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Exploring the differential
functions of circulating follicular
helper T and peripheral helper
T cells in rheumatoid arthritis
based on metabolism patterns
Ziran Bai1,2†, Siwen Yang2†, Jinyi Ren2†, Cheng Zhang2,
Xianmei Chen2, Huina Huang2, Guan Wang2, Yawei Tang1*,
Jingjing Qi2* and Xia Li2*

1Department of Flow Cytometry Center, the Second Affiliated Hospital of Dalian Medical University,
Dalian, Liaoning, China, 2Department of Immunology, College of Basic Medical Science, Dalian
Medical University, Dalian, Liaoning, China
Introduction: The number of circulating follicular helper T (cTfh) and peripheral

helper T (Tph) cells is elevated in rheumatoid arthritis (RA), yet the molecular

mechanisms mediating their specific contributions to RA pathology remain

unclear. In this study, we explored the distinct function of cTfh and Tph cells

based on metabolism patterns in RA.

Methods: Peripheral CD4+ T cells from RA patients were treated with CXCL13 or

CCL2, glycolysis inhibitor 2-DG or mitochondria-targeted antioxidant MitoQ in

vitro. Collagen induced arthritis (CIA) mice were treated with 2-DG or MitoQ in

vivo. The frequency, transcription factors, functional molecules, cellular

senescence, glycolytic activity and mitochondrial ROS (mtROS) of cTfh and

Tph cells were assessed. Joint inflammation, CD4+PD-1+ T cells, glycolytic

enzymes or IL-1b and IL-6 in ankle joints of CIA mice were detected.

Results:We found that in RA patients, in comparison with Tph cells, cTfh cells show

higher levels of Bcl6 and BATF, B helper-related molecules, and glycolytic activity.

While Tph cells exhibit higher levels of Blimp1 and T-bet, cytotoxicity-related

molecules and mtROS, and more significant cellular senescence characteristics. In

addition, CXCL13, the ligand for CXCR5, increases the expression of key glycolytic

enzymes in RA cTfh cells, while CCL2 increases mtROS in RA Tph cells. 2-DG

reduces the expression of B helper-related molecules cells, and MitoQ mitigates

cytotoxic activity of cTfh and Tph cells. Both treatments ameliorate RA symptoms

and decrease the number of cTfh and Tph cells in CIA mice.

Conclusion:Our study suggests that in RA patients, cTfh cells display a more robust

B helper-associated function, potentially linked to the CXCL13-CXCR5 axis

enhancing glycolysis. Tph cells, on the other hand, show greater cytotoxic activity,

possibly due to the CCL2-CCR2 axis increasing mtROS production. Targeting

glycolysis or mtROS may offer a novel therapeutic strategy for RA patients.
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Introduction

Rheumatoid arthritis (RA) is the most common systematic

autoimmune disease affecting approximately 1 of every 200 adults

worldwide. It is typically characterized by chronic inflammation in

synovial joint, which may cause cartilage and bone destruction, and

eventually leads to disability in patients (1, 2). The etiology of RA is

not clear, but it is generally believed that certain genetic and

environmental risk factors are associated with the development of

RA. Diverse immune cells and signals are involved in initiating and

sustaining the disorder. Autoantibodies against altered auto-

proteins including rheumatoid factor (RF) and anti-cyclic

citrullinated peptide (anti-CCP) antibody play an essential role in

RA pathogenesis by activating osteoclasts, ultimately leading to

joint destruction (3). Follicular helper T (Tfh) cells is a CD4+ T cell

subset that specializes in providing help to B cell proliferation and

differentiation into plasma cells to produce antibodies, and they are

critically involved in the pathogenesis of a range of autoimmune

diseases, including RA (4).

