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based processes gene expression
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and its predictive value for drug
response in oestrogen receptor-
positive breast cancer
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Ming Shan1, Guoqiang Zhang1* and Feng Liu1*

1Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin,
Heilongjiang, China, 2Department of Oncology, Chifeng Municipal Hospital, Chifeng, China,
3Department of Medical Training, Aimiker Technology Development Co., Ltd., Nanjing, Jiangsu, China,
4Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
Objective: The development of acquired endocrine resistance and reduced

chemosensitivity in oestrogen receptor-positive (ER+) breast cancer presents

significant challenges. Microtubule-based process-related genes (MBPRGs) play

essential biological roles in the cell cycle and the development of migration. This

study aimed to establish a novel prognostic signature based on MBPRGs to

improve patient outcomes and offer additional treatment options for those with

ER+ breast cancer.

Methods: Clinical data along with relevant RNA information with ER+ breast

cancer were sourced from The Cancer Genome Atlas and the Molecular

Taxonomy of Breast Cancer International Consortium. Consensus clustering

was subsequently utilised to identify new molecular subgroups. Evaluations of

the tumour immune microenvironment and immune status of these subgroups

were performed via ESTIMATE, CIBERSORT, MCP, and ssGSEA. Additionally,

functional analyses were conducted to investigate the underlying mechanisms

involved. Prognostic risk models were developed via random forest, support

vector machines and the least absolute shrinkage and selection operator

algorithm. Single-cell analysis revealed differences in the expression levels of

key genes among various cell types. Western blotting was used to measure

protein levels in breast cancer cell lines. Immunohistochemical staining was used

to assess protein expression in paraffin-embedded tissues, and Kaplan–Meier

survival curves were generated to evaluate survival differences between the high-

and low-expression groups of key genes. Transwell and cell viability assays were

used to examine the biological functions of CHORDC1.

Results: Two molecular subgroups with significantly different survival outcomes

were identified. Longer survival was linked to a high immune score, low tumour

purity, a greater presence of immune infiltrating cells, and an overall positive

immune status. Risk models derived from MBPRGs exhibited strong potential for
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predicting survival in patients with ER+ breast cancer. Key genes had elevated

protein levels in differentiated breast cancer cell lines, and elevated CHORDC1

expression was linked to a tendency towards a worse outcome in patients with

ER+ breast cancer. Silencing CHORDC1 inhibited cell viability and invasion,

reducing sensitivity to tamoxifen and paclitaxel in vitro.

Conclusion: MBPRG expression is linked to the immune microenvironment and

drug resistance in ER+ breast cancer patients, providing a reliable prognostic

indicator for this group.
KEYWORDS

ER+ breast cancer, microtubule-based processes, immune microenvironment, drug
resistance, prognosis
Introduction

Breast cancer (BC) is one of the most prevalent cancers affecting

women globally and represents a significant health concern because

of its high rates of morbidity and mortality (1). In the United States,

300,590 new breast cancer cases were documented in 2023, with

approximately 80% classified as oestrogen receptor-positive (ER+)

(2). The standard treatments for these patients are endocrine

therapy and chemotherapy. However, individuals with ER+ breast

cancer tend to exhibit lower sensitivity to chemotherapy than those

with oestrogen receptor-negative breast cancer (3). While many ER

+ tumours initially respond well to antioestrogens, resistance can

develop over time, leading to clinical relapses that are often

associated with genetic and epigenetic changes that reactivate ER

signalling pathways. This highlights the urgent need to identify

more effective therapeutic targets (4).

Microtubules, which are tubular structures formed from

tubulin proteins, are essential for various cellular functions and

are integral components of the cytoskeleton (5). Microtubule-

based process-related genes (MBPRGs) play significant roles in

key cellular activities, including cell division, motility, maintenance

of cell shape, signalling, and intracellular transport (6).

Additionally, MBPRGs are involved in cancer-related processes

such as mitosis and cellular migration, thereby contributing to

tumour progression and metastasis. They also play a role in

signalling pathways that are crucial for cancer cell survival,

apoptosis, and responses to stress (7–9). A range of microtubule-

targeting agents, including taxanes and colchicine, have been

developed and are widely used as first-line treatments for cancer,

significantly increasing patient survival rates. One study revealed

the potential of podofilox, a microtubule destabiliser, as an effective

cGAMP-STING signalling pathway enhancer for antitumour

activity (10). In addition, microtubule-associated genes have

already shown great potential as biomarkers in lung cancer and

osteosarcoma (11, 12). The potential of microtubules as therapeutic

targets in oncology is well established.
02
In recent years, genomic expression profiling has emerged as an

essential method for predicting survival outcomes in cancer

patients. Many studies have concentrated on prognostic

signatures associated with factors such as autophagy (13) and

hypoxia (14) in breast cancer, especially in subtypes such as

triple-negative (15) and HER2-positive cancers (16). Nonetheless,

there has been insufficient research examining the prognostic

relevance of microtubules in the treatment and outcomes of

breast cancer.

This study aimed to analyse differentially expressed MBPRGs

using data from The Cancer Genome Atlas (TCGA) to uncover

their enriched pathways and potential biological roles. We

developed a model comprising three MBPRGs through multiple

Cox regression analyses and performed stratified analyses on

various subgroups. Furthermore, we employed the Molecular

Taxonomy of Breast Cancer International Consortium

(METABRIC) datasets for external validation. Our study also

explored the associations between the protein expression levels of

MBPRGs and different clinicopathological factors and outcomes in

patients with ER+ breast cancer. In summary, our results suggest

that MBPRGs play important roles in ER+ breast cancer and may

act as prognostic biomarkers and therapeutic targets.
Materials and methods

Data collection and preliminary processing

Clinical data and RNA sequencing information were retrieved

from both the TCGA and METABRIC databases. The RNA

profiling data for the TCGA cohort were in the form of FPKMs.

