a maximum component number set to 2. To 
establish the starting point of the trajectory, we designated cells 
with the highest initial Naïve Score as the root state, based on which 
we ordered cells to calculate pseudotime, reconstructing the 
developmental trajectory of CD8+ T cells. Subsequently, we 
calculated the proportions of each CD8+ T cell subset and 
compared their glutathione metabolism scores. 
2.12 Bulk RNA-seq data source 

We retrieved lung adenocarcinoma transcriptome profiles and 
associated clinical data from The Cancer Genome Atlas (TCGA) 
database. Additionally, two independent lung adenocarcinoma 
transcriptome datasets (GSE31210 and GSE13213) were obtained 
from the Gene Expression Omnibus (GEO) database for validation 
purposes (44, 45). Gene annotation was performed using the 
biomaRt package in R, during which unannotated genes were 
filtered out. Raw count data were normalized using the edgeR 
package. To ensure data quality, samples lacking survival 
information, those with survival times shorter than one month, 
and those with missing age, pathological stage, or expression data 
were excluded. Ultimately, the TCGA lung adenocarcinoma cohort 
(n = 497) served as the training set for data analysis and model 
construction, while the GEO datasets GSE31210 (n = 226) and 
GSE13213 (n = 117) were used as independent validation sets to 
evaluate external predictive performance. 
2.13 Bulk RNA transcriptomic glutathione 
metabolism grouping 

In this study, a glutathione metabolism gene set, which was 
previously downloaded from the MSigDB database, was employed 
together with the GSVA package (46). The single-sample gene set 
enrichment analysis (ssGSEA) method was used to compute a 
glutathione metabolism score for each sample. Based on these 
scores, lung adenocarcinoma samples from the TCGA dataset 
were divided into high GSH metabolism group and low GSH 
metabolism group using the median as the threshold. To further 
validate the relationship between metabolic profiles and transcript 
copy numbers, we performed a comprehensive correlation analysis 
between GSH-related genes and the calculated GSH score. Based on 
TCGA-LUAD data and the GSH score computed by ssGSEA, we 
extracted the REACTOME_GLUTATHIONE_SYNTHESIS 
_AND_RECYCLING gene set. For each gene, we conducted a 
Pearson correlation test between its expression level and the GSH 
score, applying the Benjamini–Hochberg method to adjust for 
multiple testing. 

To investigate the differences in central carbon metabolic flux 
between high- and low-GSH metabolism groups, we analyzed four 
key metabolic pathways obtained from the MSigDB using KEGG gene 
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sets. The selected pathways included (1): Glycolysis/Gluconeogenesis 
(KEGG_GLYCOLYSIS_GLUCONEOGENESIS), (2) Citrate cycle/ 
TCA cycle (KEGG_CITRATE_CYCLE_TCA_CYCLE), (3) Pentose 
phosphate pathway (KEGG_PENTOSE_PHOSPHATE_PATHWAY), 
and (4) Glycine, serine, and threonine metabolism (KEGG_GLYCINE 
_SERINE_AND_THREONINE_METABOLISM). We employed the 
GSVA  package to perform  single-sample gene set  enrichment  analysis  
and calculate a pathway activity score for each sample. We then used the 
Wilcoxon rank-sum test to compare these pathway activity scores 
between the high GSH and low GSH metabolism groups. 
2.14 Differential expression analysis 

For the differential expression analysis, the edgeR package was 
primarily employed. We identified differentially expressed genes 
(DEGs) by applying a false discovery rate (FDR) cutoff of <0.05 and 
an absolute log2 fold change threshold of >1. 
2.15 Functional enrichment analysis 

We performed Gene Ontology (GO) enrichment analysis and 
gene set enrichment analysis (GSEA) of differentially expressed 
genes using the clusterProfiler package. GO enrichment was 
conducted separately for upregulated and downregulated genes, 
encompassing the three categories of biological process (BP), 
cellular component (CC), and molecular function (MF). Only GO 
terms with an adjusted p-value below 0.05 were considered, and the 
top five most significant entries from each category were presented. 
Furthermore, a Hallmark gene set, which comprises 50 gene sets 
related to key tumor biological features, was downloaded from the 
MSigDB database. GSEA was performed on the DEGs, with a false 
discovery rate (FDR) < 0.05 set as the threshold for determining 
pathway significance. 
2.16 Analysis of immune infiltration, 
immune function and mutation in 
metabolic subgroups 

The xCell package was utilized to assess immune infiltration in 
the TCGA lung adenocarcinoma cohort across different glutathione 
metabolism groups (47). This evaluation focused on 20 primary 
immune cell types, including B cells, CD4+ T cells and their subsets, 
CD8+ T cells and their subsets, Th1/Th2 cells, regulatory T cells, 
macrophages, mast cells, monocytes, and natural killer (NK) cells, 
along with an overall immune score. 

We retrieved 29 immune-related gene sets from the MSigDB 
database to assess the influence of glutathione metabolism on 
immune function in lung adenocarcinoma. The ssGSEA 
algorithm within the GSVA package was then applied to assess 
the immune activity of each sample. Evaluated immune functions 
included co-stimulatory and co-inhibitory signals of antigen-
presenting cells and T cells, checkpoint molecule expression, 
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cytotoxic activity, inflammatory response, and various cytokine 
signaling pathways. 

To investigate the mutation landscape associated with GSH 
metabolism, we downloaded somatic mutation data for TCGA­
LUAD samples. The mutation data were processed using the 
maftools package in R. The oncoplot function was used to 
generate waterfall plots visualizing the top 20 most frequently 
mutated genes in each metabolic group. Fisher’s exact test was 
employed to compare statistical differences in mutation frequencies 
between the groups. 
2.17 Weighted gene co-expression network 
analysis 

WGCNA, through its weighted network calculations, 
systematically identified co-expression modules significantly 
associated with glutathione metabolism scores, thereby reducing bias 
inherent in single differential analysis approaches. Based on the TCGA 
lung adenocarcinoma training dataset, we constructed a WGCNA to 
identify gene modules associated with GSH metabolism (48). 
Standardized expression data were used to build an expression 
matrix, and sample clustering was performed to remove outliers. 
Using the R package WGCNA, various soft-thresholding powers 
(ranging from 1 to 20) were evaluated, and a power of 6 was selected 
based on the scale-free topology fit index for network construction. 
Hierarchical clustering and dynamic tree cutting (with a minimum 
module size of 80) were applied to identify gene co-expression 
modules, and modules with a similarity threshold of 0.25 were 
merged. Subsequently, module eigengenes were correlated with the 
GSH metabolic status, and modules with an absolute correlation 
coefficient (|r|) > 0.25 and a p-value < 0.05 were selected. The 
candidate core gene set was then obtained  by intersecting the  genes  
in these modules with the differentially expressed genes. 
2.18 LASSO-Cox regression for prognostic 
gene selection 

LASSO-Cox regression introduces L1 regularization to high-
dimensional transcriptomic data, simultaneously addressing 
multicollinearity while preventing overfitting, thus enhancing model 
robustness. Its coefficient shrinkage mechanism automatically selects 
independent prognostic markers from numerous candidate genes, 
simplifying model structure and improving clinical interpretability. 
We used the survival package to conduct univariate Cox proportional 
hazards regression on core WGCNA module genes and assess their 
association with overall survival in lung adenocarcinoma patients. To 
address multiple testing, p-values were adjusted using the FDR 
correction, and genes with an adjusted FDR < 0.05 were selected as 
candidates for further analysis. 

We used the glmnet package to perform least absolute shrinkage 
and selection operator (LASSO) regression, refining prognostic 
gene selection and reducing overfitting risk. We determined the 
optimal penalty parameter l by ten-fold cross-validation and 
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selected genes with non-zero coefficients at the l value that 
minimized cross-validation error as final prognostic marker 
candidates. LASSO coefficient paths and cross-validation curves 
were generated to visually illustrate the feature selection process. 

We integrated the LASSO-selected genes into a multivariable 
Cox regression model to evaluate their independent impact on 
survival in lung adenocarcinoma patients. Genes with p < 0.05 were 
deemed independent prognostic markers. 
2.19 Quantitative real-time PCR 
experiments 

Normal lung epithelial cell line BEAS-2B and lung 
adenocarcinoma cell line H2030 were obtained from Shanghai 
Fuheng Biological Company. Both cell types were cultured in 
RPMI 1640 medium supplemented with 10% fetal bovine serum 
and 1% penicillin-streptomycin under standard conditions (37°C, 
5% CO2). Total RNA was extracted using Nucleozol according to 
the manufacturer’s instructions, and reverse transcription was 
performed with Prime Script RTase (Novozan) as recommended. 
mRNA expression levels were subsequently measured by qRT-PCR 
using SYBR Green (AG) following the manufacturer’s protocol. The 
experiment was independently repeated three times. 