Tfh cells is a heterogeneous subset characterized by expressing

CXCR5, ICOS and PD-1 in germinal center and peripheral blood

(5). Our previous studies found that the percentages of circulating

Tfh (cTfh) cells were increased and positively correlated with the

disease activity and serum anti-CCP antibody levels of RA patients.

cTfh cells from RA patients promoted B cells to differentiate into

plasma cells to produce antibodies (6, 7). Recent studies have

identified an additional PD-1hiCXCR5- peripheral helper T (Tph)

cells that can help B cells within pathologically inflamed non-

lymphoid tissues. Tph cells were increased in inflamed RA joints

and peripheral blood of seropositive RA patients (8–10). Sharing

similar differentiation mechanisms, both Tfh and Tph cells are key

mediators of RA pathogenesis by inducing plasma cell

differentiation via IL-21 and SLAMF5 (8, 11–15). However,

studies found that only Tfh cells could induce naive B cell

differentiation (10), and Tph cells exhibited cytotoxicity by

producing cytotoxic molecules such as perforin, granzymes, and

G protein-coupled receptor 56 (16, 17). Thus, the exact

pathogenetic features of these two circulating PD-1hiCD4+ T cell

populations in RA still need to be explored further.

Glycolysis and mitochondrial metabolism have been shown to

be responsible for Tfh cell differentiation and functions (18).

Specifically, we have shown that Iguratimod significantly

restrained the RA-cTfh cell functions by inhibiting HIF1a-HK2

axis mediated glucose metabolism (6). Choi and colleagues found

that glycolysis inhibitor 2-DG treatment suppressed Tfh cell

expansion in lupus mice (19). While the role of cellular

metabolism in Tph cell functions remains unknown. In this

study, we detected the proportions of cTfh and Tph cells and

compared the levels of functional molecules and glucose

metabolism patterns between these two distinct populations in

RA patients. Our findings reveal that both cTfh and Tph cells are

increased in RA patients. The cTfh cells demonstrate a stronger

capacity to assist B cells, while Tph cells display heightened

cytotoxicity, potentially due to enhanced glycolysis in cTfh cells

and increased mitochondrial ROS (mtROS) production in Tph
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cells, respectively. Thus, our study has uncovered specific metabolic

programs that regulate the expression of distinct proinflammatory

effectors in cTfh and Tph cells of RA patients. These findings could

offer new insights into understanding the pathogenesis of RA and

inform therapeutic strategies not only for RA but also for other

autoimmune diseases.
Materials and methods

Patients and healthy controls

Peripheral blood from RA patients and age and gender-

matched healthy controls (HC) were obtained from the

Department of Rheumatology and Immunology of the Second

Affiliated Hospital of Dalian Medical University in China.

Detailed clinical characteristics and laboratory features of RA

patients and HC are shown in Table 1. All RA patients in this

study fulfilled the American College of Rheumatology (ACR) 1987

revised criteria. Ethics approval was given by the ethics committee

of the Second Hospital of Dalian Medical University (2023-253).
Collagen-induced arthritis model

Male DBA/1J mice aged 6–8 weeks were purchased from

Shanghai SLAC Laboratory Animals Company and housed under

pathogen-free conditions at the Laboratory Animal Center of

Dalian Medical University. For the primary immunization, mice

were subcutaneously injected in the tail with the emulsion formed

by type II bovine collagen (Chondrex, USA) and Complete Freund

adjuvant (CFA, Chondrex). Administer a booster injection

consisting of type II bovine collagen and Incomplete Freund

adjuvant (IFA, Chondrex) emulsion on day 21. The injection

consisted of 100 µL of an emulsion containing 100 µg of collagen

and 2 mg/mL of CFA or IFA.

The study covered the healthy control mice group (n=5), the

CIA mice group (CIA mice were treated with vehicle, n=5), and the

CIA+2-DG mice group (CIA mice were treated with 2-DG three

times a week for 2 weeks on day 28 after immunization, 500 mg/kg,

n=5), and the CIA+MitoQ mice group (CIA mice were treated with

MitoQ three times a week for 2 weeks on day 28 after
TABLE 1 Clinical and laboratory characteristics of RA patients for study.

Features RA HC

Age (years) 58.90 ± 11.54 52.35±11.08

Male/Female 6/34 4/24

RF (/mL) 187.3 ± 275.0 –

CRP (mg/L) 16.61 ± 17.73 –

Anti-CCP (U/mL) 133.20 ± 73.42 –

ESR (mm/h) 44.08 ± 20.23 –
RF, rheumatoid factor; CRP, C-reactive protein; anti-CCP, anti-cyclic citrullinated peptide
antibodies; ESR, erythrocyte sedimentation rate.
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immunization, 2 mg/kg, n=5). The mice’s paw thickness and disease

