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Mechanisms of autoimmune-
mediated paraneoplastic
syndromes: immune tolerance
and disease pathogenesis
César Pérez-Bucio, Anish Behere and Nils Landegren*

Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala
University, Uppsala, Sweden
Paraneoplastic syndromes represent a clinically heterogeneous group of

disorders that arise in cancer patients. Although their underlying mechanisms

are only partly understood, immune or endocrine mechanisms are believed to

play key roles. Autoimmune-mediated paraneoplastic syndromes (AMPS) are

typically characterized by the presence of autoantibodies, making their

identification important for both AMPS diagnosis and early cancer detection.

This review synthesizes emerging insights into the pathogenesis of AMPS, with a

particular focus on how genomic instability in cancer cells promotes immune

recognition of altered self-proteins. Mechanisms such as ectopic expression,

protein modifications (such as isoaspartylation), and gene amplifications can

disrupt immune tolerance, leading to autoimmunity. Additionally, chronic

inflammation and the formation of tertiary lymphoid structures within the

tumor microenvironment contribute to both antitumor immunity and

autoimmunity. Immune checkpoint inhibitors (ICIs), have revolutionized cancer

treatment by enhancing antitumor immunity, but they can also induce immune-

related adverse events (irAEs), some of which mimic AMPS. These irAEs highlight

the critical roles of both humoral and cellular immunity in AMPS development. By

exploring the relationships between ICI treatment, immune tolerance, and

tumor-specific antigens, this review aims to clarify the mechanisms driving

AMPS and their dual role in cancer control and immune-mediated disease.

Bridging these knowledge gaps may inform the development of novel

therapeutic strategies for managing AMPS and in optimizing the use of ICIs in

cancer care.
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1 Introduction

Paraneoplastic syndromes (PS) comprise a diverse group of

disorders that affect different organ systems in cancer patients,

arising independently of the primary tumor or its metastases. Their

clinical manifestations are often distant from the tumor site and are

thought to result from humeral factors produced by cancer cells or

by immune system reactions. Due to their rarity and clinical

heterogeneity, the reported incidence of PS varies widely, ranging

from 7% to 33% of cancer patients (1, 2). These syndromes typically

manifest within ±3 years of cancer diagnosis and are more

frequently identified after cancer is detected (3).

The mechanisms underlying PS are incompletely understood and

diverse. Non-autoimmune-mediated PS are often driven by

endocrine imbalances (4), such as hyponatremia, hypercalcemia, or

Cushing’s syndrome, as well as cytokine dysregulation (5), including

neutrophilia, Trousseau’s syndrome, and thrombocytosis. These cases

are associated with poor patient outcomes (5). In contrast,

autoimmune-mediated paraneoplastic syndromes are linked to

better cancer prognoses, suggesting that autoimmune flares are a

sign of enhanced antitumor responses.

Autoimmune-mediated paraneoplastic syndromes (AMPS)

most commonly affect the central nervous system (CNS) but can

also manifest in the peripheral nervous system (PNS), skin, or blood

(6). A hallmark of AMPS is the presence of autoantibodies, which

have gained attention for their role as disease biomarkers (7). These

autoantibodies are important in the diagnosis of paraneoplastic

syndromes and may support early cancer detection in this group of

patients. For instance, individual autoantibodies, such as p53 (8),

HER2 (9), and NY-ESO-1 (10), as well as autoantibody panels, have

shown predictive potential for cancer diagnosis (11, 12). However,

these biomarkers still fail to meet clinical standards (13). Important

observations have been made linking cancer alterations with

commonly associated autoantibodies and the development of

AMPS (Table 1).

Despite advances in autoantibody research, the cellular

and molecular mechanisms underlying AMPS pathogenesis

remain poorly understood. This review aims to summarize the

current state of research on AMPS exploring the mechanisms

driving autoimmune disorders in cancer. Specifically, it will

address how ectopic expression, protein structural alterations, and

overexpression of self-proteins may trigger autoimmune responses.