The primer sequences for the prognostic model gene 
MARCHF4 were as follows: 
 

Forward primer: GCTACGGGATGTATGGCTTCA. 

Reverse primer: TCCTCCAGGTCTTTTGTCTTGTC. 
 

2.20 Construction of metabolic risk score 
and grouping 

We developed a prognostic risk score model for lung 
adenocarcinoma based on three genes identified during 
preliminary screening. We calculated each patient’s risk score as a 
weighted sum of gene expression values using coefficients from the 
Cox proportional hazards regression model: 

Gene risk score  = o(Expi*Coefi) : 

We used the survivalROC package to generate ROC curves for 
predicting 36-month survival and selected the optimal cutoff by 
maximizing the Youden index. We then stratified TCGA lung 
adenocarcinoma patients into high and low gene score groups 
and compared their survival using Kaplan–Meier analysis. 
2.21 Analysis of immune infiltration and 
immune function in metabolic risk groups 

Using the xCell package, immune infiltration was assessed 
across different gene score groups within the TCGA lung 
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adenocarcinoma cohort. To examine differences in immune 
function between these groups, 29 immune function gene sets 
were downloaded from the MSigDB database and the ssGSEA 
algorithm from the GSVA package was employed to calculate an 
immune function score for each sample. 
 

2.22 Immunotherapy and drug sensitivity 
prediction 

Immune checkpoint genes were downloaded from the ImmPort 
database to compare differences in immune checkpoint gene 
expression among the different gene score groups. The Tumor 
Immune Dysfunction and Exclusion (TIDE) web tool was used to 
evaluate differences in immunotherapy response between the 
groups (49). TIDE is a comprehensive scoring system that 
estimates tumor immune escape mechanisms and predicts patient 
response to immune checkpoint inhibitors. By uploading the 
expression data from the TCGA lung adenocarcinoma dataset to 
the TIDE  website, each sample’s overall  TIDE  score,  immune

exclusion score, and T cell dysfunction score as well as predicted 
immunotherapy response were obtained. Furthermore, the 
oncoPredict package was utilized to predict the sensitivity of 
patients in different gene score groups to chemotherapeutic and 
targeted agents (50). The drug sensitivity predictions were based on 
a training model derived from the Cancer Drug Sensitivity 
Genomics 2 (GDSC2) database, which includes cell line 
expression profiles and corresponding IC50 values (the 
concentration of drug required to inhibit 50% of cell growth). 
Based on the results, drugs were categorized into three groups: 
those to which the low gene score group was more sensitive (green), 
those to which the high gene score group was more sensitive (red), 
and those with no statistically significant difference (blue). 
2.23 Construction of a prognostic 
nomogram 

Using the TCGA lung adenocarcinoma dataset, a prognostic 
nomogram was developed incorporating age, tumor stage, and gene 
score group. Patients were stratified into age groups (<50, 50–60, 
60–70, and >70 years) based on clinical relevance, and tumor stage 
was simplified into I, II, III, and IV according to the AJCC staging 
system. We used the survival package to conduct univariate and 
multivariate Cox proportional hazards regression analyses. 
Univariate Cox analysis evaluated the association between each 
independent variable and patient survival outcomes, calculating 
hazard ratios (HRs) and 95% confidence intervals (95% CI). 
Variables significant in the univariate analysis were then included 
in the multivariate model to assess their independent impact on 
survival after adjusting for other covariates. To construct a user-
friendly prognostic tool, the rms package was employed to create a 
nomogram based on the multivariate Cox regression model, visually 
representing the contribution of each independent prognostic factor 
to the prediction of 1-, 3-, and 5-year overall survival. 
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2.24 Validation of the prognostic model 

The timeROC package was used to generate ROC curves for 1-, 
3-, and 5-year survival in both the TCGA training set and the GEO 
validation set. The area under the ROC curve (AUC) was used as an 
indicator of model performance, with higher AUC values indicating 
better predictive accuracy. Kaplan–Meier survival analysis was 
performed to evaluate overall survival differences between high-
risk and low-risk patient groups. Both the TCGA training set and 
the GEO validation set were stratified into high- and low-risk 
groups based on the median value of the risk score model, and 
survival curves were generated using the survival and survminer 
packages in R. Calibration curves for 1-, 3-, and 5-year survival were 
produced using the rms package. Model calibration was internally 
validated via bootstrap resampling (1,000 iterations) to assess the 
stability of the model. Additionally, decision curve analysis (DCA) 
was conducted using the ggDCA package to evaluate the clinical 
utility of the model at different risk thresholds. In the DCA plot, the 
x-axis represents the risk threshold and the y-axis represents the net 
benefit, with higher curves indicating greater clinical decision-
making value at the corresponding risk thresholds. 
2.25 Statistical analysis 

The statistical analysis of this study was performed using R4.4.1 
software. All quantitative data were first assessed for normality 
using the Shapiro-Wilk test. We compared two groups of normally 
distributed data using Student’s t-test. We applied the Mann– 
Whitney U test to data that did not follow a normal distribution. 
When data met normality and homogeneity of variance, we 
performed one-way analysis of variance for comparisons across 
more than two groups. When these assumptions were violated, we 
used the Kruskal–Wallis H test. All tests were conducted as two-
tailed analyses, and P < 0.05 was considered as the significance 
threshold. *P < 0.05, **P < 0.01, and ***P < 0.001. 
3 Results 

3.1 Genetic causal analysis 

The overall design of our study is depicted in the flowchart 
(Figure 1). Figure 2A illustrates the workflow for the genetic 
instrument-based mediation analysis. Initially, we performed a 
genetic causal analysis to assess the causal influence of 5 
−oxoproline on LUAD risk. The IVW estimate revealed a positive 
association between genetically predicted 5−oxoproline levels and 
LUAD susceptibility (IVW: OR = 1.22, 95% CI: 1.03–1.43, P < 0.05) 
(Figure 2B). Thereafter, to comprehensively explore the 
contribution of immune cell subsets to LUAD pathogenesis, we 
undertook separate genetic causal analyses for 731 distinct immune 
phenotypes. Employing the same IVW approach, 37 immune traits 
were found to be significantly associated with LUAD risk (P < 0.05) 
(Supplementary Table 1). Notably, CD28-CD25++ CD8+ T cells 
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exhibited a protective effect against LUAD (IVW: OR = 0.86, 95% 
CI: 0.74–1, P < 0.05) (Figure 2B). Based on this result, we then 
investigated whether 5−oxoproline levels causally influence the 
abundance of CD28-CD25++ CD8+ T cells. The IVW analysis 
demonstrated a significant inverse relationship (IVW: OR = 0.87, 
95% CI: 0.78–0.98, P < 0.05) (Figure 2B). To validate and further 
characterize this bidirectional link, we conducted a reverse genetic 
causal analysis to determine if CD28-CD25++ CD8+ T cells might, in 
turn, modulate 5−oxoproline levels. No significant effect was 
detected in the reverse direction (P= 0.619) (Figure 2B). 
Collectively, these findings  suggest that elevated 5−oxoproline 
may promote LUAD development by reducing the proportion of 
CD28-CD25++ CD8+ T cells. Mediation analysis estimated a direct 
effect of 0.176 and an indirect effect of 0.021, with the mediator 
accounting for 11.9% of the total effect. 

Sensitivity analyses revealed no evidence of heterogeneity (P > 
0.05) or pleiotropy (P > 0.05), further affirming the robustness and 
reliability of the causal inference (Supplementary Tables 2, 3). 
Scatter plots demonstrated consistent trends across five genetic 
causal analysis methods (Figures 3A, D, G). Leave-one-out analyses 
confirmed that the exclusion of any single SNP did not significantly 
alter the overall effect estimates (Figures 3B, E, H). Moreover, 
funnel plots exhibited a relatively symmetrical distribution, 
indicating no marked horizontal pleiotropy (Figures 3C, F, I). 
Overall, these results support the validity and homogeneity of the 
genetic instrumental variable analysis findings. Additionally, MR­
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PRESSO  analysis  did  not  detect  any  outlier  SNPs  or  
significant pleiotropy. 
3.2 Identification and annotation of lung 
adenocarcinoma cell subpopulations 