METABRIC’s RNA profiling data are in the form of microarray

data at log intensity levels. The inclusion criteria were as follows: (a)

samples confirmed as ER+ breast cancer; (b) samples with

corresponding clinical data and gene expression profiles; and (c)

samples that included thorough clinical information, such as
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survival duration, survival status, age, and treatment protocols. The

exclusion criteria included (a) samples from normal tissues; (b)

samples lacking complete clinical data; and (c) samples in which

more than 50% of the genes lacked expression values. In total, 803

samples from the TCGA database were set aside as the training

cohort, while 1,444 samples from the METABRIC database were

merged to create the validation cohort. Datasets of 948 MBPRGs

were obtained from the MSigDB database (http://www.hmdb.ca).
Determination of molecular subgroups and
evaluation of the tumour immune
environment

Initially, a total of 120 genes associated with the survival of ER+

breast cancer patients were identified via univariate Cox regression

analysis using the R package “survival”. Consensus clustering was

conducted with the R package “ConsensusClusterPlus,” utilising the

expression matrix of these 120 genes. The immune and stromal

scores for ER+ breast cancer patients from TCGA were determined

using the ESTIMATE algorithm (17), which reflects the presence of

gene signatures associated with immune and stromal cells. The

CIBERSORT algorithm (18) was utilised to assess the relative

abundance of tumour-infiltrating immune cells within the tumour

samples. The MCP score (19) provides absolute abundance estimates

for eight primary immune cell types. The presence of 28 distinct types

of infiltrating immune cells in tumour samples was assessed using

single-sample gene set enrichment analysis (ssGSEA).
Enrichment analysis

The R package ‘Limma’ was used to identify differentially

expressed genes (DEGs) between the two clusters. The criteria for

identifying DEGs were a fold change of at least ±1.5 and a p value of

less than 0.05 (20). The “clusterProfiler” R package was used to

perform Gene Ontology (GO) and KEGG pathway enrichment

analyses on these DEGs, with a significance threshold of P < 0.05.

The outcomes were illustrated through histograms, bubble charts,

and circular plots created with the “enrichplot” and “ggplot2” R

packages. Furthermore, gene set enrichment analysis (GSEA) was

performed to explore the distinctions between the clusters using the

same dataset.
Development and verification of the
prognostic signature based on MBPRG

Prognostic indicators grounded in MBPRG were devised and

authenticated via three machine learning approaches: least absolute

shrinkage and selection operator (LASSO) regression (21), random

forest (RF) (22), and support vector machines (SVMs) (23). These

techniques were employed to pinpoint essential genes from the

most prominent gene clusters chosen through univariate Cox

regression analysis. LASSO Cox regression allowed us to evaluate
Frontiers in Immunology 03
variations in regression coefficients for the pertinent genes, with the

ideal parameter l established through 10-fold cross-validation

utilising the R package glmnet. In the end, we chose genes on the

basis of lambda.min and illustrated coefficient shrinkage for LASSO

Cox regression using plots from R packages. The RF approach

utilised the “Random Forest” R package to assess the importance of

the key genes identified via univariate Cox regression analysis. SVM

functions as a supervised machine learning method for tasks

involving regression or classification. The SVM method trains a

subset of features from various groups to refine the feature set and

identify the most important features. The risk score for every

patient in the training and validation cohorts was computed via

the following formula: risk score = (0.2745 * CHORDC1) + (1.0279

* WNT3A) + (0.4771 * MECP2). Patients were subsequently

divided into high-risk and low-risk categories according to the

median value. To evaluate the model’s stability and applicability in

predicting overall survival (OS), we conducted univariate and

multivariate Cox regression analyses, receiver operating

characteristic (ROC) curve analysis, and Kaplan–Meier (K–M)

analysis (24). Additionally, genomic data from the Genomics of

Drug Sensitivity in Cancer database were utilised to predict the

chemosensitivity of the enrolled breast cancer patients. The half

maximal inhibitory concentration (IC50) values were computed via

the “pRRophetic” package to represent the drug response of patients

in different risk score categories.
Development and evaluation of
microtubule-based process-related
clinicopathologic nomograms

Cox regression models were utilised to identify univariate

prognostic features. A new nomogram based on microtubule-

related processes was created, incorporating the risk score along

with four clinical variables (age, clinical stage, and whether to use

chemotherapy or endocrine therapy) using data from the TCGA

cohort, utilising the “regplot” and “rms” R packages. Calibration

curves for 3-year and 5-year OS were produced to evaluate the

precision of our nomograms. To delve deeper into the clinical

significance of the risk scores, box plots based on the results of the

Wilcoxon test were created to demonstrate the differences in risk

scores among various clinicopathological factors.
Single-cell RNA sequencing analysis

Three ER+ breast cancer (GSM4909299, GSM4909317, and

GSM4909319) single-cell RNA sequencing samples were sourced

from GSE161529. The Seurat package was subsequently used to

refine the scRNA-seq data, selecting cells of higher quality.

Normalisation was carried out via the “normalizedata” function

in the Seurat R package. Principal component analysis (PCA) was

conducted via the “RunPCA” function in Seurat, focusing on the

top 2000 genes to reduce data dimensionality. The cells were

grouped and characterised with the “FindNeighbors” and
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“FindClusters” functions at a resolution of 1. Cell type annotation

was performed with the singleR package, and the reference dataset

was the Human Primary Cell Atlas (25). The resulting clusters were

visualised in two dimensions using the “RunTSNE” and

“RunUMAP” functions. Additionally, the “Monocle 2” package

was used to predict possible lineage differentiation trajectories.