Overlapping clinical presentations between AMPS and immune-

related adverse events (irAEs) of immune checkpoint inhibitor

(ICI) treatment will be discussed, highlighting the need to

understand autoimmunity in cancer. Further, the roles of chronic

inflammation within the tumor microenvironment (TME) and

localized immune tolerance in sustaining these responses will be

examined. With this discussion, we aim to bridge existing

knowledge gaps and provide a framework to better understand

AMPS pathogenesis.
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2 Protein overexpression, ectopic
expression and structure changes
drive autoimmunity in cancer

Ectopic expression refers to the production of a self-protein in

atypical tissues. Malignant cells frequently exhibit ectopic

expression of otherwise tissue-restricted proteins as a

consequence of genomic instability. Genomic instability may also

trigger missense mutations that may lead to changes in protein

structure. Similarly, an antigen may be overexpressed due to

chromosome amplifications. In cancer, any of these alterations

can induce immune recognition and targeting of malignant cells.

In the following AMPS cases, evidence has been provided of how

genetic or proteomic alterations can lead to immune recognition

and the development of autoimmunity.
2.1 Anti-Hu: encephalomyelitis

The Hu protein family comprises RNA-binding proteins

primarily expressed in neuronal cells, where they play a role in

mRNA stabilization and translation (40). HuD, a member of this

family, is known to be expressed in several cancer types (41). Small

cell lung cancer (SCLC) patients with paraneoplastic sensory

neuropathy or encephalomyelitis present high anti-Hu antibody

titers (42). These antibodies target tumor-expressed Hu proteins,

which would otherwise be restricted to neuronal cells. Interestingly,

while all SCLC patients with neurological AMPS are anti-Hu

positive, 17% of all SCLC patients, irrespective of paraneoplastic

presentation, harbor detectable anti-Hu titers (43).

Changes in protein structure can occur after protein folding,

contributing to the development of autoimmunity. HuD (also

known as ELAVL4) commonly undergoes isoaspartylation, a

modification that can impair its physiological activity. In the

healthy CNS, PIMT (peptidyl-isomerase methyltransferase)

repairs this damage, restoring HuD to its native, functional form

(44). However, because PIMT expression is restricted to certain

tissues (45), HuD-expressing tumors accumulate isoaspartylated

HuD. This ectopically expressed protein variant can be recognized

as a non-self-antigen, triggering an immune response in patients

with HuD-expressing cancers. In rare cases, the development of

anti-HuD autoantibodies may lead to cross-reactivity and

recognition of the wild-type HuD protein in the CNS (46).

Pulido M. and colleagues tested serum from seven anti-HuD

positive SCLC patients, four of whom had paraneoplastic

syndromes against both native and isoaspartylated HuD. All

seven samples reacted with both protein isoforms, suggesting not

only immune stimulation of isoaspartylated HuD but also cross-

reactivity toward native HuD (46). This cross-reactivity explains the

paraneoplastic presentation in some of these patients. Isoaspartyl
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TABLE 1 Summary of autoimmune-mediated paraneoplastic syndromes (AMPS).

Manifestations Syndrome Underlying Cancers Associated Autoantibody

Neurological Lambert–Eaton myasthenic syndrome (14) SCLC Anti-VGCC (P/Q-type voltage-gated
calcium channel)

Paraneoplastic cerebellar degeneration (15) Lung cancer, ovarian cancer, breast
carcinoma, Hodgkin’s lymphoma

Anti-Yo, Anti-Hu, Anti-Tr, Anti-Ri

Sensory Neuronopathies (16) Various Anti-Hu, Anti-CRPM5, Anti-CV2, Anti-AGO

Encephalomyelitis (17) Various Anti-Hu

Limbic encephalitis (18) SCLC Anti-Hu, Anti-Ma2

Brainstem encephalitis (15, 19) Lung cancer, testicular cancer Anti-Hu, Anti-Ri, Anti-Ma2, Anti-KLHL11

Opsoclonus myoclonus ataxia syndrome (20) Breast carcinoma, ovarian carcinoma, SCLC,
neuroblastoma (in children)

Anti-Ri

Myasthenia Gravis (21) Thymoma Anti-AChR

Anti-NMDA receptor encephalitis (22) Teratoma Anti-NMDA receptor

Mucocutaneous Polymyositis (23) Non-Hodgkin lymphoma, lung cancer,
bladder cancer

Anti-Jo-1

Acanthosis nigricans (24) Gastric carcinoma, lung carcinoma,
uterine carcinoma

N.A.

Dermatomyositis (23) Bronchogenic carcinoma, breast carcinoma,
ovarian cancer, pancreatic cancer, stomach
cancer, colorectal cancer, non-
Hodgkin lymphoma

Anti-Mi-2, Anti-NXP2, Anti-TIF1g

Leser-Trélat sign (25) Various N.A.