Following rigorous quality control, normalization, and batch effect 
correction, we performed principal component analysis, and the results 
showed that cells from the two sample sources were highly intermixed 
in the two-dimensional coordinate space, with no distinct clustering or 
separation observed (Figure 4A). An independent cell clustering 
analysis of lung adenocarcinoma samples identified 21 distinct cell 
clusters (Figure 4B). Based on the expression patterns of canonical 
marker genes, these clusters were annotated into nine major cell types: 
T cells, NK cells, endothelial cells, myeloid cells, epithelial cells, B cells, 
mast cells, fibroblasts, and smooth muscle cells (Figure 4C). 
Subsequently, we compared the composition of major cell types 
between the two sample sources (Figure 4D). Identification was 
supported by specific marker gene expression, including T cells 
(CD3D, CD3E, TRAC), NK cells (NKG7, GNLY, KLRD1), 
endothelial cells (PECAM1, CLDN5, RAMP2), myeloid cells (CD68, 
MARCO, LYZ), epithelial cells (EPCAM, KRT19, CDH1), B cells 
(CD79A, IGHM, IGHG3), mast cells (KIT, MSA42, GATA2), 
fibroblasts (DCN, COL1A1, THY1), and smooth muscle cells 
(MYLK, ACTA2, MYH11) (Figure 4E). 
FIGURE 1 

The overall design of our study. 
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3.3 Transcription factor activity analysis 
reveals immune regulatory differences 

Utilizing the DoRothEA database and the VIPER algorithm, we 
performed a transcription factor activity analysis. The 20 most 
significantly altered transcription factors were identified, with 
elevated activity observed for MYC, RFX5, ATF6, and NFE2L2 in 
the high GSH metabolism group, whereas MXI1, THAP11, STAT4, 
and TBX21 were more active in the low GSH metabolism group 
(Figure 4F). Notably, MYC is a well-known regulator of metabolic 
processes, and MXI1 acts as its negative regulator. 
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Furthermore, a focused analysis of 12 immune-related 
transcription factors revealed significant activity differences 
between metabolic states (Figure 4G). STAT1 and RUNX1 
exhibited enhanced activity in the high GSH metabolism group, 
both of which play roles in antitumor immune regulation, 
whereas key regulators such as NFATC1, TBX21, IRF4, EOMES, 
ZEB2, and  GATA3 were upregulated  in  the low  GSH metabolism  
group (Figure 4G). This pattern suggests that glutathione 
metabolism may modulate the tumor microenvironment’s 
immune  response  by  regulating  these  immune-related  
transcription factors. 
FIGURE 2 

(A) Workflow of the genetic causal analysis. X (Exposure): 5-oxoproline; Y (Outcome): lung adenocarcinoma (LUAD); Z (Mediator): immune cell. 
(B) Forest plot of genetic instrument-based mediation analysis results. nsnp, number of single nucleotide polymorphisms; pval, p-value; OR, odds ratio. 
 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1608407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chi et al. 10.3389/fimmu.2025.1608407 
3.4 Remodeling of the intercellular 
communication network 

To visualize T cell communication within the LUAD 
microenvironment, we constructed a T cell–centered interaction 
network, which revealed communication differences between high 
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and low GSH metabolism groups (Figures 5A, B). Comparative 
analysis showed that the high GSH metabolism group had a
 
significantly higher average communication strength (26.844)
 
compared to the low GSH metabolism group (25.375) (Figure 5C),
 
suggesting that elevated glutathione metabolism may remodel the
 
LUAD microenvironment by enhancing intercellular communication.
 
FIGURE 3 

Sensitivity analysis results indicating no significant heterogeneity or pleiotropy in positive findings. (A) Scatter plot analyzing the relationship between 
SNP effects and the association of 5-oxoproline levels with lung adenocarcinoma (LUAD) risk using five genetic instrumental variable analysis 
methods (Inverse Variance Weighted, MR Egger, Simple Mode, Weighted Median, and Weighted Mode); (B) Forest plot of the leave-one-out 
sensitivity analysis for the association between 5-oxoproline levels and LUAD risk; (C) Funnel plot of the genetic instrumental variable analysis for the 
association between 5-oxoproline levels and LUAD risk; (D) Scatter plot analyzing the relationship between SNP effects and the association of 
CD28-CD25++CD8br %CD8br with LUAD risk using five genetic instrumental variable analysis methods; (E) Forest plot of the leave-one-out 
sensitivity analysis for the association between CD28-CD25++CD8br %CD8br and LUAD risk; (F) Funnel plot of the genetic instrumental variable 
analysis for the association between CD28-CD25++CD8br %CD8br and LUAD risk; (G) Scatter plot analyzing the relationship between SNP effects 
and the association of CD28-CD25+CD8+T cells %CD8+T cells with 5-oxoproline levels using five genetic instrumental variable methods; (H) Forest 
plot of the leave-one-out sensitivity analysis for the association between 5-oxoproline levels and CD28-CD25+CD8+T cells %CD8+T cells; (I) Funnel 
plot of the genetic instrumental variable analysis for the association between 5-oxoproline levels and CD28-CD25+CD8+T cells %CD8+T cells. 
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Moreover, systematic analysis of signaling pathway activities between 
groups indicated that shifts in metabolic status were closely linked to the 
activation of specific pathways (Figures 5D, E). In the high GSH 
metabolism group, several key immune-regulatory pathways were 
Frontiers in Immunology 11 
markedly enhanced, including the MHC-I antigen presentation 
pathway, cytokine signaling pathways (IFN-II, TNF, TGFb), 
costimulatory molecule pathway (CD80), and the cell death pathway 
(FASLG). Additionally, growth factor signaling (IGF, HGF, BMP) and 
FIGURE 4 

Identification of cell clusters based on scRNA-seq data from lung adenocarcinoma (LUAD) patients and transcription factors analysis. (A) PCA plot of 
single-cell RNA-seq data after Harmony batch correction; (B) UMAP of 21 cell clusters; (C) UMAP following cell annotation; (D) Cell type distribution 
across different batches; (E) Dot plot of marker genes for each cell type; (F) Heatmap showing the activity of the top 20 most variable transcription 
factors across metabolism groups. (G) Heatmap depicting activity patterns of 12 immune-related transcription factors across metabolism groups. 
UMAP, uniform manifold approximation and projection. 
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cell adhesion-related pathways (DESMOSOME, CLDN, ESAM) 
exhibited higher activity in the high GSH metabolism group. In 
contrast, the low GSH metabolism group specifically activated 
another set of immune-regulatory pathways, including MHC-II, 
CD86, chemokine (CX3C), and adhesion molecules (SELL, SELPLG) 
(Figures 5D, E). These differential pathway activities imply that distinct 
metabolic states may influence the tumor microenvironment’s immune 
status by modulating different intercellular communication networks. 
Finally, analysis of signal input and output intensities across cell types 
(Figures 5F, G) revealed that T cells in the high GSH metabolism group 
exhibited slightly higher signal output, while signal input remained 
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relatively stable between groups. Moreover, NK cells and myeloid cells 
in the high GSH metabolism group demonstrated comparatively 
balanced and higher input-output intensities than those in the low 
GSH metabolism group. 
3.5 Analysis of CD8+ T cell subpopulations 

Through re-clustering and dimensionality reduction of CD8+ T 
cells, we identified seven distinct clusters (Figure 6A). Based on 
marker gene expression, these clusters were manually annotated 
FIGURE 5 

(A) T cell communication in the high-metabolism group. (B) T cell communication in the low-metabolism group. (C) Comparison of overall 
interaction strength between high and low metabolism groups. (D) Comparison of relative information flow between high and low metabolism 
groups. (E) Comparison of absolute information flow between high and low metabolism groups. (F) Scatter plot analysis of cellular communication 
patterns in the high-metabolism group. (G) Scatter plot analysis of cellular communication patterns in the low-metabolism group. 
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into four major subpopulations: effector, memory, naïve, and 
exhausted CD8+ T cells (Figure 6B). Dot plot analysis revealed 
distinct gene expression profiles among these groups: naïve CD8+ T 
cells exhibited high expression of SELL, LEF1, and CCR7; exhausted 
CD8+ T cells specifically expressed LAG3, HAVCR2, and PDCD1; 
memory CD8+ T cells were enriched in ZNF683, KLRB1, and 
BCL2; and effector CD8+ T cells showed elevated levels of GZMK, 
IFNG, and CX3CR1 (Figure 6C). These patterns confirm the 
accuracy of our CD8+ T cell subpopulation annotations. 
3.6 Developmental trajectory analysis of 
CD8+ T cells 

Pseudotime  analysis  demonstrated  that  pseudotime  
commenced at zero and gradually increased along two primary 
branches (pseudotime > 10) (Figure 6D). The distribution of cell 
subpopulations along these trajectories revealed that naïve CD8+ T 
cells were predominantly located at the branch origins, 
subsequently differentiating into memory and effector CD8+ T 
cells, while exhausted CD8+ T cells mainly appeared at the 
terminal ends (Figure 6E). This spatial distribution aligns with 
the established differentiation patterns of CD8+ T cells, further 
validating our subpopulation annotations. 
 