activity score were assessed. Disease activity scores were derived

from the evaluation of clinical arthritis in all four limbs as reported

by the scoring system for the evaluation of arthritis severity. The

scoring system was defined as 0, no evidence of erythema and

swelling; 1, erythema and mild swelling confined to the tarsals or

ankle joint; 2, erythema and mild swelling extending from the ankle

to the tarsals; 3, erythema and moderate swelling extending from

the ankle to the metatarsal joints; and 4, erythema and severe

swelling encompassing the ankle, foot and digits or ankylosis of the

limb. All experiments complied with the guidelines established by

the Institutional Animal Care and Use Committee (IACUC). The

study was approved by the Ethics Committee of the Dalian Medical

University (Approval No: AEE24013).
Histology

The mice’s ankle joints and paws were fixed overnight in 4%

paraformaldehyde, decalcified in 14% EDTA, and embedded in

paraffin. Sections of 5-mm thickness were generated from the

paraffin tissue blocks. And the sections were stained with

hematoxylin-eosin (HE, Solarbio, China), and Safranin O-fast

green (SO/FG, Solarbio, China). The expression of hexokinase 2

(HK2, Cell Signaling Technology), lactate dehydrogenase (LDH,

Cell Signaling Technology), IL-1b (Affinity), and IL-6 (Affinity) in

synovium were analyzed by using immunohistochemistry. The

sections were incubated with CD4-FITC (Biolegend) and PD-1-

PE (Biolegend) antibodies in a 37°C wet box for 1 h, and the images

were scanned under fluorescence microscopy.
Flow cytometry

For cell surface staining, cells were stained in PBS with

Biolegend or eBioscience antibodies (Fixable viability dye (FVD),

anti-CD4, anti-CXCR5, anti-PD-1, anti-ICOS, anti-CD40L, anti-

CD27, anti-CD28, anti-CCR7, anti-CD107a and anti-Glut1

antibodies) for 20 min.

For intracellular staining of Perforin and Granzyme B,

peripheral blood mononuclear cells (PBMCs) were fixed and

permeabilized by Cytofix/Cytoperm Intracellular Staining Kit (BD

Biosciences) for 60 min after cell surface staining, and labeled with

anti-Perforin and anti-Granzyme B antibodies for 30 min.

For intracellular cytokines staining, cells were incubated with

50 ng/mL phorbol myristate acetate (PMA), 1 mg/mL Ionomycin,

and 10 mg/mL Brefeldin-A (BFA) for 4 hours before staining with

surface antibodies. Then cells were fixed and permeabilized to stain

with cytokines antibodies (anti-IL-21, anti-CXCL13, anti-IL-4, anti-

IFN-g, and anti-TNF-a antibodies) for 30 min.

For transcription factor staining, cells were fixed and

permeabilized using the Transcription Factor Fixation/

Permeabilization Buffer Set (eBioscience) for 45 min. Then cells

were stained with anti-BATF, anti-Bcl-6, anti-T-bet, and

anti-Eomes.
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All stained cells were analyzed on the Flow Cytometer (NovoCyte

2060R) and data were analyzed with NovoExpress software.
Senescence-associated b-galactosidase
staining

Levels of SA-b-Gal activity were assessed by Senescence Assay Kit

(Beta Galactosidase, Fluorescence, Abcam). Collect and resuspend cells

in 500 µL of fresh media containing 1.5 µL of Senescence Dye per tube.

Cells were incubated for 1 h at 37°C, 5% CO2, then washed twice with

500 µL wash buffer, and stained with cell surface antibodies, and

analyzed immediately using flow cytometry.
Measurement of mitochondrial ROS

Levels of mtROS were assessed by MitoSOX Red probe

(Invitrogen). After staining with surface antibodies, cells were

stained with 5 mM MitoSOX Red probe in Hanks’ balanced salt

solution buffer for 30 min at 37°C. Then wash the cells gently three

times for flow cytometry.
JC-10 staining

Mitochondrial membrane potential (MMP) was determined by

Mitochondrial Membrane Potential Kit (JC-10 assay; Solarbio)

according to the instruction of the manufacturer. Briefly, after

staining with surface antibodies, cells were stained with JC-10

staining solution at 37°C for 20 min. Then wash the cells gently

three times with warm Hank’s for flow cytometry.
Glucose metabolism-related analysis