Necrolytic migratory erythema (26) Glucagonoma N.A.

Sweet’s syndrome (27) Hematologic malignancies N.A.

Leukocytoclastic vasculitis (28) Leukemia/lymphoma, myelodysplastic
syndromes, colon, lung, urologie, multiple
myeloma, rhabdomyosarcoma

N.A.

Paraneoplastic pemphigus (29, 30) Non-Hodgkin lymphoma, chronic
lymphocytic leukemia, thymoma, Castleman
disease, follicular dendritic cell sarcoma

Anti-Plakin, Anti-Desmoglein

Rheumatic Palmar fasciitis and polyarthritis (31) Ovarian cancer N.A.

Sjögren-like syndrome (32) Non-Hodgkin lymphoma, lung cancer Anti-Ro/SSA, Anti-La/SSB

Polymyalgia rheumatica (33) Leukemia/lymphoma, myelodysplastic
syndromes, colon, lung, renal, prostate,
breast cancer

N.A.

Systemic Sclerosis (SSc) (34) Breast, lung, prostate cancer, melanoma Anti-RPC-1

Hypertrophic osteoarthropathy (35) Lung cancer
(adenocarcinoma), mesothelioma

N.A.

Others Membranous glomerulonephritis (36) Various Anti-PLA2R

Tumor-induced osteomalacia (37) Hemangiopericytoma, phosphaturic
mesenchymal tumor

N.A.

Stauffer syndrome (38) Renal cell carcinoma N.A.

Cancer-Associated Retinopathy (CAR) (39) Melanoma, SCLC Anti-recoverin, Anti-transducin
F
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post-translational modifications has been shown to cause

immunogenicity and break self-tolerance before (47).
2.2 Anti-recoverin: cancer-associated
retinopathy

Cancer-associated retinopathy (CAR) has been observed across

various cancer types, predominantly in SCLC and breast cancer.

CAR is characterized by progressive sight loss due to autoimmune

targeting of retinal proteins. The rarity of this syndrome has made it

difficult to reliably identify the underlying autoantibody, although

markers against specific retinal proteins like transducin and

recoverin have been reported (48, 49).

Sera from 143 cancer patients (99 SCLC and 44 non-small cell

lung cancer [NSCLC]) was tested for anti-recoverin antibodies by

immunoblotting. Anti-recoverin positivity was observed in 15% and

20% of SCLC and NSCLC cases, respectively. No healthy controls

showed anti-recoverin positivity (50). Tumor samples were

available from 44 SCLC and 40 NSCLC patients. Recoverin

expression was detected by immunohistochemistry in 68% of

SCLC and 85% of NSCLC patients (50). All symptomatic CAR-

SCLC patients test positive for anti-recoverin autoantibodies, likely

due to ectopic expression of retinal proteins (51). A clinical report

of a uterine carcinosarcoma patient also revealed serum positivity

for anti-recoverin antibodies. Postmortem immunofluorescence

analysis detected recoverin expression in the tumor cells (52).
2.3 Anti-VGCC: paraneoplastic LEMS

SCLC cells can aberrantly express voltage-gated calcium

channels (VGCCs), typically found in presynaptic nerve terminals

of the CNS and at neuromuscular junctions (53). The autoimmune

disorder Lambert–Eaton myasthenic syndrome (LEMS) arises from

the production of anti-P/Q-type VGCC autoantibodies, leading to

muscle weakness, dry mouth, and neurodegenerative features (54).

LEMS is a paraneoplastic syndrome in approximately 62% of cases

(55), with all SCLC-LEMS patients exhibiting anti-P/Q-type VGCC

autoantibodies (56), and 25% of them presenting neurological

symptoms in addition to the predominant muscle weakness (57).