3.7 Increased proportion of exhausted CD8 
+ T cells in the high-metabolism group 

To assess the impact of glutathione metabolism on CD8+ T cell 
subpopulation distribution, we compared the proportions of each 
subpopulation between the high and low GSH metabolism groups. 
The high GSH metabolism group exhibited a significantly higher 
proportion of effector CD8+ T cells (54.0% vs. 49.8%), while 
memory CD8+ T cells were less prevalent (30.8% vs. 38.0%) 
(Figure 6F). Notably, exhausted CD8+ T cells accounted for a 
substantially larger fraction in the high GSH metabolism group 
(12.4% vs. 6.0%), and naïve CD8+ T cells were less abundant (2.7% 
vs. 6.2%) (Figure 6F). Additionally, CD8+ T cells constituted a 
slightly higher percentage of total T cells in the high GSH 
metabolism group (20.4% vs. 19.8%) (Figure 6F). Further 
analysis of glutathione metabolism scores revealed that 
exhausted CD8+ T cells exhibited the highest metabolic activity, 
significantly surpassing that of the other subpopulations (P < 
0.01) (Figure 6G). 
3.8 Differential gene function enrichment 
analysis 

Among the 12 core glutathione metabolism genes, all exhibited a 
significant positive correlation with the GSH score (Supplementary 
Figure 1). This confirms that our scoring system accurately reflects 
the transcriptional activity of the glutathione metabolism pathway. 
Analysis of central carbon metabolism revealed that all four carbon 
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metabolic pathways exhibited higher activity in the high GSH 
metabolism group (Supplementary Figure 2). 

By comparing transcriptomic differences between the high and low 
GSH metabolism groups, 510 significantly differentially expressed 
genes were identified. Among these, 269 were upregulated while 241 
were downregulated. Based on these genes, GO enrichment analyses 
were conducted separately on the upregulated genes from each group, 
revealing distinct functional patterns (Figures 7A, B). In the high GSH 
metabolism group, upregulated genes were predominantly enriched in 
pathways related to neuronal signal transduction and cell adhesion. 
Specifically, biological processes such as the ionotropic glutamate 
receptor signaling pathway and glutamatergic synaptic transmission 
were most prominent, indicating activation of neuro-like signaling 
under high glutathione metabolism. Cellular component enrichment 
included synaptic structures (e.g., ionotropic glutamate receptor 
complexes, postsynaptic density membranes) and extracellular matrix 
components. And molecular functions were mainly associated with 
receptor and channel activities, including glutamate-gated receptor and 
ion channel functions (Figure 7A). In contrast, enrichment analysis of 
genes upregulated in the low GSH metabolism group revealed 
functions related to both metabolism and detoxification. The 
Biological Process category included quinone metabolism, xenobiotic 
metabolism and response to toxic substances. Cellular Component 
terms were enriched for brush border membrane, endoplasmic 
reticulum lumen and apical cell structures. Molecular Function was 
dominated by various oxidoreductase activities, notably NADP 
−dependent dehydrogenase and reductase activities (Figure 7B). 

GSEA further elucidated key signaling pathway differences between 
the high and low GSH metabolism groups (Figure 7C). In the high GSH 
metabolism group, five significantly upregulated Hallmark pathways 
were predominantly associated with tumor invasion and metastasis 
(epithelial–mesenchymal transition) and immune-inflammatory 
responses (inflammatory response, allograft rejection, and interferon-
g response). These findings  suggest that lung adenocarcinoma with

active glutathione metabolism may exhibit both enhanced invasiveness 
and a distinct immune microenvironment. Conversely, the five 
pathways enriched in the low GSH metabolism group were mainly 
related to fundamental metabolic functions such as energy metabolism 
(oxidative phosphorylation), xenobiotic processing, and oxidative stress 
response (reactive oxygen species metabolism). Notably, the negative 
enrichment of the reactive oxygen species metabolism pathway is 
closely tied to the role of glutathione as a primary antioxidant, 
implying that elevated glutathione metabolism may partially 
substitute for reactive oxygen species clearance mechanisms. 
3.9 Immune infiltration, immune function 
and mutation analysis based on metabolic 
grouping 

Using the xCell algorithm, we compared immune cell 
infiltration in the TCGA lung adenocarcinoma cohort between 
the high and low GSH metabolism groups (Figure 7D). Among 
the 20 immune cell types evaluated, statistically significant 
differences between the groups were observed in 11 cell types and 
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in the overall immune score (P < 0.05). Notably, compared with the 
low GSH metabolism group, tumor tissues from patients in the high 
GSH metabolism group exhibited significantly lower levels of CD8+ 
T cells, CD8+ T central memory cells, and overall immune scores (P 
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< 0.05)  (Figure 7D). This suggests that elevated glutathione 
metabolism may be associated with reduced infiltration of various 
immune cells, particularly T cells, in the tumor microenvironment 
of lung adenocarcinoma patients. 
FIGURE 6 

CD8+ T cell subpopulation analysis. (A) UMAP of the 7 CD8+ T cell clusters; (B) UMAP after CD8+ T cell annotation; (C) Dotplot of the marker gene 
for each CD8+ T cell type; (D) Monocle-based trajectory inference analysis colored by pseudotime; (E) Monocle-based trajectory inference analysis 
colored by CD8+ T cell type; (F) Bar plot of cell proportions in CD8+ T cells; (G) Box plot of glutathione metabolism levels in CD8+ T cell 
subpopulations. UMAP, uniform manifold approximation and projection. *P<0.05, **P<0.01, and ***P<0.001. 
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Furthermore, ssGSEA analysis demonstrated that differences in 
glutathione metabolism exert a broad impact on immune function in 
lung adenocarcinoma (Figure 7E). Among the 29 immune functions 
evaluated, 25 functions showed significant differences between the 
two groups (P < 0.05). Compared to the low GSH metabolism group, 
patients in the high GSH metabolism group exhibited generally 
suppressed immune functions, as evidenced by marked 
downregulation of antigen presentation-related functions (including 
dendritic cell activities encompassing DCs, aDCs, iDCs, and pDCs, as 
well as MHC-I molecule expression); reduced T cell activation and 
function, reflected by lower expression of T cell costimulatory 
molecules and diminished T helper cell (Th1 and Th2) activities; 
weakened effector immune responses involving decreased cytotoxic 
activity, B cell function, and inflammatory response; and significantly 
attenuated type I and type II interferon responses (Figure 7E). 
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Notably, CD8+ T cell function was lower in the high GSH 
metabolism group than in the low GSH metabolism group, which 
aligns with our conclusions. Additionally, the expression of immune 
checkpoint-related genes was significantly reduced in the high GSH 
metabolism group, suggesting that glutathione metabolism may 
modulate tumor immune responses by affecting immune 
checkpoint molecule expression. 

Somatic mutation analysis revealed distinct mutational patterns 
between the high GSH metabolism group and the low GSH 
metabolism group (Figures 7F, G). In the high GSH metabolism 
cohort (n=287), TP53 was the most frequently mutated gene (54%), 
followed by TTN (43%), CSMD3 (41%), and RYR2 (38%) 
(Figure 7F). Notably, KEAP1 mutations were observed in 28% of 
high GSH metabolism tumors (Figure 7F). In contrast, in the low 
GSH metabolism cohort (n=287), TP53 remained the most 
FIGURE 7 

Functional enrichment, immune infiltration, and immune function analysis of the glutathione metabolism group in bulk transcriptomic data (A) GO 
analysis of upregulated DEGs; (B) GO analysis of downregulated DEGs; (C) Gene Set Enrichment Analysis of DEGs; (D) Immune infiltration analysis; 
(E) Immune functional analysis; (F) Waterfall plot of the top 20 most frequently mutated genes in the high GSH metabolism group; (G) Waterfall plot 
of the top 20 most frequently mutated genes in the low GSH metabolism group. GO, Gene Ontology; DEGs, differentially expressed genes; BP, 
Biological process; CC, Cellular component; MF, Molecular function; GSEA, Gene Set Enrichment Analysis. *P<0.05, **P<0.01, and ***P<0.001. 
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commonly mutated gene (45%) (Figure 7F). However, KRAS 
mutations were significantly more prevalent in the low GSH 
metabolism group compared to the high GSH group (32% vs. 
21%) (Figure 7G). Additionally, MUC16 mutations were more 
frequent  in  the  low-GSH  metabolism  cohort  (42%  vs.  
37%) (Figure 7G). 
3.10 WGCNA analysis for selection of 
intersection genes 