We employed the R package CytoTRACE to compute the

CytoTRACE score specifically for cancerous cells to forecast their

relative differentiation states on the basis of single-cell

transcriptomic data (26).
Cell culture

The human oestrogen receptor-positive breast cancer cell line

MCF-7 and T47D, the triple-negative breast cancer cell line SUM-

159PT, the HER2-positive breast cancer cell line UACC812, and the

normal human epithelial breast cell line MCF-10A were obtained

from Procell Life Science & Technology Co., Ltd. (Wuhan, China).

MCF-7, T47D, and MCF-10A cells were cultured in DMEM

(Gibco) supplemented with 10% FBS (Gibco) and 10 U/mL

penicillin–streptomycin (Gibco). SUM-159PT and UACC-812

cells were grown in RPMI 1640 medium (Sigma–Aldrich, St.

Louis, MO, USA). All of the cells were cultured at 37°C in an

environment containing 5% CO2.
Western blots

Total protein was isolated from the cell lines using RIPA lysis

buffer supplemented with protease inhibitors. Equal quantities (30 mg)
of protein samples were separated using 12% and 8% sodium dodecyl

sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and

subsequently transferred to polyvinylidene fluoride (PVDF)

membranes (Millipore, USA). The membranes were incubated

overnight at 4°C with specific primary antibodies. The following

day, the membranes were washed and then incubated with secondary

antibodies conjugated to horseradish peroxidase. The PVDF

membranes were then exposed to enhanced chemiluminescence

(ECL) reagent (Meilunbio, CN) to visualise the positive bands.

Anti-CHORDC1 antibody (1:4000), anti-WNT3A antibody

(1:1000), anti-MECP2 antibody (1:4000), and anti-b-actin antibody

(1:5000) were obtained from Proteintech (Wuhan, CN). The protein

product of the CHORDC1 has a molecular weight around 37 kDa.

However, the molecular weight of WNT3A, MECP2 and b-actin were
at 42 kDA, 75 kDa and 42 kDA, respectively.
Immunohistochemistry

From Harbin Medical University Cancer Hospital, we acquired

formalin-fixed, paraffin-embedded tissue sections from 50

individuals with ER+ breast cancer who underwent surgery

between March 2013 and June 2022. Following surgery, patients

received endocrine therapy and chemotherapy. Disease-free
Frontiers in Immunology 04
survival (DFS) refers to the duration from diagnosis until the first

occurrence of cancer recurrence, the development of a second

cancer, or death from any cause. Overall survival (OS) was

defined as the time elapsed from the diagnosis of breast cancer to

death from any reason. Sample collection and clinicopathologic

data were obtained after informed consent and ethics committee

approval were obtained. The formalin-fixed and paraffin-embedded

sections were deparaffinised with xylene and ethanol, followed by

washing with distilled water. The sections were pretreated with

EDTA Target Retrieval Solution at 120°C, pH 8.0, for 3 minutes in a

pressure cooker, and to inhibit endogenous peroxidase activity, a

solution of 3% H2O2 in PBS was applied for 10 minutes.

Nonspecific binding was mitigated by incubating the sections

with goat serum for 1 hour. Next, the sections were incubated

with primary antibodies overnight at 4°C and then incubated with

secondary antibodies for 30 minutes at 37°C. The primary antibody

used was CHORDC1, while the secondary antibody was goat anti-

rabbit IgG. Colour development was achieved through

diaminobenzidine (DAB) sta in ing . Two pathologis ts

independently assessed all of the samples without bias and

evaluated the percentage of positively stained membranes.

Written informed consent was obtained from each patient.
Transient transfection

siRNAs were obtained from Sangon Biotech Co., Ltd. in

Shanghai, PR China. MCF-7 cells were seeded in a six-well plate

at approximately 50% confluency, after which the medium was

replaced with 1.5 ml of 10% culture medium free from penicillin

and streptomycin. A mixture consisting of 200 µl of jetPRIME®

buffer, 5 µl of siRNA, and 4 µl of jetPRIME® reagent was added.
Cell viability assay

Cell proliferation was assessed via the 3-[4,5-dimethylthiazol-2-

yl]-2,5-diphenyl tetrazolium bromide (MTT) and 5-ethynyl-2-

deoxyuridine (EDU) assay. The cells were plated in 96-well plates

in medium supplemented with 10% FBS, with approximately 2000

cells per well, 24 hours posttransfection. To assess cell viability,

cultures were stained with the MTT solution four days later. The

absorbance was recorded at 492/562 nm with the help of a

microplate reader. For EDU experiments, approximately 5×10⁵

cells were collected, enumerated, and placed into 24-well cell

culture plates for a 24-hour period. Subsequently, after the

introduction of 10 mM EDU (Beyotime, China), the cells were

further incubated for an additional 2 hours. Following this, the cells

underwent washing with PBS, fixation using 4% formaldehyde for

15 minutes, and permeabilisation with 0.5% Triton X-100 for 10

minutes. Then, the cells were subjected to treatment with 200 ml of
1×Click Additive Solutionl for 30 minutes at room temperature in

the absence of light. The DNA was subsequently stained with 200 ml
of 1×Hoechst 33342 for 10 minutes under the same conditions.

Finally, the cells were visualised using a laser scanning confocal
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microscope (FV-1000; Olympus), and the number of positive cells

in five randomly selected fields was determined.
Cytotoxicity assay

MCF7 cells were cultured for 24 hours, followed by the addition

of varying concentrations of paclitaxel (0, 5, 10, 15, 20, or 25 nM)

and tamoxifen (0, 2, 5, 20, 50, or 100 mM) for 48 hours. Next, 20 ml
of MTT was added to each well and incubated for an additional 4

hours before the absorbance was measured at 492/562 nm.
Transwell assays

To the lower Transwell chambers with or withoutMatrigel, 800 ml
of medium supplemented with 10% FBS was added. For the migration

assay, MCF7 cells (5×10^4) were placed into the upper Transwell

chambers and incubated for 24 hours. Invasion assay, however,MCF7

cells (10×10^4) were placed into the upper Transwell chambers and

incubated for 48 hours. After being stained with crystal violet for 30

minutes, the chambers were examined with an inverted microscope at

a magnification of 100× to count the cells that had migrated into the

lower chambers. The overall data analysis process is illustrated in

Supplementary Figure S1.
Statistical analysis

Statistical evaluations were conducted using R (version 3.6.1).