For glucose uptake assay, PBMCs from RA patients were

resuspended and cultured in glucose free RPMI 1640 medium

(Gibco) for 30 min and then cultured with 50 mM D-glucose analog

2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D- glucose

(2-NBDG) (Sigma-Aldrich) for 30 min at 37°C. For HK2 staining, the

cells were fixed in 4% paraformaldehyde and permeabilized in 0.5%

Triton X-100 before anti-HK2 antibody staining. For LDH staining, the

cells were fixed in 4% paraformaldehyde and permeabilized in 90%

methanol before LDH antibody staining. All stained cells were analyzed

by using flow cytometry.
Cell culture

CD4+ T cells (purity range 95%-99%) were purified from

PBMCs of RA patients using the Human CD4+ T Cell Isolation

Kit (BioLegend), and cultured with plate-coated anti-CD3 antibody

(5 mg/mL, eBioscience) and anti-CD28 antibody (2 mg/mL,

eBioscience) in RMPI-1640 medium containing 10% fetal bovine
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serum and 1% penicillin/streptomycin for 72 h. In several

experiments, CXCL13 (100 mg/mL, Peprotech), CCL2 (100 mg/
mL, Peprotech), 2-DG (1 mM, Solarbio) or MitoQ (200 nM,

Biovision) was administrated to the cell culture.
Statistical analysis

Data is presented as means ± standard errors of the mean (SD).

GraphPad Prism 9was used to conduct all statistical analyses. Statistical

differences were analyzed by paired t-test, Wilcoxon rank sum test,

unpaired t-test, Welch’s t-test, and Mann-Whitney test. Paired t-tests,

unpaired t-tests, orWelch t-tests were used to compare parameter data.

The Mann-Whitney test or Wilcoxon matched-pairs signed rank test

was performed for non-parametric data. The P-values < 0.05 were

considered significant. Asterisks mark the significant differences

between different groups (*P<0.05; **P<0.01 and ***P<0.001).
Results

cTfh and Tph cells accumulate in RA
patients and CIA mice

To delve into the precise pathogenic characteristics of cTfh and

Tph cells, we initially determined the percentages of these two T cell

subsets in the peripheral blood of HC and RA patients using flow

cytometry. CXCR5+PD-1+ cTfh and CXCR5-PD-1+ Tph cells were

gated from CD4+ T cells (Figures 1A, B). Results show that RA

patients have a higher number of cTfh and Tph cells than HC

(Figure 1C). And the frequency of Tph cells is higher than that of

cTfh cells in RA patients (Figure 1D). Further, the percentages of

cTfh cells are positively correlated with the levels of serum anti-CCP

antibody, and the percentages of Tph cells are positively correlated

with erythrocyte sedimentation rate (ESR) in RA patients. No

significant correlation is found between the percentages of cTfh

or Tph cells and the levels of RF and C-reactive protein (CRP) in RA

patients (Figure 1E). What’s more, immunofluorescence results

show that CD4+PD-1+ T cells are increased in ankle joint of CIA

mice (Figure 1F). Compared to control mice, CIA mice show higher

levels of Tfh and Tph cells in peripheral blood and spleen, and the

frequency of Tph cells is higher than that of cTfh cells (Figure 1G).

These results indicate that the accumulated cTfh and Tph cells may

play distinct roles in the pathogenesis of RA.
cTfh cells express more B helper-
associated functional molecules, while Tph
cells express more cytotoxicity-associated
molecules

Studies have demonstrated that the transcription factor BATF

facilitates Tfh cell differentiation by promoting Bcl6 expression in

CD4+ T cells (20). ICOS, CD40L, CXCL13, IL-4 and IL-21 of Tfh

cells are important for B cell activation and differentiation (8, 21–
Frontiers in Immunology 04
24). Our results show that compared to Tph cells, cTfh cells express

higher levels of Bcl6 and BATF (Figure 2A), ICOS, CD40L,

CXCL13, IL-4 and IL-21 (Figure 2B) in RA patients and HC,

which indicate that cTfh cells have a more potent ability for B-

cell recruitment and assistance than Tph cells.