Not all anti-VGCC positive patients develop LEMS. One study

reported that half of the patients (5 out of 10) with anti-VGCC

autoantibodies did not exhibit any symptoms of LEMS or

neurological damage (58).
2.4 Anti-NMDAR: encephalitis

Another autoimmune disorder with neurological symptoms is

anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, which

involves the disruption of a key receptor for excitatory

neurotransmission specific to the CNS (59). NMDAR is often

expressed in ovarian teratomas (OT), and approximately 37% of

anti-NMDAR encephalitis cases are associated with ovarian
Frontiers in Immunology 04
teratomas, where the encephalitis resolves after tumor resection

(60). Further, reports have shown that in these cases, the antibodies

targeting NMDAR are generated within the tumor tissue

(61). Moreover, patients with ovarian teratomas but without

neurological symptoms do not exhibit anti-NMDAR antibodies,

supporting their association with neurological complications

(62–64).
2.5 Anti-RPC1: systemic sclerosis

Anti-RNA polymerase III subunit C (RPC1) autoantibodies are

commonly found in patients with systemic sclerosis (SSc) (65). A

study of eight RPC+ paraneoplastic SSc patients with different

forms of cancer revealed that the tumors in five of these patients

exhibited genetic alterations in the POLR3A locus. Three of them

had a missense mutation, and all five presented with loss of

heterozygosity. Every patient harbored at least one genetic

alteration, strongly suggesting that these genetic changes triggered

an immune response against both the cancer-expressed and the

wild-type RNA polymerase protein (66).
2.6 Anti-Yo: cerebellar degeneration

Cerebellar degeneration-related protein 2 (CDR2) and CDR2-

like (CDR2L), are neuronal cell proteins typically expressed in

Purkinje cells (referred to as Yo antigens) (67) and have been

implicated in paraneoplastic cerebellar degeneration. Anti-Yo

autoantibody titers were found in a cohort of patients with

paraneoplastic cerebellar damage due to ovarian carcinoma. In

this group, 17 of 17 tumor samples tested had at least one genetic

alteration. Specifically, 59% of cases exhibited a chromosome 17q

gain, where CDR2L and CDR2 are located, and 65% of cases had

mutations in either or both CDR2L/CDR2 genes (68).

Similarly, a study of 29 anti-Yo positive breast carcinoma

patients revealed that all had at least one genetic alteration such

as mutations (62.5%), amplifications (61.5%), or 17q gains (38.4%)

in the CDR2L/CDR2 genes, which also contributed to

paraneoplastic cerebellar degeneration (69). An interesting

observation discussed by the authors is that the tumors were

highly infiltrated by B and T cells and tended to metastasize early.

Not only showing strong anti-tumor responses but also a high

tumor invasiveness in this AMPS cohort (69).
2.7 Anti-AChR: myasthenia gravis

Myasthenia Gravis (MG) is an autoimmune disorder that is

tightly linked to neoplasia, particularly thymoma. It is estimated

that 30% to 40% of thymoma patients develop MG (70, 71). Unlike

many cancer-associated autoimmune syndromes, MG is not

associated with a favorable prognosis in thymoma patients (72).

MG is characterized by progressive muscle weakness that worsens

with physical movement, driven by autoantibody activity against
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neuromuscular-associated proteins. The most common MG

autoantibody is anti-acetylcholine receptor (AChR) (85% of MG

cases (73)), a protein responsible for signal transmission at the

neuromuscular junction (74).

MG-associated thymoma and non-paraneoplastic thymoma

tumors were compared by bulk RNA sequencing on two

independent studies (75, 76). Both results showed AChR

overexpression in MG-associated thymoma samples - 3 and 1.07

fold increase respectively - initially suggesting that protein

overexpression may drive autoantibody production. Interestingly,

the NEFM (Neurofilament Medium Chain) gene coding for a

neuronal protein NEFM was found to be highly expressed (30-fold

(75) and >100-fold (76)) in MG-associated thymoma cases. Schultz

et al. (1999) showed that NEFM contains a linear epitope that closely

resembles an AChR antigen, and that NEFM-specific antibodies

could recognize the AChR -subunit, suggesting that anti-AChR

activity is promoted by immunity against NEFM (77). Similar

epitopes in thymoma MG samples that may trigger cross-reacting

antibodies against titin and RYR have also been proposed (75).
3 Immune checkpoint inhibitors and
immune-related adverse events

In the previous section, we discussed cases of AMPS that arise

independently of cancer treatment. Immune-modulating

treatments such as ICIs can trigger irAEs, some of which share

similarities with AMPS. This has become increasingly relevant

given the quick adaptation of ICIs into the clinic, driven by their

ability to improve overall survival while causing fewer general

adverse effects than traditional therapies (78–80).