To analyse multiple data groups, we employed analysis of variance

(ANOVA), followed by either Student’s t test or the Wilcoxon rank

sum test for pairwise comparisons. A p value less than 0.05 was

considered statistically significant.
Results

Identification of molecular subgroups and
TIME evaluation

In total, 803 ER+ breast cancer patients were analysed to

identify two molecular subtypes based on MBPRG. Univariate

Cox analysis revealed that 120 MBPRGs were strongly associated

with OS (P < 0.05, Supplementary Table S1). Unsupervised

consensus clustering was subsequently utilised to investigate

microtubule-based process-related patterns in ER+ breast cancer,

guided by the expression profiles of the 120 survival-associated

MBPRGs. When K = 2 (Figures 1A–C), the optimal cluster stability

was assessed from the unsupervised clustering results of the training

cohorts. In this analysis, 397 patients were categorised into cluster 1,

whereas 406 patients were included in cluster 2. A heatmap

illustrated the expression levels of MBPRGs across the two

subtypes (Figure 1D), revealing significant differences in

expression between clusters 1 and 2. Furthermore, patients in
Frontiers in Immunology 05
cluster 2 demonstrated better overall survival than those in cluster

1 did (P = 6.1e-5, HR = 0.49, 95% CI = 0.32–0.74, Figure 1E). These

results suggest that MBPRGs successfully classify ER+ breast cancer

patients into two molecular subtypes, each of which is associated

with distinct overall survival outcomes.
Patients with these two molecular
subtypes present varying TIME and
immune profiles

We subsequently conducted immune analyses to investigate the

immune variations between the two molecular subtypes. The

ESTIMATE algorithm (Figure 2A) indicated that ER+ breast

cancer patients in cluster 2 had notably higher immune scores

(P <0.0001) and ESTIMATE scores (P <0.0001) and higher stromal

scores (P <0.001) than those in cluster 1 did. We assessed the

differences in the levels of 22 immune cell types between the two

clusters using the CIBERSORT algorithm (Figure 2B). Patients in

cluster 2 presented increased levels of naive B cells, memory B cells,

plasma cells, CD8+ T cells, regulatory T (Treg) cells, resting NK cells,

activated memory NK cells, and neutrophils, whereas M2

macrophages, resting memory CD4+ T cells, and activated memory

CD4+ T cells were less abundant than those in cluster 1. We also

examined the differences in the MCP scores between the two groups

(Figure 2C), employing the MCP-counter algorithm to quantify the

absolute abundances of fibroblasts, endothelial cells, and eight

different types of immune cells with transcriptomic data. The

numbers of cell types that promote immune responses, such as

CD8+ T cells, T cells, cytotoxic lymphocytes, B lineage cells,

neutrophils and myeloid dendritic cells, were significantly greater

in cluster 2, and the absolute abundances of the other two stromal

cells, including fibroblasts and endothelial cells, were also significantly

greater in cluster 2. Finally, the immune landscape assessed by the

ssGSEA algorithm significantly differed between clusters 1 and 2, with

cluster 1 exhibiting a relatively low immune status. Statistical analysis

revealed that 26 other cell types in cluster 2 were significantly more

abundant than those in cluster 1, except for activated CD4 T cells,

effector memory CD4 T cells, gamma delta T cells, memory B cells,

regulatory T cells, and type 2 T helper cells (Figure 2D). These results

underscore the notable differences in the TIME and immune profiles

between the two molecular subtypes.
DEG and functional analysis

We detected DEGs between the two clusters and performed

functional analysis to explore potential signalling pathways. A total

of 1,026 DEGs were identified, comprising 699 genes whose

expression was downregulated and 327 genes whose expression

was upregulated in cluster 1 relative to that in cluster 2 (Figure 3A).

GO enrichment analysis indicated that the overlapping genes

influenced biological functions related primarily to immune

system processes, defence responses, supramolecular fibre

organisation, and the adaptive immune system (Figure 3B).
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Similarly, KEGG enrichment analysis revealed several signalling

pathways linked to drug resistance, including the ribosome,

phagosome, oestrogen signalling pathway, and endocrine

resistance (Figure 3C). Additionally, GSEA revealed significant

differences in pathways such as ubiquitin-mediated proteolysis,

drug metabolism via cytochrome P450, and metabolism of

xenobiotics by cytochrome P450 between the two groups

(Figures 3D–F). Abnormalities in the ubiquitin system may be

involved in disease progression by regulating oncoprotein

degradation or stress response, while changes in the P450

pathway suggest an imbalance between drug metabolism capacity

and xenobiotics detoxification function. Collectively, these results

indicate that the expression of MBPRGs is linked to immune
Frontiers in Immunology 06
responses and drug resistance, which may play a role in the

unfavourable prognosis observed in ER+ breast cancer patients.
Establishment of the MBPRG-based risk
model for the training cohort

The risk signature model was designed to assess the prognostic

predictive potential of MBPRGs in ER+ breast cancer. LASSO

analysis was used to select candidate genes for the risk model,

resulting in 37 genes being filtered on the basis of the optimal l
value (Figure 4A). The RF algorithm further assessed the

significance of these genes, ranking a total of 120 genes. From
FIGURE 1

Consensus cluster. (A–C) K = 2 was identified the optimal value for consensus clustering, (D) Heatmap visualising the expression of microtubule-
based process-related genes in the two subgroups, (E) Survival curve of the patients in the two subgroups.
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this ranking, we identified the top twenty most critical genes

(Figure 4B). Additionally, a machine learning method that

employed SVM offered insights into the top nine most significant

genes (Figure 4C). Using genes identified through LASSO analysis,

RF, and SVM, three genes—CHORDC1, WNT3A, and MECP2—

were incorporated into a hazard model (Figure 4D). This risk

model, constructed as outlined in the Methods, effectively

categorised ER+ breast cancer patients into high-risk and low-risk

categories (P = 2.0e-5, HR = 0.41, 95% CI = 0.27–0.62; Figure 4E).