In addition to B cell-helping function, Tph cells were reported to

exhibit cytotoxic activity (16, 17). Transcription factors Blimp1 and T-

bet are important for cytotoxic effector T cell differentiation and

function (25). Our results show that compared to cTfh cells, Tph

cells express higher levels of Blimp1 and T-bet (Figure 2C), IFN-g,
TNF-a, perforin, granzyme B and CD107a (Figure 2D) in RA patients

and HC. According to reports, senescent T cells are characterized by

down-regulation of CCR7, CD28 and CD27, and up-regulation of NK

receptors and innate-like killing effects (26, 27). Thus, we detected the

cellular senescence biomarkers and cytotoxicity-associatedmolecules in

cTfh and Tph cells of RA patients. Results show that compared to cTfh,

Tph cells show lower levels of CD28, CD27 and CCR7 (Figure 2E), and

higher levels of senescence associated SA-b-gal activity (Figure 2F) in
RA patients and HC. These results indicate that Tph cells have more

pronounced cellular senescence characteristics and stronger cytotoxic

activity than cTfh cells.
Enhanced glycolysis in cTfh cells and
elevated mtROS in Tph cells

Our previous study found that Iguratimod restrained RA-cTfh cell

functions by inhibiting HIF1a-HK2 axis mediated glucose metabolism

(6). To explore whether the distinct functions of cTfh and Tph cells are

related to cellular glucose metabolism, we detected the glucose uptake

ability and the expression of key glycolytic molecules in cTfh and Tph

cells of RA patients and HC. Despite these two T cell subsets showing

similar glucose uptake ability (Figure 3A) in RA patients, cTfh cells

express higher levels of glucose transporter 1 (GLUT1), HK2 and LDH

than Tph cells (Figures 3B-D) in RA patients and HC. These results

suggest that cTfh cells exhibit a higher level of glycolysis than Tph cells.

Increased ROS production contributes to T cell senescence, and

oxidation of NADPH produced by oxidative phosphorylation is one

of the main sources of ROS production (28, 29). Given the lower levels

of glycolytic molecules observed in Tph cells than cTfh cells, we

hypothesized that Tph cell functions are associated with

mitochondrial metabolism. In this study, JC-10 and MitoSOX were

used to detect mitochondrial function. Results show that Tph cells

exhibit higher levels of mitochondrial membrane potential and mtROS

(Figures 3E-F) in RA patients, which suggest that Tph cells show

mitochondrial dysfunction, resulting in elevated levels of mtROS.
CXCL13-CXCR5 signaling upregulates
glycolysis in cTfh cells, while CCL2-CCR2
signaling increases mtROS production in
Tph cells of RA patients

According to reports, despite a lack of CXCR5 expression, Tph

cells are characterized by expressing CCR2 (8). Here, our results
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FIGURE 1

cTfh and Tph cells accumulated in RA patients and CIA mice. (A-E) PBMCs were isolated from HC (n=12) and RA patients (n=12). (A, B) Flow
cytometric gating strategy of CD4+CXCR5+PD-1+ cTfh cells and CD4+CXCR5-PD-1+ Tph cells. (C) Comparison of cTfh and Tph cell percentages in
HC and RA patients. (D) Comparison of cTfh and Tph cell percentages in RA patients. (E) Relationships of percentages of cTfh and Tph cells with
anti-CCP antibody, RF, ESR and CRP in RA patients. (F) CD4+PD-1+ T cells in ankle joint of CIA mice were detected by immunofluorescence.
(G) Percentages of Tfh and Tph cells in spleen and peripheral blood of CIA mice n=3 were measured by FCM. *P<0.05; **P<0.01; ***P<0.001.
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confirm that CXCR5-PD-1+ Tph cells expressed higher level of

CCR2 than CXCR5+PD-1+ cTfh cells from RA patients (Figure 4A).

Next, to verify the distinct metabolism patterns in cTfh and Tph

cells of RA patients, we measured the levels of GLUT1, HK2, LDH

and mtROS in RA CD4+ T cells stimulated with CXCL13 (ligand for

CXCR5) or CCL2 (ligand for CCR2). Results show that CXCL13-

CXCR5 signaling up-regulate the expression of GLUT1 and HK2 in

cTfh cells, while CCL2-CCR2 signaling promote the production of

mtROS in Tph cells (Figures 4B-E). These results suggest that the

enhanced glycolysis in RA-cTfh cells is related to CXCL13-CXCR5

signaling, while the increased mtROS in RA-Tph cells is related to

CCL2-CCR2 signaling.
Inhibition of glycolysis or scavenging of
mtROS down-regulated the expression of
functional molecules in cTfh and Tph cells
of RA patients