Using WGCNA, 17 co-expression modules were identified, of 
which 5 modules were significantly correlated with glutathione 
metabolism levels (|r| > 0.25, P < 0.05): the green module (r = 0.34, 
P = 2e-14) and the yellow module (r = 0.25, P = 2e-08) showed 
positive correlations, whereas the brown (r = -0.33, P = 1e-13), pink (r 
= -0.26, P = 7e-09), and green-yellow (r = -0.28, P = 5e-10) modules 
exhibited negative correlations (Figure 8A). Among these, the brown 
module contained 1,933 genes (84 overlapping with the differentially 
expressed genes), the pink module contained 883 genes (14 
overlapping), the green-yellow module contained 884 genes (38 
overlapping), the green module contained 1,162 genes (6 
overlapping), and the yellow module contained 1,507 genes (21 
overlapping). By intersecting the 6,369 genes from these five 
modules with the 510 differentially expressed genes, we identified 
163 candidate core module genes (Figure 8B). These genes are both 
central in the co−expression network and significantly differentially 
expressed between the high and low glutathione metabolism groups. 
3.11 LASSO-Cox regression for prognostic 
gene selection 

Univariate Cox regression analysis was performed on the 163 
candidate core module genes to assess their association with overall 
survival in lung adenocarcinoma patients. After FDR correction, 14 
genes were found to be significantly associated with overall survival 
(P < 0.05). To mitigate multicollinearity and build a more 
parsimonious prognostic model, LASSO regression analysis was 
conducted on these 14 genes. The LASSO coefficient path diagram 
showed that, as the penalty parameter l increased, most gene 
coefficients gradually shrank to zero (Figure 8C). Ten-fold cross-
validation determined the optimal l value, and at the minimum 
error, 9 genes with non-zero coefficients were selected as candidate 
genes for the prognostic model (Figure 8D). Univariate analysis 
revealed that high expression of CPS1, RHOV, MARCHF4, and 
NMB were significantly associated with poorer prognosis (HR > 1), 
whereas high expression of LCAL1, GPR18, GIMAP5, RPL32P1, 
and GVINP1 were significantly associated with better prognosis 
(HR < 1) (Figure 8E). When these 9 LASSO-selected genes were 
incorporated into a multivariate Cox regression model, LCAL1, 
RHOV, and MARCHF4 remained significantly associated with 
overall survival after controlling for the influence of other genes 
(P < 0.05) (Figure 8F). Specifically, high LCAL1 expression acted as 
a protective factor, while high expression of RHOV and MARCHF4 
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conferred an increased risk. These three genes were thus 
determined as the final markers for constructing the prognostic 
gene risk score model. Given that LCAL1 and RHOV have been 
previously reported as prognostic genes, we validated the novel 
prognostic gene MARCHF4 via qRT-PCR, demonstrating that its 
expression was significantly upregulated in lung adenocarcinoma 
cells compared to normal lung epithelial cells (Figure 8G). 
 

3.12 Construction of the metabolic risk 
score and grouping 

Based on the expression levels of the 3 prognostic genes in the 
TCGA lung adenocarcinoma cohort, a gene risk score model was 
established using the following formula: 

Gene risk score  = ( – 0:13490 x  LCAL1 expression)  +  (0:33335 

x  RHOV expression)  +  (0:23015 

x  MARCHF4 expression) : 

The optimal cutoff value (0.951), determined by the maximum 
area under the ROC curve (AUC = 0.682) for 36-month survival 
prediction, was used to stratify patients into a high gene score group 
(n = 258) and a low gene score group (n = 239) (Figure 9A). Kaplan-
Meier survival analysis showed a significant difference in overall 
survival between the two groups, with patients in the high gene 
score group exhibiting markedly lower survival rates compared to 
those in the low gene score group (P < 0.0001) (Figure 9B). 
3.13 Immune infiltration and immune 
function analysis based on gene score 
grouping 

xCell immune infiltration analysis revealed significant differences 
in the levels of 11 immune cell types between the high and low gene 
score groups (Figure 9C). Notably, the overall immune score was 
significantly lower in the high gene score group, indicating reduced 
immune cell infiltration (P < 0.01). Additionally, immune function 
analysis demonstrated significant differences in 6 immune-related 
functions between the groups, including antigen-presenting cell 
(aDCs) activity, B cell function, HLA expression, neutrophil 
activity, anti-inflammatory response, and tumor-infiltrating 
lymphocytes (TILs) (Figure 9D). The downregulation of antigen 
presentation-related functions (e.g., HLA and aDCs) suggests that 
high gene score group patients may have impairments in antigen 
recognition and presentation, potentially affecting subsequent T cell 
activation and effector responses. 
3.14 Immune therapy and drug sensitivity 
prediction 

Analysis of immune checkpoint genes in the TCGA lung 
adenocarcinoma dataset successfully identified 20 immune 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1608407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chi et al. 10.3389/fimmu.2025.1608407 
checkpoint genes that were significantly differentially expressed 
between the high and low gene score groups (Figure 10A). These 
genes exhibited distinct expression patterns between the two 
groups. In particular, LAG3, CD276, HHLA2, TNFSF9, CD70 
and VTCN1 were significantly upregulated in the high gene score 
group compared to the low gene score group (Figure 10A). Notably, 
Frontiers in Immunology 17 
the remaining checkpoints, including CD40LG, CD48, CD160, 
TNFSF18, CD80, ADORA2A, ICOS, CD200R1, CD28, TNFSF15, 
BTLA,  IDO2,  BTNL2  and  TNFRSF25,  were  markedly  
downregulated in the high gene risk group (P < 0.05) (Figure 10A). 

Furthermore, comparison of TIDE scores between the high and 
low gene score groups revealed that patients in the high gene score 
FIGURE 8 

Screening of prognostic genes. (A) Heatmap of the correlation between module eigengenes and glutathione metabolism; (B) Venn diagram showing 
the intersection between WGCNA hub genes and differential genes; (C) LASSO regression coefficient curve; (D) LASSO regression results; 
(E) Univariate COX regression forest plot; (F) Multivariate COX regression forest plot. (G) The mRNA expression of MARCHF4 in normal and lung 
adenocarcinoma cell lines. ***P<0.001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1608407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chi et al. 10.3389/fimmu.2025.1608407 
group had significantly higher overall TIDE scores, suggesting a 
poorer predicted response to immunotherapy (P < 0.001) 
(Figure 10B). Among the two TIDE components, the immune 
exclusion score was significantly higher in the high gene score 
group (P < 0.001), indicating stronger suppression of immune cell 
infiltration in these tumors, while the T cell dysfunction score did 
not differ significantly between the groups (P > 0.05) (Figure 10B). 

To further assess the predictive value of our risk model for 
immunotherapy efficacy, we analyzed the response rates to immune 
checkpoint inhibitors. The proportion of responders in the low gene 
score group (44%) was substantially higher than in the high gene 
score group (28%) (Figure 10C). Similarly, the percentage of 
patients deriving clinical benefit from immunotherapy was higher 
in the low gene score group (93%) compared to the high gene score 
group (88%) (Figure 10D). Additionally, risk scores were 
significantly lower in immunotherapy responders than in non-
responders (P < 0.001) and in patients predicted to benefit from 
treatment compared with those predicted not to benefit (P < 0.05) 
(Figures 10E, F). 

Drug sensitivity analysis further demonstrated that patients in 
the high and low gene score groups exhibited significant differences 
in sensitivity to various anticancer agents (Figure 10G). Across the 
entire drug dataset, 13 drugs showed higher sensitivity in the low 
gene score group, while 53 drugs exhibited higher sensitivity in the 
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high gene score group (P < 0.05) (Figure 10G). Among LUAD– 
related therapies, the KRAS (G12C) inhibitor-12 showed markedly 
higher sensitivity in the low gene score group, suggesting that these 
patients might benefit more from KRAS-targeted therapy 
(Figure 10G). Conversely, in the high gene score group, 
Gemcitabine, PD0325901 (a MEK inhibitor), Ulixertinib (an ERK 
inhibitor), and Palbociclib (a CDK4/6 inhibitor) displayed greater 
sensitivity, indicating a potentially better therapeutic response to 
these agents (Figure 10G). 
3.15 Construction of the prognostic model 

We used the TCGA lung adenocarcinoma dataset (n = 497) as 
the training set, and the GEO datasets GSE31210 (n = 226) and 
GSE13213 (n = 117) as independent validation cohorts. The 
baseline characteristics of the training and validation cohorts are 
presented in Supplementary Table 4. A univariate cox regression 
analysis revealed that tumor stage and the gene−based risk score 
were significantly associated with overall survival (Figure 11A). 
Importantly, differences in survival across age strata were not 
statistically significant. Multivariate cox regression analysis further 
confirmed the independent prognostic value of tumor stage and risk 
score (Figure 11A). 
FIGURE 9 

(A) ROC-based criteria for grouping by gene score; (B) Kaplan–Meier curve of gene score grouping; (C) Immune infiltration analysis of gene score 
grouping; (D) Immune function analysis of gene score grouping. *P<0.05, **P<0.01, and ***P<0.001. 
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By integrating these independent prognostic factors, we 
constructed a comprehensive prognostic nomogram that 
incorporated both clinical pathological features and gene expression 
profiles (Figure 11B). This nomogram, which includes tumor stage 
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and risk score as independent predictors, was designed to estimate 1-, 
3-, and 5-year overall survival probabilities. Each variable was 
assigned a score based on its Cox regression coefficient, and the 
total score corresponded to the predicted survival probability. 
FIGURE 10 