To validate the model, ROC curves exhibited strong performance,
Frontiers in Immunology 07
and time-dependent ROC analysis indicated significant predictive

ability over a five-year period, reflected by AUC values of 0.67, 0.74,

and 0.74 for one, three, and five years, respectively (Figure 4F).

Furthermore, the ESTIMATE algorithm was applied to assess the

TIME across the two groups, suggesting that the immune score (P

<0.01) and ESTIMATE score (P <0.05) were considerably greater in

the low-risk group than in the high-risk group. (Figure 4G). In

conclusion, machine learning-based risk models have strong

prognostic potential in ER+ breast cancer patients and are

significantly associated with the TIME.
FIGURE 2

Immune analyses in the two clustered subgroups. (A) Stromal score, immune score, ESTIMATE score calculated by ESTIMATE algorithm, (B) abundance
of tumour immune infiltrating cells evaluated by CIBERSORT algorithm, (C) abundance of eight major immune cell types evaluated by MCP algorithm
(D) abundance of 29 immune related cells evaluated by ssGSEA algorithm. - not available; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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Independence of the developed risk model

Additionally, we examined the relationships between the risk

scores and clinical features, evaluating the independence of our risk

models via subgroup and regression analyses. When we categorised

primary tumour size into cT1 versus cT2-4 (P <0.05, Figure 5A) and

clinical stage into cStage I-III versus cStage IV (P <0.05, Figure 5B).

We also analysed how the correlation of the risk score with

prognosis varied across various treatment regimens. The risk

scores effectively distinguished between ER+ breast cancer

patients undergoing chemotherapy (P = 7.5e-3, HR = 2.99, 95%

CI = 1.29–6.93, Figure 5C) and those receiving endocrine therapy

(P = 2.6e-4, HR = 4.23, 95% CI = 1.82–9.82, Figure 5D). Further
Frontiers in Immunology 08
analysis of the endocrine therapy subgroup revealed significant

associations between the risk score and prognosis for patients

treated with AI (P = 2.8e-4, HR = 4.21, 95% CI = 1.81–9.78,

Figure 5E) and tamoxifen (P = 8.0e-3, HR = 4.86, 95% CI = 1.33–

17.68, Figure 5F). Univariate and multivariate Cox regression

analyses (Figures 5G, H) confirmed that the risk score served as

an independent prognostic indicator for patients with ER+ breast

cancer, highlighting the robustness of the constructed model.

Finally, we examined differences in chemosensitivity among ER+

breast cancer patients across various risk score groups. The results

indicated that low-risk patients were particularly sensitive to 5-

fluorouracil, paclitaxel, methotrexate, and cisplatin (Figures 6A–D),

whereas high-risk patients showed heightened sensitivity to
FIGURE 3

Differentially expressed genes (DEGs) analysis and functional analyses. (A) Volcano plot showing the DEGs between the two subgroups, (B) circle plot
and network visualising the biological processes enriched by gene ontology (GO) analysis, (C) bubble diagram showing the signalling pathways
enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, (D–F) GSEA plots visualising the result of GSEA analysis. DEGs, differentially
expressed genes; GSEA, gene set enrichment analysis.
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doxorubicin (Figure 6E). These findings will be instrumental in

developing personalised treatment strategies for ER+ breast

cancer patients.
Construction and calibration of an
integrated nomogram

We developed nomograms that combine risk models with

clinical characteristics to increase the precision of survival

prediction for ER+ breast cancer patients, as indicated by the

multivariate Cox regression results. The nomograms, illustrated in

Figure 7A, assign specific scores based on risk factors and

pathological features relevant to the prognosis of ER+ breast

cancer patients. We then validated these nomograms in both the

training and validation cohorts. The diagnostic metrics for the
Frontiers in Immunology 09
nomogram, including the C-index and calibration curves, indicated

satisfactory accuracy, with the C-index for the training cohort

reaching 0.7786 (95% CI: 0.7156–0.8416). The observed overall

survival closely matched the actual survival rates at 3 and 5 years in

the training cohort (Figures 7B, C), and similar findings were noted

in the validation cohort (Figures 7D, E). These findings highlight

that comprehensive nomograms can reliably predict the survival of

ER+ breast cancer patients.
ScRNA-seq analysis of key genes

To investigate the differential expression of key genes across

various cell types, we performed scRNA-seq analysis on ER+ breast

cancer samples. After processing the data, we acquired gene

expression profiles from 6,195 cells across three ER+ breast
FIGURE 4

Construction of risk model in the training cohort. (A) Fine-tuning the least absolute shrinkage and selection operator (LASSO) model’s feature
selection. (B) Random forest (RF) for the relationships between the number of trees and error rate and top 20 genes identified in the RF algorithm.
(C) A plot illustrating the process of selecting biomarkers using the support vector machine (SVM) technique (D) Venn diagram showing the central
genes identified by machine learning. (E) Survival curve of the ER+ breast cancer patients in the two groups. (F) Time-dependent ROC curve of the
risk model. (G) Stomal score, immune score, ESTIMATE score and calculated by ESTIMATE algorithm. - not available; *p<0.05; **p<0.01. ER+,
oestrogen receptor-positive.
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cancer samples for further analysis. We applied PCA to reduce the