To further investigate the roles of glycolysis and mtROS in the

differential functions of cTfh and Tph cells, we inhibited glycolysis

using the glucose analog 2-DG and mitigated mtROS with the

mitochondria-targeted antioxidant MitoQ in CD4+ T cells from RA

patients, we found that 2-DG could reduce the proportion of cTfh,

and MitoQ could decrease the proportion of both cTfh and Tph

cells (Figure 5A). Results show that glycolysis inhibition down-

regulate the expression of ICOS, CD40L, IL-4 and IL-21 in both
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cTfh and Tph cells (Figures 5B, C). mtROS scavenging significantly

down-regulate the expression of IFN-g, TNF-a, perforin and

granzyme B in both Tph and cTfh cells (Figures 5D, E). These

results suggest that in RA patients, the enhanced B-cell recruitment

and helper functions of cTfh cells may rely on increased glycolysis,

while the heightened cytotoxic activity of Tph cells may be

associated with elevated mtROS levels.
Inhibition of glycolysis or scavenging of
mtROS alleviated disease severity in CIA
mice

To confirm the roles of glycolysis and mtROS in the differential

functions of cTfh and Tph cells in vivo, we administered 2-DG or

MitoQ to CIA mice. Results show that both 2-DG and MitoQ

reduce paw swelling and arthritis score (Figure 6A), and the

expression of HK2 and LDH in ankle joints (Figure 6B).

Additionally, 2-DG and MitoQ improve the pervasive infiltration

of inflammatory cells, cartilage and bone tissue erosion, and

synovial hyperplasia (Figure 6C, upper two panels). 2-DG and

MitoQ also reduce the expression of inflammatory cytokines IL-

1b and IL-6 (Figure 6C, lower two panels) and the presence of

CD4+PD-1+ T cells in ankle joints (Figure 6D). Furthermore, 2-DG

and MitoQ down-regulate the percentages of cTfh and Tph cells in

the peripheral blood of CIA mice, although not in the spleen

(Figure 6E). These results suggest that inhibition of glycolysis or
FIGURE 2

cTfh and Tph cells tend to express different functional molecules in RA patients and HC. (A-F) Expression of Bcl6 (RA: n=6; HC: n=6), BATF (RA: n=6;
HC: n=6), ICOS (RA: n=10; HC: n=8), CD40L (RA: n=10; HC: n=8), CXCL13 (RA: n=8; HC: n=6), IL-4 (RA: n=8; HC: n=6), IL-21 (RA: n=10; HC: n=8),
Blimp1 (RA: n=8; HC: n=8), T-bet (RA: n=8; HC: n=8), IFN-g (RA: n=10; HC: n=8), TNF-a (RA: n=10; HC: n=6), perforin (RA: n=8; HC: n=6),
granzyme B (RA: n=8; HC: n=6), CD107a (RA: n=8; HC: n=6), CD28 (RA: n=8; HC: n=8), CD27 (RA: n=8; HC: n=8) and CCR7 (RA: n=8; HC: n=8),
and SA-b-gal activity (RA: n=8; HC: n=6) in cTfh and Tph cells from RA patients and HC were detected by FCM. *P<0.05; **P<0.01; ***P<0.001.
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mtROS production alleviate disease severity in CIA mice via

restraining the development and recruitment of cTfh and Tph cells.
Discussion

Both cTfh and Tph cells play crucial roles in RA pathogenesis.

Our current study discovered that in RA patients, the frequency of

CXCR5+PD-1+ cTfh and CXCR5-PD-1+ Tph cells is elevated.
Frontiers in Immunology 07
Further, cTfh cells express higher levels of B helper functional

molecules due to enhanced glycolysis, and Tph cells display more

pronounced cellular senescence characteristics and higher levels of

cytotoxic activity-related molecules due to increased mtROS

production in RA patients.