Immunotherapy and drug sensitivity prediction analysis based on gene risk score grouping. (A) Immune checkpoint analysis of gene score grouping; 
(B) TIDE analysis of gene score grouping; (C) Predicted proportion of immunotherapy responders in high and low gene score groups; (D) Predicted 
proportion of immunotherapy benefit in high and low gene score groups; (E) Comparison of risk scores between immunotherapy responders and 
non-responders; (F) Distribution of risk scores among patients with different treatment benefit statuses; (G) Drug sensitivity prediction for patients in 
high and low gene score groups. TIDE, Tumor Immune Dysfunction and Exclusion. *P<0.05, **P<0.01, and ***P<0.001. 
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3.16 Validation of the prognostic model 

Patients were stratified into high- and low-risk groups based on the 
median predicted total score. Kaplan-Meier survival analyses in both 
the training and validation cohorts demonstrated a significant 
difference in overall survival between the risk groups, with the low-
risk group exhibiting significantly better survival outcomes (P < 0.001) 
(Figures 11C–E). ROC curve analysis revealed that our multivariable 
prognostic model achieved good predictive performance in the TCGA­
LUAD training set, with 1-, 3-, and 5-year AUC values of 0.716, 0.711, 
and 0.685, respectively (Figure 12A). In two independent validation 
cohorts, the model also demonstrated stable predictive accuracy. In the 
GSE13213 cohort, the area under the ROC curve at 1-, 3-, and 5-year 
was 0.926, 0.777 and 0.716, respectively (Figure 12B). In the GSE13213 
cohort, these values were 0.846, 0.690 and 0.669 (Figure 12C). These 
findings indicate that the prognostic model has robust predictive 
capability across different populations and datasets. Calibration 
curves further demonstrated a high degree of concordance between 
predicted and observed survival probabilities in all three cohorts 
(Figures 12D–F). Decision curve analysis showed that the nomogram 
model integrating the gene risk score with clinical factors provided 
greater clinical utility compared to models based solely on tumor stage 
(Figures 12G–I). Collectively, these validation results support the 
accuracy and potential clinical applicability of the prognostic model. 
4 Discussion 

This study integrates genetic causal analysis, single-cell RNA 
sequencing, and bulk transcriptome analysis to elucidate the 
Frontiers in Immunology 20 
metabolic and immunological associations of glutathione in lung 
adenocarcinoma, particularly its effects on T cells within the tumor 
microenvironment. This discovery provides a novel perspective on 
the pathogenesis of lung adenocarcinoma. Furthermore, the 
prognostic risk model based on genes related to differences in 
glutathione metabolism offers robust evidence for predicting 
immune treatment responses, drug sensitivity, and survival 
outcomes, thereby laying the groundwork for personalized 
therapeutic strategies. 

Our genetic causal analysis demonstrated that elevated levels of 
the glutathione metabolic intermediate 5-oxoproline are associated 
with an increased risk of lung adenocarcinoma. This finding aligns 
with previous research highlighting the critical role of glutathione 
metabolism in cancer development (7, 10). Elevated glutathione 
levels help maintain tumor cell homeostasis, thus promoting cell 
proliferation and survival. Notably, mediation analysis identified 
that CD28–CD25++ CD8+ T cells serve as mediators between 5­
oxoproline and lung adenocarcinoma. These observations suggest 
that glutathione metabolism may partially elevate tumor risk by 
modulating the number and function of antitumor immune cells (4, 
15–17). This is the first study to genetically implicate immune cells 
as mediators between lung adenocarcinoma and the glutathione 
metabolite 5-oxoproline, thus offering fresh insights into the 
interplay between glutathione metabolism and tumor immunity. 

Furthermore, the genetic causal analysis results in this study 
were not adjusted for FDR, a practice observed in previous 
investigations (51–55). During the selection of instrumental 
variables, strict p-value thresholds and independence screening 
were employed to minimize false positives. Although FDR 
correction is effective in controlling error rates in high-
FIGURE 11 

(A) Univariate and multivariate Cox regression table; (B) Construction of a prognostic nomogram; Kaplan–Meier survival curve for the TCGA training 
set (C) and GEO datasets GSE31210 (D) and GSE13213 (E). 
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dimensional data, overly stringent adjustments may obscure 
potential associations when the number of hypotheses tested is 
limited. Recent studies have underscored inherent challenges in 
genetic causal inference, specifically weak instrument bias, 
population stratification and selection bias (56–60). To mitigate 
these issues, we utilized GWAS summary statistics from multiple 
ancestral populations. Additionally, we performed extensive 
sensitivity analyses including heterogeneity tests, pleiotropy 
assessments and the MR PRESSO procedure. These analyses 
revealed no significant heterogeneity or horizontal pleiotropy and 
thus reinforced the robustness of our findings. We also conducted 
bidirectional analyses to rule out reverse causation. These analyses 
detected no evidence of bias. It is important to emphasize that this 
genetic causal analysis is exploratory in nature, aiming to provide 
new insights into the relationship between glutathione metabolism 
and immunity. Future studies should incorporate more diverse 
populations and additional statistical methods to further validate 
these findings. 

Previous studies have used GWAS data to examine the 
relationship between 731 immune cell phenotypes and lung 
cancer via genetic causal analysis (51, 54, 61, 62). However, the 
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mediating role of metabolites was not explored. Moreover, our 
study utilized lung adenocarcinoma data from the Finngen R11 
dataset, which is based on the Finnish Biobank and includes 
genomic  and  health  data  from  approximately  500,000  
participants. The unique genetic background and environmental 
factors of the Finnish population enable our study to offer genetic 
association insights that differ from those obtained in 
other populations. 

Subsequent analysis using single-cell sequencing data further 
investigated the impact of glutathione metabolic reprogramming on 
the tumor microenvironment. Analysis of transcription factor 
activities revealed significant effects on immune regulation. For 
instance, MYC, which is a well-known regulator of metabolism that 
controls glycolysis, glutamine transport and metabolism, lipid 
metabolism, and mitochondrial biogenesis, was more active in the 
high GSH metabolism group, suggesting that elevated GSH levels 
may drive tumor cell metabolic demands and rapid proliferation 
through MYC activation (63). Additionally, NFE2L2 (also known as 
NRF2), a key regulator of oxidative stress, appeared activated in 
high-GSH cells due to increased redox pressure (64). Its activation 
promotes the expression of genes involved in GSH synthesis and 
FIGURE 12 

Validation of the prognostic model. ROC curves for the TCGA training set (A) and GEO datasets GSE31210 (B) and GSE13213 (C); calibration curves 
for the TCGA training set (D) and GEO datasets GSE31210 (E) and GSE13213 (F); DCA curves at 1-year (G), 3-year (H), and 5-year (I) for the TCGA 
dataset. 
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GPX4, thereby enhancing the antioxidant capacity of cells and 
establishing a positive feedback loop that maintains redox 
homeostasis in tumor cells. Conversely, in the low GSH 
metabolism group, transcription factors such as MXI1 (a MYC 
antagonist), THAP11, STAT4, and TBX21 exhibited significantly 
enhanced activity. The increased activity of MXI1 could attenuate 
MYC-mediated transcription, thereby mitigating MYC-driven 
metabolic regulation and limiting abnormal tumor cell 
proliferation (65). Moreover, enhanced activities of STAT4 and 
TBX21, both critical for antitumor immunity, with STAT4 
promoting IFN-g production during Th1 differentiation and T-bet 
facilitating NK cell maturation and cytotoxic function, further 
underline the differential immune responses between the 
metabolic groups (66, 67). 

Further examination of 12 transcription factors closely 
associated with immune function demonstrated marked 
differences between the high and low GSH metabolism groups. In 
the high GSH metabolism group, STAT1 and RUNX1 were 
significantly activated. STAT1, a pivotal mediator of interferon 
(IFN) signaling, not only enhances antitumor immune responses 
but may also contribute to chronic inflammation and immune 
evasion when persistently activated (67). Similarly, increased 
RUNX1 activity can promote tumor cell proliferation, migration, 
and invasion, as well as modulate angiogenesis and the immune 
microenvironment, thereby accelerating malignant progression 
(68). The activation of these factors in the high GSH metabolism 
group may coincide with the initiation of immunosuppressive 
mechanisms, ultimately leading to a diminished overall antitumor 
immune effect. In contrast, in the low GSH metabolism group, key 
immune regulatory transcription factors, including NFATC1, 
TBX21,  IRF4, EOMES, ZEB2,  and GATA3, were markedly

activated. These factors are essential for T cell activation, 
differentiation, and functional maintenance. For example, 
NFATC1 is central to T cell activation and cytokine expression, 
while IRF4, EOMES, and GATA3 play critical roles in T cell 
differentiation and sustaining immune responses (69–72). The 
heightened activity of these factors suggests that the low GSH 
metabolism group may exhibit a more robust antitumor immune 
response, thereby enhancing effector functions and promoting 
tumor clearance. 