dimensionality (Figure 8A), selected 2,000 variable genes, and

identified 18 distinct cell clusters via Seurat (Figure 8B). The

singleR package facilitated cell type annotation, revealing nine

different cell types. Specifically, clusters 5 and 18 were identified

as macrophages, cluster 10 as monocytes, and cluster 14 as

fibroblasts (Figure 8C). Pseudotemporal analysis was used to

simulate the developmental paths of various cells on the basis of

the expression of temporal genes within single-cell samples. The
Frontiers in Immunology 10
results revealed a temporal sequence of differentiation, where darker

cells transitioned into lighter ones (Figures 8D, E), indicating that

macrophages and monocytes represent the final stages of

differentiation. The CytoTRACE scores vary from 0 to 1, where

higher values signify greater stemness (lower levels of

differentiation) and vice versa. Additionally, the CytoTRACE

score exhibited significant heterogeneity among tumour cells

(Figure 8F). We determined the expression profiles of three key

genes in various cell types: CHORDC1 was expressed
FIGURE 5

Association of risk score and clinical characteristics. Significant difference was identified in patients with different tumour size (A), clinical stage (B).
Survival curve of patients treated with chemotherapy (C), endocrine therapy (D), AI (E) and tamoxifen (F). Univariate(G) and multivariate (H) Cox
analyses of clinicopathologic factors and the risk score in ER+ breast cancer patients in the TCGA cohort. * p<0.05. AI, aromatase Inhibitors; ER+,
oestrogen receptor-positive; TCGA, The Cancer Genome Atlas.
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predominantly in macrophages, monocytes, and endothelial cells;

MECP2 was expressed primarily in macrophages, monocytes, and

fibroblasts; WNT3A was lower than CHORDC1 and MECP2 at the

overall single-cell level, and its predominant expression was

observed in fibroblasts and monocytes. (Figures 8G–J).
Validation of differentially expressed
MBPRGs in clinical samples and cell
models

To further assess the credibility of the prognostic models related

to microtubule-based processes, we first measured the protein levels

of three hub genes via Western blotting in various breast cancer cell

lines alongside the normal breast epithelial cell line MCF-10A.

CHORDC1 was highly expressed in T-47D, MCF-7, and UACC-

812 cells but expressed at low levels in MCF-10A and SUM159-PT

cells (Figure 9A). MECP2 was highly expressed in SUM159-PT, T-

47D, and MCF-7 cells but was expressed at lower levels in MCF-

10A and UACC-812 cells (Figure 9B). WNT3A was predominantly

expressed in T-47D and MCF-7 cells, with lower levels in MCF-

10A, SUM159-PT, and UACC-812 cells (Figure 9C).

Since MECP2 and WNT3A have been well researched in breast

cancer, we sought to explore CHORDC1 expression in ER+ breast

cancer patients receiving endocrine therapy and chemotherapy. We

randomly selected 50 early-stage ER+ breast cancer patients from

HarbinMedical University Cancer Hospital for immunohistochemical

analysis. The patients’ ages varied from 32 to 75 years, with a median

age of 50 years, with pTNM stages I, II, and III comprising 9 (18.0%),

30 (60.0%), and 11 (22.0%) patients, respectively. Among these
Frontiers in Immunology 11
patients, 12 (24.0%) were HER2 positive, and 38 (76.0%) were

HER2 negative; additionally, 21 (42.0%) had Ki-67 levels above

20%, while 29 (48.0%) had levels below 20% (Table 1). CHORDC1

expression was primarily localised in the cytoplasm of BC cells

(Figures 9D–F). The results were measured by assessing the positive

area in comparison with the total area, and patients were divided into

groups with high and low expression levels. The baseline

characteristics of both groups are detailed in Table 1, with chi-

square analysis indicating a significant correlation between

CHORDC1 expression and Ki-67 levels in ER+ breast cancer

patients (P = 0.02). After a median follow-up period of 49 months,

the 4-year DFS rates were 85.0% for the low-expression group and

64.8% for the high-expression group (P = 0.03, HR = 0.22, 95%

CI = 0.05–1.03, Figure 9G). Nonetheless, there was no statistically

significant difference in the 4-year OS between the two groups

(94.0% vs. 92.9%, P = 0.98, Supplementary Figure S2).
CHORDC1 restrains cell viability and
invasion and decreases drug sensitivity to
tamoxifen and paclitaxel in vitro

In the MCF-7 cell line, CHORDC1 expression was promptly

reduced by siRNA transfection (Figure 10A). MTT and EDU assays

revealed that the viability of ER+ breast cancer cells with

CHORDC1 knockdown was lower than that of the corresponding

negative control cells (Figures 10B, C). Transwell assays revealed

that decreased CHORDC1 expression could significantly hinder the

invasion and migration of breast cancer cells (Figure 10D).

Additionally, we investigated the function of CHORDC1 in
FIGURE 6

Drug sensitivity in patients in different risk score. Patients within low risk score were more sensitive to 5-fluorouracil (A), methotrexate (B), paclitaxel
(C) and cisplatin (D). Patients in high risk score were more sensitive to doxorubicin (E). *p<0.05; **p<0.01; ***p<0.001.
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relation to drug resistance; MCF-7 cells treated with siRNA directed

against CHORDC1 presented a significant increase in sensitivity to

paclitaxel (Figure 10E) and tamoxifen (Figure 10F). These findings

suggest that CHORDC1 may promote the progression of ER+

breast cancer cells and is crucial for restoring their sensitivity

to chemotherapy.
Discussion

Current recommendations from the American Society of

Clinical Oncology suggest that tests should be deemed positive if

a minimum of 1% of tumour nuclei show staining for markers

within the context of appropriate internal and external controls

(27). While new criteria have been established for categorising

breast cancer, not all tumours expressing ERs are genuinely

responsive to the ER pathway. Furthermore, although some
Frontiers in Immunology 12
patients may initially respond to treatment, they often develop

secondary or “acquired” resistance (28). In early-stage cases,

chemotherapy is selected based on the stage and biology of the

tumour and is utilised after endocrine resistance is encountered in

advanced stages. Even as new therapies, including innovative

endocrine agents and antibody–drug conjugates, reshape

treatment approaches, significant heterogeneity among ER+

breast cancer patients means that patients continue to face drug

resistance (29).