Tfh cells, as a heterogeneous subset of CD4+ T cells, may

express different phenotypic biomarkers according to cell

differentiation stages and disease conditions (4). Researchers have

compared the shared and distinct characteristics of Tfh and Tph
FIGURE 3

Enhanced glycolysis in cTfh cells and elevated levels of mtROS in Tph cells from RA patients and HC. (A) Glucose uptake of cTfh and Tph cells was
determined by the 2-NBDG method (RA: n=8; HC: n=8). (B-D) Expression levels of GLUT1 (RA: n=8; HC: n=8), HK2 (RA: n=8; HC: n=8), and LDH
(RA: n=8; HC: n=8) in cTfh and Tph cells were measured by FCM. (E) Mitochondrial membrane potential was determined by JC-10 probes (RA: n=4;
HC: n=4). (F) mtROS were determined by MitoSOX probes (RA: n=8; HC: n=6). ns, no significance; *P<0.05; **P<0.01; ***P<0.001.
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FIGURE 4

CXCL13-CXCR5 signaling pathway enhances glycolysis in RA cTfh cells, while CCL2-CCR2 signaling pathway increases mtROS production in Tph
cells from RA patients. (A) Expression levels of CCR2 on CD4+CXCR5+PD-1+ cTfh cells and CD4+CXCR5-PD-1+ Tph cells from RA patients were
measured by FCM (n=8). (B-E) Peripheral CD4+ T cells were isolated from PBMCs of RA patients and stimulated with CXCL13 or CCL2 for 72h.
(B-D) Expression levels of GLUT1, HK2 and LDH were measured by FCM (n=4). (E) Levels of mtROS were determined by MitoSOX probes (n=5).
ns, no significance; *P<0.05; **, P<0.01; ***P<0.001.
Frontiers in Immunology frontiersin.org08

https://doi.org/10.3389/fimmu.2025.1608675
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bai et al. 10.3389/fimmu.2025.1608675
cells in human diseases (10, 30, 31). Although, Tph cells are mainly

present within inflamed non-lymphoid tissues due to expressing

CCR2, CCR5 and CX3CR1, and can be distinguished from Tfh cells

by the high expression of PD-1 and no expression of CXCR5 (8, 32).

In some studies, Tph cells that showed Tfh-associated genes and

functions might be mixed with Tfh cells (33, 34). In this study, we

found cTfh and Tph cells prefer to express differential functional

molecules based on different metabolism patterns, which contribute

to elucidating RA pathogenesis further.

Tfh and Tph cells share the expression of the checkpoint

molecule PD-1, which is typically expressed on exhausted T cells

under continuous antigenic stimulation (35, 36). While, unlike

exhausted cytotoxic T lymphocytes, Tfh and Tph cells can cause

pathological autoantibody production and tissue injury despite

negative signals provided by PD-1 in autoimmune diseases (37,

38). Reports indicate that Tph cells are not increased in seronegative

early RA or spondyloarthritis patients, but they are increased and

contribute to pathological B cell activation and inflammation in

seropositive RA and systemic lupus erythematosus patients (9, 10,

39). After stimulation, Tph cells exhibited Th1-like auto-reactivity

by producing IFN-g, IL-21, TNF-a and CXCL13 in the joints of RA

patients, which was regulated by PD-1 signaling (37). However, due

to sampling limits and technical difficulties, the function of Tph

cells in disease pathogenesis still is not elucidated clearly (8, 40). We

observed that cTfh cells tend to express B helper functional

molecules, and Tph cells tend to express cytotoxicity-related
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molecules, indicating distinct mechanisms underlying their

pathological roles. Notably, while cTfh and Tph cells exhibited

similar functional disparities between RA patients and HC, some

functional molecules (such as ICOS, CD40L, CXCL13, IL-21, IFN-g,
perforin, and granzyme B) in RA cTfh and Tph exhibited elevated

levels. And the expanded populations of cTfh and Tph cells in RA

highlight the imperative to delineate their functional contributions

in RA.

Others’ studies revealed the cytotoxic potential of Tph cells in

submandibular glands (SMG) of IgG4-related disease (IgG4-RD)

and synovial fluid of RA patients (16, 17). The functional assays

suggested their specific lysis against vascular endothelial cells and

ductal epithelial cells, which might contribute to the lesions in SMG

of IgG4-RD (17). Elahee M and colleagues found that in systemic

sclerosis patients, among PD-1highCXCR5- Tph cells, only the HLA-

DR+ICOS- cells with cytotoxic properties are expanded and

significantly correlated with the severity of interstitial lung disease

(41). In our study, we confirmed that Tph cells from RA patients,

which express low levels of ICOS, are characterized by the

production of cytotoxic molecules such as perforin and granzyme

B, a feature not observed in cTfh cells. In addition, Tph cells are

divided into four subsets CXCR3+CCR6-Tph1, CXCR3-CCR6-

Tph2, CXCR3-CCR6+Tph17, and CXCR3+CCR6+Tph1–17 cells.