Immune checkpoints prevent overactivation of cytotoxic T cells,

ensuring that self-tolerance is maintained. PD-L1 for instance,

dampens T cell cytotoxicity through interaction with PD-1

expressed by T cells. This regulatory function is controlled by

immune cells but can also be mediated in immune-privileged

tissues such as the lung, liver, and placenta (81). Cancer cells

exploit immune checkpoints by upregulating inhibitory signals

such as PD-L1 (interacting with PD-1 (82) and CD80 (interacting

with CTLA-4 (83)) to evade immune destruction and create an

immunosuppressive tumor microenvironment. By inhibiting these

pathways, ICIs enhance T cell recognition of cancer cells, but also

increase the risk of autoimmunity, particularly in individuals with a

history of autoimmune disorders (84, 85).

Several irAEs observed in ICI-treated patients overlap with

AMPS; disorders like myositis, encephalitis, SSc, and MG are

among the most prevalent overlapping conditions. While clinical

similarities suggest that ICI treatment could increase the risk of

developing AMPS, there are many contrasting features between

them. For example, a systematic review by Buckley et al. (2025) on

ICI-related encephalitis, found that only 46.9% of cases were

autoantibody-positive (86), different from AMPS cases, where

autoantibodies are significantly more frequent (100% in SCLC

paraneoplastic encephalitis (42), 75% in general paraneoplastic

encephalitides (87)). Similarly, in Hamada et al. (2021), only 67%
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of ICI-related MG cases were positive for any MG-related

autoantibody (88) compared to over 95% in thymoma MG (89).

A similar trend of seronegative cases has been noted in ICI-related

SSc (90).

While seropositive irAEs seem to be a case where ICIs facilitate

development of AMPS, a significant proportion of irAE cases are

seronegative and appear to have mechanistic differences, where T

cell cytotoxicity is the main driver of autoimmunity. Whether these

autoreactive T cells are expanded through antitumor immunity, as

observed in AMPS, remains to be explored.

Given the high prevalence of severe irAEs of ICI-treated

patients (20% (91)), predictive screening tools could help

physicians tailor treatment strategies to individual patients.

Biomarkers such as blood counts, autoantibodies, HLA genotype,

and microRNA expression profiles have been identified as

prognostic and diagnostic tools in autoimmune diseases (92).

Several studies suggest that pre-existing autoantibodies may

indicate an increased risk of developing irAEs following ICI

therapy (93, 94). Screening for autoantibodies before initiating

ICI therapy could help classify patients based on their likelihood

of developing severe irAEs, enabling safer and personalized

treatment approaches.
4 Chronic inflammation and localized
tolerance breaks

While the presence of autoantibodies is a hallmark of AMPS,

not all patients with detectable autoantibodies develop autoimmune

symptoms. This discrepancy suggests that additional factors, such

as chronic inflammation and localized immune responses within

the TME, may determine whether autoimmunity manifests

systemically. Understanding these factors is critical for

understanding the connection between antitumor immunity and

autoimmune pathology.

The disorders summarized earlier demonstrate that AMPS

patients harbor autoantibodies capable of inducing immune

responses with both cancer-resolving and autoimmune

consequences. However, it remains unclear why some patients

with autoantibodies benefit from a stronger antitumor response

without developing systemic autoimmunity. This observation

points to the importance of additional immune triggers beyond

humoral activity in the development of AMPS.

Strong antitumor responses, a common feature of AMPS

patients, are often accompanied by the presence of tertiary

lymphoid structures (TLS) within the chronically inflamed TME

(95). TLS are organized immune cell aggregates comprising T cells,

B cells, dendritic cells, and macrophages. Functionally resembling

secondary lymphoid organs (SLO), TLS promote antigen

presentation, B cell priming, and T cell activation (96). In some

AMPS cases, the autoimmune response is mediated entirely within

the tumor. For example, Al-Diwani et al. (2022) observed that ex

vivo cultures of B cells dissociated from ovarian teratomas

generated anti-NMDAR antibodies, while B cells from cervical

lymph nodes did not produce autoantibodies after tumor
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resection. This finding supports the idea that autoimmunity is

initiated within the tumor-associated TLS (61). Similarly, Mazor

et al. (2022) demonstrated that tumor-specific B cells are primed

and clonally expanded within the tumor, often originating from

naturally occurring self-reactive B cells (97). T cells can also expand

and generate antitumor responses within the TLS (98). These

findings suggest that TLS facilitate localized antitumor immunity,

allowing B and T cells to target self-antigens without eliciting

systemic autoimmunity.