The cell–cell communication analysis revealed that variations in 
glutathione metabolic levels significantly affect intercellular 
signaling networks. Specifically, the average communication 
intensity in the high GSH metabolism group was markedly 
greater than in the low GSH metabolism group, and the two 
groups exhibited pronounced differences in signaling pathway 
activity and communication patterns. Notably, the MHC-I 
pathway was markedly enhanced in the high GSH metabolism 
group; conversely, the low GSH metabolism group exhibited 
specific activation of the MHC-II pathway. The observed 
differences in MHC-I and MHC-II expression patterns suggest 
that varying glutathione metabolic levels may modulate the 
function of antigen-presenting cells and, consequently, influence 
the type of adaptive immune response. 
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The study further analyzed CD8+ T cell subpopulations by 
clustering and annotating them, comparing differences between 
high and low GSH metabolism groups. Pseudotime analysis 
delineated the developmental trajectory of CD8+ T cells, thereby 
validating the accuracy of the subpopulation annotations. 
Exhausted CD8+ T cells predominantly occupied the terminal 
stages of this trajectory and exhibited significantly higher 
glutathione metabolic activity compared to other subgroups. 
Furthermore, the proportion of exhausted CD8+ T cells  was
significantly increased in the high GSH metabolism group, 
suggesting that an elevated glutathione metabolic state may drive 
CD8+ T cells toward an exhausted phenotype, thereby diminishing 
their antitumor efficacy. 

The high GSH metabolism group demonstrated coordinated 
upregulation of glycolysis, the tricarboxylic acid cycle, the pentose 
phosphate pathway, and amino acid metabolism; together, these 
pathways support the tumor’s antioxidant capacity and rapid 
proliferation. Maintaining elevated GSH levels requires an 
abundant supply of carbon sources and reducing equivalents (73). 
Intermediates generated by glycolysis feed into the PPP, producing 
NADPH, which is used to reduce oxidized glutathione back to GSH 
(74). At the same time, glyceraldehyde-3-phosphate enters the serine-
glycine pathway, supplying the essential precursor glycine for GSH 
synthesis and generating additional NADPH via one-carbon 
metabolism. Moreover, high-GSH tumors often exhibit active 
glutaminolysis and robust TCA cycle activity, providing both 
glutamate and ATP to support GSH biosynthesis and cell 
proliferation (73). This high-throughput metabolic state profoundly 
impacts the TME, particularly by promoting immunosuppression. 
On the one hand, tumor cells’ excessive consumption of glucose and 
other nutrients creates competitive nutrient deprivation, impairing 
the function of tumor-infiltrating lymphocytes (such as effector T 
cells) due to glucose scarcity (15). Studies have shown that high 
glucose uptake by tumors reduces T-cell mTOR activity and 
interferon-g production, thereby weakening antitumor immune 
responses (15). On the other hand, the large amounts of lactate 
produced by accelerated glycolysis acidify the TME. Low pH and 
lactate together drive immunosuppression. Lactate accumulation 
promotes polarization of tumor-associated macrophages toward an 
M2 phenotype, leading them to secrete inhibitory cytokines (e.g., 
interleukin-10) and express PD-L1, which in turn suppresses T-cell 
function (75). In addition, an acidic, lactate-rich environment directly 
induces apoptosis and dysfunction in effector T cells and, via 
hypoxia-inducible factor 1a (HIF-1a), upregulates PD-L1 on 
tumor cells, further impairing CD8+ T-cell activity (75). High 
intracellular GSH itself has also been linked to immune-tolerant 
mechanisms. For example, Zhang et al. found that elevated GSH in 
the TME cooperates with immunosuppressive IgG4 antibodies to 
weaken antibody-dependent cellular cytotoxicity and other effector 
functions, driving macrophages and lymphocytes toward a 
tolerogenic state and thereby significantly promoting tumor 
immune evasion and growth (76). Likewise, “redox-high” tumors 
with high GSH and NRF2 activity often lack tissue-resident memory 
T cell  infiltration and respond poorly to immunotherapy (77). In 
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summary, high-GSH metabolism meets tumors’ antioxidant needs by 
enhancing central carbon flux but simultaneously creates a nutrient-
deprived, acidic, immunosuppressive microenvironment that inhibits 
antitumor immune cell function and enables immune escape. 

The functional enrichment analysis of bulk transcriptome data 
also provided supporting evidence. Gene enrichment in the high 
GSH metabolism group was associated with neural signaling 
pathways and cell adhesion functions, and the upregulation of the 
epithelial–mesenchymal transition (EMT) pathway indicated that 
glutathione metabolism may influence tumor invasion and 
metastasis by modulating neuro-like signaling and promoting 
EMT. Concurrently, enrichment of immune and inflammatory 
pathways such as inflammatory response, allograft rejection and 
interferon gamma response in the high GSH metabolism group 
underscores the close connection between glutathione metabolism 
and immune function. Conversely, the enrichment of metabolic 
pathways (oxidative phosphorylation, xenobiotic metabolism, and 
reactive oxygen species metabolism) in the low GSH metabolism 
group reflects an intrinsic link between glutathione metabolism and 
redox balance. 

Integrated transcriptomic immune infiltration analysis revealed 
that elevated glutathione metabolism correlates with reduced 
infiltration of multiple immune cell populations. These findings 
align with recent studies on the interaction between tumor 
metabolism and the immune microenvironment (3, 78). Notably, 
the high GSH metabolism group exhibited lower immune scores 
and CD8+ T cell proportions compared to the low-metabolism 
group, suggesting that glutathione metabolism may regulate anti­
tumor immune responses by influencing T cell differentiation and 
functional states. This observation was corroborated by both our 
single-cell sequencing data and genetic causal analysis. The single-
cell sequencing results similarly demonstrated that high glutathione 
metabolism levels are associated with CD8+ T cell exhaustion. 
Correspondingly, genetic causal analysis identified CD28−CD25+ 
+ CD8+ T cells as playing a crucial intermediary role in the 
relationship between elevated levels of 5-oxoproline and increased 
lung adenocarcinoma risk. 

Moreover, immune function analysis revealed that elevated 
glutathione metabolism correlated with a decline in multiple 
immune functions, including antigen presentation, T cell activation, 
effector immune responses, and cytokine signaling. Particularly, the 
marked suppression of the interferon signaling pathway may be a key 
mechanism underlying the weakened antitumor immune response, 
given that interferon-g is essential for the cytotoxic functions of 
macrophages and T cells in tumor cell clearance (79). 

Tumor mutation profiling has revealed that the high GSH 
metabolism group is often accompanied by driver mutations in key 
genes such as TP53 and KEAP1. In the context of TP53 mutation, 
p53 loses its ability to regulate cellular redox homeostasis; mutant p53 
cannot perform its normal antioxidant functions, resulting in 
elevated intracellular ROS (80). To survive, these tumor cells tend 
to reprogram their metabolism to upregulate GSH synthesis, thereby 
neutralizing excess ROS and maintaining redox balance (81). 
Conversely, some studies have shown that accumulated mutant p53 
can interact with NRF2 to repress SLC7A11 expression, weakening 
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GSH synthesis and rendering these cells more susceptible to oxidative 
damage (82). In addition, inactivating mutations of KEAP1 relieve its 
suppression of NRF2, and persistently activated NRF2 upregulates a 
series of antioxidant and detoxification genes, including the 
glutamate–cysteine ligase subunits GCLC/GCLM and the cytosolic 
SLC7A11 (83–85). This confers on tumor cells an enhanced capacity 
for GSH production and bolstered antioxidant reserves. NRF2­
mediated reprogramming of GSH metabolism not only helps 
tumors withstand oxidative stress but is also closely linked to 
immune evasion (77). Tumors with high NRF2 activity often 
exhibit reduced T-cell infiltration and an “immune-cold” 
phenotype (77). In addition, KEAP1 mutations impair PD-L1 
degradation, leading to PD-L1 accumulation and suppression of 
antitumor immunity, thereby facilitating immune escape (86). In 
summary, mutations in TP53, KEAP1, and related pathways 
reprogram GSH metabolism and redox signaling to endow tumors 
with increased antioxidant capacity and, in concert, promote 
immune evasion. 