In recent years, taxanes have been commonly employed as

microtubule-targeting agents in adjuvant and neoadjuvant

treatments for breast cancer (30, 31). Additionally, the

effectiveness and safety of nontaxane microtubule polymerisation

inhibitors have been increasingly studied in this context (32).

Research has also demonstrated that certain pro-oncogenes can

influence drug sensitivity through their effects on microtubule-

related processes (33), highlighting the potential of microtubules as
FIGURE 7

Construction and calibration of nomogram. (A) Nomogram integrating risk score and clinical features, (B, C) calibration of the nomogram at 3 and 5
years in the training cohort, (D, E) calibration of the nomogram at 3 and 5 years in the verification cohort.
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therapeutic targets. In addition, high expression of microtubule-

associated genes is associated with poor clinical outcomes in cancer

patients, including reduced overall survival and recurrence-free

survival, suggesting that these genes may serve as prognostic
Frontiers in Immunology 13
biomarkers (12, 34). Considering these elements, we established

a comprehensive evaluation system using bioinformatics to

identify hub genes and molecular pathways linked to drug

resistance in ER+ breast cancer that are connected to
FIGURE 8

Overview of single-cell atlases in ER positive patients. (A) t-SNE clustering plot of 3 samples. (B) t-SNE plot depicting clustering of single-cell
samples into 18 clusters. (C) 8 cell types identified based on marker gene expression. (D) Trajectory plot displaying the identified clusters of 8 cell
types extracted in scRNA-seq. (E) Trajectory plot depicting the developmental time course of 8 cell types. (F) UMAP plot displaying the distribution
of CytoTRACE score in 8 cell types. T-SNE plot and Dot plot (J) highlighting the expression patterns of CHORDC1 (G), WNT3A (H) and MECP2 (I) for
the 8 cell types.
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microtubule processes. Our aim was to improve the understanding

of the physiological and molecular mechanisms that lead to

prognosis in patients with ER+ breast cancer and to provide

insights into prognostic biomarkers and therapeutic targets.
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Consensus clustering serves as an effective approach for

categorising samples into distinct subcategories on the basis of

gene expression information. By utilising the expression matrix of

MBPRGs in patients with ER+ breast cancer, we initially identified
FIGURE 9

Expression of microtubule-based processes-related genes and associated with ER + breast cancer prognosis. The protein expression of CHORDC1
(A), WNT3A (B), MECP2 (C) in 5 cell lines and determined by densitometry of protein bands. (D) Immunohistochemical (IHC) staining with
Diaminobenzidine (DAB) demonstrates strong positivity for the target antigen, indicating high CHORDC1 protein expression levels in ER + breast
cancer. (E) Image processed by Image-Pro Plus version software. (F) IHC staining with DAB demonstrates weak positivity for the target antigen,
indicating low expression of CHORDC1 in ER + breast cancer. (G) DFS in Harbin Medical University Cancer Hospital cohorts differentiated based on
CHORDC1 expression. ER +, oestrogen receptor-positive; DFS, Disease-Free Survival.
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two molecular subgroups whose overall survival rates significantly

differed. Next, we conducted immunological and functional

analyses to assess the impact of the TIME on ER+ breast cancer.

As previously noted, the TIME is crucial for patient prognosis,

considering that tumour development is associated with alterations
Frontiers in Immunology 15
in the surrounding stroma, where immune cells play crucial roles in

the tumour microenvironment (35). To characterise the TIMEs

within both subgroups, we utilised ESTIMATE, CIBERSORT, and

MCP analyses. Our results suggest that patients with a better

prognosis have elevated immune scores and a more positive
TABLE 1 Chi-square test analysis of the connection between CHORDC1 expression and clinicopathological features in HMU Cancer Hospital cohort.

Characteristics High expression (N=25) Low expression (N=25) Total (N=50) P value

Age (years) 1.00

≤50 12 (24.00%) 12 (24.00%) 24 (48.00%)

>50 13 (26.00%) 13 (26.00%) 26 (52.00%)

Tumour size classification 0.59

T1 11 (22.00%) 12 (24.00%) 23 (46.00%)

T2 13 (26.00%) 13 (26.00%) 26 (52.00%)

T3 1 (2.00%) 0 (0%) 1 (2.00%)

Lymph node classification 0.73

N0 9 (18.00%) 7 (14.00%) 16 (32.00%)

N1 11 (22.00%) 12 (24.00%) 23 (46.00%)

N2 5 (10.00%) 5 (10.00%) 10 (20.00%)

N3 0 (0%) 1 (2.00%) 1 (2.00%)

pTNM stage 0.54

I 6 (12.00%) 3 (6.00%) 9 (18.00%)

II 14 (28.00%) 16 (32.00%) 30 (60.00%)

III 5 (10.00%) 6 (12.00%) 11 (22.00%)

Adjuvant chemotherapy 1.00

No 2 (4.00%) 3 (6.00%) 5 (10.00%)

Yes 23 (46.00%) 22 (44.00%) 45 (90.00%)

Endocrine therapy 0.34

AI 16 (32.00%) 20 (40.00%) 36 (72.00%)

Tamoxifen 9 (18.00%) 5 (10.00%) 14 (28.00%)

HER2 status 0.32

Negative 21 (42.00%) 17 (34.00%) 38 (76.00%)

Positive 4 (8.00%) 8 (16.00%) 12 (24.00%)

Ki67 0.02

≤20 10 (20.00%) 19 (38.00%) 29 (58.00%)