Study found that Tph1 and Tph17 cells showed B-helper

functions, while Tph2 cells exhibited cytotoxic activity in systemic

lupus erythematosus patients (42). Further studies are needed to
FIGURE 5

Inhibition of glycolysis or mtROS production leads to the downregulation of functional molecules in cTfh and Tph cells from RA patients. (A-E)
Purified RA-CD4+ T cells were cultured in the presence of 2-DG or MitoQ for 72 h. Expression of ICOS, CD40L, IL-4, IL-21, IFN-g, TNF-a, perforin
and granzyme B in cTfh and Tph cells was detected by FCM (n=5). ns, no significance; *P<0.05; **P<0.01; ***P<0.001.
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elucidate the metabolism patterns in different Tph subsets, and

functional assays are required to identify the specific target cells of

Tph cells in RA patients.

According to reports, PD-1 pathway promotes cancer cell growth

by activating downstream mTOR signaling, which is a master

regulator of glucose metabolism by promoting HIF-1a expression

(43, 44). Transcription factor HIF-1a, in turn, activates the

transcription of glucose metabolism-related genes, including

GLUT1 and HK, by binding to the hypoxia-response element in

their promoters (45). CXCL13 has been shown to activate mTOR

signaling pathway through its interaction with CXCR5 on renal cell

carcinoma (46). In our study, cTfh cells from RA patients exhibit

higher levels of glycolytic molecules GLUT1 and HK2, which may be

linked to the CXCL13-CXCR5 axis-mediated mTOR activation.

Subsequently, the enhanced glycolysis upregulates the levels of

CD40L and ICOS on cTfh cells (47, 48).

The lower levels of glycolytic molecules observed in Tph cells than

cTfh cells prompted us to hypothesize that Tph cell functions are
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associated with mitochondrial metabolism. The level of mtROS is one

of the crucial parameters for mitochondrial function and mediators for

cellular senescence (49, 50). And CCL2 has been reported to be a

crucial mediator for ROS generation in monocyte (51). According to

reports, senescent T cells are characterized by up-regulation of NK

receptors and innate-like killing effects through the expression of

perforin, granzymes and TNF-a (26). Our results show that Tph

cells from RA patients exhibit higher levels of mtROS and senescence

associated SA-b-gal activity than cTfh cells (Figures 3F and 2F). mtROS

scavenging significantly down-regulate the expression of cytotoxicity-

associated molecules in Tph cells (Figures 5D, E). These results suggest

that the high cytotoxic activity might be due to increased mtROS

induced cellular senescence in Tph cells. While mitochondria are a

major source of ROS generation, the relationship between ROS and

cytotoxicity is complex and may involve other factors. Further research

is necessary to elucidate the precise mechanisms underlying the

interplay between mtROS, cytotoxicity and cellular senescence in

Tph cells.
FIGURE 6

Inhibition of glycolysis or scavenging of mtROS reduces disease severity in CIA mice. CIA mice were treated with 2-DG or MitoQ (n=5). (A) Hind paw
images and clinical scores of CIA mice. (B) The expression of HK2 and LDH in the ankle joints of CIA mice were measured by immunohistochemistry.
(C) HE and safranin O-fast green staining images of ankle joints (upper two panels). Immunohistochemistry staining images of IL-1b and IL-6 in ankle
joints (lower two panels). (D) CD4+PD-1+ T cells in ankle joint were detected by immunofluorescence. (E) The percentages of Tfh and Tph cells in
peripheral blood and spleen of CIA mice were measured by FCM. ns, no significance; *P<0.05; **P<0.01; ***P<0.001.
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Conclusion

To summarize, in RA patients, cTfh cells display a more potent

B helper-associated function, likely due to enhanced glycolysis

driven by the CXCL13-CXCR5 axis. Meanwhile, Tph cells exhibit

increased cytotoxic activity, which may be linked to elevated mtROS

driven by the CCL2-CCR2 axis (Figure 7). Targeting glycolysis or

mtROS may offer a novel therapeutic strategy for RA patients.
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