In summary, our genetic data analysis established a causal link 
between increased levels of the glutathione metabolic intermediate 5­
oxoproline and a heightened risk of lung adenocarcinoma, with 
CD28–CD25++ CD8+ T cells playing a crucial mediating role. 
These findings reveal a close association between aberrant 
glutathione metabolism and immunosuppression in lung 
adenocarcinoma. Subsequent single-cell sequencing and bulk 
transcriptome analyses demonstrated that glutathione metabolic 
reprogramming remodels the tumor immune microenvironment by 
modulating key transcription factor activities, altering cell–cell 
communication networks, and promoting CD8+ T cell exhaustion. 
Collectively, these discoveries provide new insights into the 
mechanisms underlying lung adenocarcinoma progression and 
offer a theoretical basis for precision therapies targeting glutathione 
metabolism in combination with immunotherapy. 

This study employed WGCNA to select intersecting differentially 
expressed genes and combined Lasso-Cox regression to identify three 
independent prognostic markers: LCAL1, RHOV, and MARCHF4. 
LCAL1, a newly discovered long noncoding RNA associated with 
lung cancer, has not yet been extensively studied; our findings 
indicate that its high expression correlates with improved prognosis 
in lung adenocarcinoma patients, in line with previous reports (87). 
In contrast, RHOV (Ras homolog gene family member V) is a 
member of the Rho GTPase family that participates in regulating 
cytoskeletal remodeling, cell migration, and invasion (88). This study 
confirms that high expression of RHOV is an independent predictor 
of poor prognosis in lung adenocarcinoma patients, consistent with 
previous analyses in lung adenocarcinoma (89, 90). Moreover, 
MARCHF4, a membrane associated E3 ubiquitin ligase from the 
MARCH family, has previously been shown in prostate cancer cells to 
enhance survival under chemotherapeutic stress, promote an 
epithelial mesenchymal transition phenotype, and mitigate 
chemotherapy induced apoptosis (91). Notably, our study is the 
first to associate high MARCHF4 expression with adverse 
outcomes in lung adenocarcinoma. 

Immune infiltration and functional analyses further 
demonstrated that the gene risk score based on glutathione 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1608407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chi et al. 10.3389/fimmu.2025.1608407 

 

 

 

metabolism-related genes reflects the state of the tumor immune 
microenvironment. Patients with high gene risk score exhibited 
immunosuppressive features, including diminished antigen-
presenting capacity, impaired B cell and neutrophil function, and 
reduced tumor-infiltrating lymphocyte activity. The differential 
expression of immune checkpoint genes between the high- and 
low-risk groups underscores the link between the risk score and the 
tumor immune milieu. In the high gene risk score, inhibitory 
immune checkpoint molecules, such as LAG3, CD276, HHLA2, 
TNFSF9, CD70, and VTCN1, were significantly upregulated. LAG3 
is an important inhibitory immune checkpoint that, by binding to 
MHC II molecules, suppresses T cell activation and proliferation 
(92). Similarly, CD276, a member of the B7 family, not only hinders 
the infiltration of CD8+ T cells into the tumor microenvironment, 
but also promotes T cell exhaustion by downregulating the 
secretion of key cytokines, such as IFN-g (93). HHLA2, a recently 
identified B7 family member, hinders T cell activation, NK cell 
proliferation, and cytokine secretion through its interaction with 
the inhibitory receptor KIR3DL3 (94).  The collective high

expression of these inhibitory checkpoints likely establishes an 
immunosuppressive microenvironment that diminishes antitumor 
immune efficacy, leading to poorer immunotherapeutic responses 
and prognosis in patients with high gene risk score scores. 

Using the TIDE algorithm, our study predicted immunotherapy 
outcomes and found that patients in the high-risk group had higher 
overall TIDE and immune exclusion scores, with significantly lower 
response and benefit rates compared to the low-risk group. These 
results suggest that the risk model based on glutathione 
metabolism-related genes not only mirrors the characteristics of 
the tumor immune microenvironment but is also closely linked to 
the efficacy of immunotherapy. Additionally, predictions via the 
oncoPredict algorithm revealed significant associations between the 
gene risk score and drug sensitivity in lung adenocarcinoma 
patients,  providing  a  robust  molecular  basis  for  both  
immunotherapy and drug sensitivity prediction and offering new 
avenues for personalized treatment strategies. It is essential to 
acknowledge that the immunotherapy response predictions from 
the TIDE algorithm and the drug-sensitivity forecasts generated by 
the oncoPredict package in this study are exclusively outputs of in 
silico computational models. These results chiefly represent

correlative analyses between tumor gene expression and existing 
datasets. Going forward, validation in real-world clinical cohorts or 
through in vitro and in vivo experiments will be required to 
establish their clinical applicability and accuracy. 

Recent bioinformatics investigations have clarified the impact of 
glutathione metabolism on lung adenocarcinoma by constructing 
prognostic models based on seven genes regulating glutathione 
metabolism and long noncoding RNAs linked to this pathway 
(95, 96). By contrast, our work stratifies patients into high and 
low glutathione metabolic cohorts according to the metabolic 
heterogeneity previously observed. Building on this classification, 
we then identified differentially expressed genes and constructed a 
gene risk score. By integrating the gene risk score with tumor 
staging, we constructed a nomogram for prognostic prediction. This 
model demonstrated strong predictive performance across the 
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TCGA training cohort and two independent GEO validation 
cohorts. Receiver operating characteristic curves, Kaplan–Meier 
survival analyses, and decision curve analysis all confirmed that 
the model possesses reliable predictive accuracy and clinical benefit, 
underscoring its potential as a valuable tool for individualized 
clinical decision-making in lung adenocarcinoma management. 

Although this study yielded several meaningful findings, there are 
still some limitations. The genetic causal analysis and the 
construction of the prognostic model were primarily based on data 
from European and East Asian populations, so it remains to be 
determined whether the results can be generalized to other ethnic 
groups and broader populations. Differences in genetic backgrounds 
and environmental exposures may affect metabolic and immune 
phenotypes. Thus, future investigations should include more 
diverse cohorts to assess the universality of these conclusions. 
Moreover, our prognostic model relies solely on transcriptomic 
data, whereas numerous critical clinical parameters, such as 
pathological and imaging features, were not incorporated. 
Integrating additional clinical information will be essential to 
achieve a more comprehensive and accurate prognostic evaluation. 
In addition, the single-cell analysis utilized publicly available datasets. 
Although these datasets integrated samples from many patients, they 
might not fully capture the heterogeneity of the lung adenocarcinoma 
microenvironment. Future studies should include more patient-
derived sequencing data and employ advanced techniques, such as 
spatial transcriptomics, to further validate and expand our 
understanding of the link between glutathione metabolism and 
immunity. Most importantly, our study is primarily based on 
bioinformatic analyses, and experimental validation is currently 
lacking.  For instance,  while we propose  that  the glutathione

metabolite 5-oxoproline may promote tumorigenesis by reducing 
the proportion of CD28-CD25++ CD8+ T cells, it is necessary to 
confirm through animal models or in vitro co-culture experiments 
whether treatment with 5-oxoproline or modulation of glutathione 
metabolism can directly impair T cell function and accelerate tumor 
formation. Similarly, further cellular and molecular experiments are 
needed to validate whether key genes in the prognostic model, such as 
MARCHF4, can serve as potential therapeutic targets. From a 
translational perspective, the proposed gene risk score and 
prognostic model must be validated in prospective clinical trials to 
confirm their predictive power and clinical utility. 
5 Conclusion 

Our study reveals that elevated 5-oxoproline levels contribute to 
LUAD progression by impairing CD8+ T-cell-mediated immunity. 
Glutathione metabolism reprogramming is associated with immune 
suppression and an increased proportion of exhausted T cells in the 
tumor microenvironment. The identified prognostic signature 
provides a robust tool for predicting patient outcomes and may 
inform the development of targeted therapies aimed at modulating 
GSH metabolism and enhancing antitumor immunity in LUAD, 
thereby facilitating improved treatment decision-making and 
identification of high-risk populations requiring close follow-up. 
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SUPPLEMENTARY FIGURE 1 

Scatter plot of the correlation between 12 core glutathione metabolism genes 
and the GSH score. 

SUPPLEMENTARY FIGURE 2 

Comparison of central carbon metabolism scores among different GSH 
metabolism groups. Boxplots comparing central carbon metabolism scores 
between different GSH metabolism groups in bulk RNA-seq for (A) Glycolysis/ 
Gluconeogenesis, (B) Pentose Phosphate Pathway, (C) Citrate Cycle/TCA 
Cycle, and (D) Glycine, Serine, and Threonine Metabolism. Violin plots of 
metabolic scores in single-cell sequencing data for (E) Glycolysis/ 
Gluconeogenesis, (F) Pentose Phosphate Pathway, (G) Citrate Cycle/TCA 
Cycle, and (H) Glycine, Serine, and Threonine Metabolism. 
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