>20 15 (30.00%) 6 (12.00%) 21 (42.00%)

Surgery type of breast 1.00

Partial mastectomy 2 (4.00%)
23 (46.00%)

2 (4.00%)
23 (46.00%)

4 (8.00%)
46 (92.00%)

Surgery type of axilla 0.74

ALND 18 (36.00%) 20 (40.00%) 38 (76.00%)

SLNB 7 (14.00%) 5 (10.00%) 12 (24.00%)
HER-2, human epidermal growth factor receptor 2; SLNB, sentinel lymph node biopsy; ALND, axillary lymph node dissection.
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immune landscape, reflecting differences in the abundance of

immune cells. Functional analyses of the two subgroups were

conducted to investigate the possible biological mechanisms

involved. Both the GO and KEGG analyses of the identified

DEGs suggested that immune responses and drug resistance
Frontiers in Immunology 16
might facilitate the impact of microtubule-related processes on

the onset and progression of ER+ breast cancer.

In recent years, with the rapid advancement of bioinformatics

technology, machine learning has emerged as a pivotal approach for

screening prognostic markers, accompanied by an exponential
FIGURE 10

Silencing CHORDC1 suppressed cell viability and invasion and improved drug sensitivity in vitro. (A) The siRNA effects (NC, si-1 and si-2) were
examined by western blot assays. The relative proliferation rates of MCF-7 cells were measured by MTT (B) and EDU (C) assays in cells with the NC
or transiently silenced CHORDC1 (si-1 and si-2). (D) Invasive abilities were detected with Transwell assays with or without Matrigel, in cells with the
NC or CHORDC1 transiently silenced (si-1 and si-2). Drug sensitivity of paclitaxel (E) and tamoxifen (F) were detected with MTT assays in cells with
the NC or CHORDC1 transiently silenced (si-1 and si-2). *p<0.05; **p<0.01; ***p<0.001. NC, negative control.
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growth in related literature (36). In the context of modelling,

machine learning allows algorithms to derive insights from errors,

process datasets, identify patterns, and generate informed

predictions with limited human intervention. The field of

machine learning is typically categorised into supervised learning,

unsupervised learning, semi-supervised learning, and

reinforcement learning (37). In the context of machine learning

modelling, stochastic result aggregations are highly contingent

upon data partitioning strategies and random seed initialisation,

thereby compromising the reproducibility of identified markers.

Machine learning methodologies enhance model robustness via

techniques such as cross-validation and stability selection. As an

illustration, in microRNA biomarker screening for breast cancer,

the feature subset derived by SVM-based recursive feature

elimination demonstrated superior Kuncheva index values and

percentages of overlapping genes/features compared to differential

expression analysis results across both TCGA and GEO datasets.

This approach yielded a 20%+ improvement in classification

performance metrics (38). Ensemble learning strategies

significantly mitigate model variance and bias by integrating

multiple base learners. For instance, in osteosarcoma prognostic

research, investigators combined CoxBoost with gradient boosting

machines to develop the AIDPI model, which exhibited a

significantly higher mean C-index than single-algorithm

approaches in predicting patient survival probabilities (39).

By leveraging the advantages of machine learning approaches and

further exploring the prognostic significance of MBPRGs in patients

with ER+ breast cancer, we identified MBPRGs associated with

prognosis by using three machine learning algorithms to identify key

genes and develop a prognostic risk model. Specifically, LASSO

identified 27 candidate genes, whereas SVM and RF selected 9 and

20 genes, respectively. Through cross-validation across the three

algorithms, three hub genes—CHORDC1, WNT3A, and MECP2—

were unanimously identified across the different modelling

approaches. These advantages manifest in two key aspects. Firstly,

genes consistent across multiple algorithms are preferentially retained,

thereby mitigating biases inherent to individual modelling approaches.

Secondly, individual machine learning algorithms often face theoretical

limitations—for example, logistic regression struggles to model non-

linear relationships, while decision trees are prone to overfitting. By

integrating diverse algorithms, the combined approach substantially

enhances the predictive performance and biological relevance of

prognostic models through algorithmic complementarity, feature

stabilisation, and comprehensive data integration.

Additionally, these curves demonstrated excellent discriminatory

power in the validation dataset. We also created a nomogram that

incorporates the risk score, age, chemotherapy and endocrine therapy

status, and clinical stage to provide direct survival predictions for ER+

breast cancer patients. The prognostic relevance of CHORDC1 was

subsequently validated in our cohort and through in vitro studies. In

conclusion, the risk model derived from the three hub genes may

offer valuable insights and recommendations for clinical

treatment decisions.

To summarise, our research developed and confirmed a

prognostic model related to microtubule processing that
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incorporates CHORDC1, WNT3A, and MeCP2. We demonstrated

that these factors may affect drug resistance in ER+ breast cancer by

influencing immune responses and immune cell behaviour.

Additionally, we found that CHORDC1 levels are significantly

associated with the outcomes of patients undergoing chemotherapy

and endocrine therapy. Reducing CHORDC1 expression leads to

decreased cell viability and invasiveness, as well as diminished

sensitivity to tamoxifen and paclitaxel in vitro.

Therefore, our findings suggest potential targets for enhancing

the effectiveness of drug therapies. However, our study has certain

limitations. First, further validation with a larger population is

needed to confirm the reliability of the microtubule-related

prognostic model. Second, the development and validation of the

prognostic model relied on retrospective public data, necessitating

clinical trials to ensure its reliability and applicability. Moreover,

both in vitro and in vivo studies are needed to explore the

fundamental mechanisms of these essential genes in ER+

breast cancer.
Conclusions

In conclusion, our prediction model, which is based on 3

MBPRGs and the clinical characteristics of patients, can reliably

predict the drug response of patients with ER+ breast cancer. These

3 MBPRGs thus appear to play important roles in the development

and progression of ER+ breast cancer.
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