This localized immune activity aligns with the observed

improved patient prognosis in the presence of TLS (99, 100).

Many AMPS cases reviewed here, such as anti-NMDAR

encephalitis and anti-Yo cerebellar degeneration, involve highly

infiltrated tumors (60, 68, 69). TLS-mediated immunity represents a

controlled break in immune tolerance, enabling effective clearance

of malignant cells. While circulating autoantibodies are detectable

in patient serum, T cells are typically confined to the tumor. A

breach in this localization (where T cells migrate from the tumor

into circulation) could be the defining trigger for systemic AMPS.

Activated T cells tend to accumulate in inflamed tissues due to

retention signals such as the chemokine CXCL10 (101). In the

absence of systemic inflammation or additional chronic

inflammatory events, these T cells are unlikely to enter the

bloodstream. However, in cases of invasive cancers with high
Frontiers in Immunology 06
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inflammation at the tumor periphery may promote signals that

induce T cell migration. This process could extend the anti-self

immune response to healthy tissues, contributing to the onset of

paraneoplastic syndromes (Figure 1).

Recent studies suggest that a humoral immune response alone is

insufficient to trigger autoimmune symptoms but rather serves as a

marker of broken self-antigen tolerance. For instance, in

paraneoplastic SSc (66) and anti-Yo-related paraneoplastic

cerebellar degeneration (68, 69), the majority of patients exhibited

highly invasive or early metastatic malignancies. This suggests that

the expansion of an immune response beyond the tumor, driven by

T cell migration, could trigger autoimmune disorders. In contrast,

patients with autoantibodies but no paraneoplastic symptoms often

have a better prognosis, indicating that localized breaches in self-

tolerance, mediated by TLS in the TME, serve as a controlled

mechanism for combating malignancy.

A break in localized self-tolerance may be the defining trigger

for paraneoplastic syndromes. This could explain the high

specificity but low sensitivity of autoantibody markers; only a

subset of autoantibody-positive patients, presumably those with T

cell extravasation into the bloodstream due to extended

inflammation, develop paraneoplastic features. Tumor-associated

TLS are linked with better prognosis and higher immune
FIGURE 1

Overview of the pathogenesis of autoimmune-mediated paraneoplastic syndromes. 1. Immune recognition of a tumor occurs through (A) antigen
overexpression, (B) altered protein structure, or (C) ectopic antigen expression, initiating an immune response and promoting inflammation. 2.
Chronic inflammation within the tumor microenvironment supports the formation of tertiary lymphoid structures (TLS). 3. As the TLS matures, it
facilitates the activation of autoreactive tumor-targeting T cells and autoantibody-producing plasma cells, leading to a highly infiltrated tumor. 4a. A
robust immune response successfully eliminates the tumor without triggering autoimmune symptoms. While autoantibodies remain detectable in
circulation, autoreactive B and T cells remain localized within the tumor microenvironment. 4b. In contrast, remote inflammatory events can recruit
T cells, promoting the extravasation of autoreactive T cells. Once in circulation, these T cells can recognize and attack healthy tissues, leading to
autoimmunity. Created in BioRender. Perez Bucio, (C) (2025) https://BioRender.com/x3cnql9.
frontiersin.org
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infiltration, underscoring their role in cancer immunity. Treatment

with ICIs can also facilitate the development of autoimmunity

through mechanisms that are often independent of autoantibodies.
5 Conclusion

The roles of autoantibodies and T cell autoreactivity in cancer-

related autoimmunity remain incompletely understood, as

preclinical and clinical data are still limited. A deeper

understanding of AMPS could help us clarify the intersection of

TLS biology, immune tolerance, and cancer immunity. Resolving

how loca l i zed immune responses wi th in the tumor

microenvironment contribute to either paraneoplastic syndromes

or effective tumor resolution may uncover novel therapeutic targets

and biomarkers. The similarities between AMPS and ICI-induced

irAEs evidence the complex balance between antitumor activity and

autoimmunity, highlighting the need for personalized approaches

to cancer immunotherapy. Future research focused on unraveling

the mechanisms underlying TLS formation, T cell migration, and

systemic immune tolerance breaks, will enable a deeper

understanding of these processes and will improve both cancer

treatment and the management of autoimmune complications.
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