
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Lin Zhang,
Monash University, Australia

REVIEWED BY

Shang Xie,
Peking University, China
Ning Li,
Central South University, China

*CORRESPONDENCE

Lian Zheng

zhenglian0726@163.com

RECEIVED 10 April 2025
ACCEPTED 10 June 2025

PUBLISHED 30 June 2025

CITATION

Guan Z, Gu X and Zheng L (2025)
Bioinformatics-based analysis of nicotinamide
adenine dinucleotide metabolism-related
genes to predict immune status and
prognosis for head and neck squamous
cell carcinoma patients.
Front. Immunol. 16:1609175.
doi: 10.3389/fimmu.2025.1609175

COPYRIGHT

© 2025 Guan, Gu and Zheng. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 30 June 2025

DOI 10.3389/fimmu.2025.1609175
Bioinformatics-based analysis
of nicotinamide adenine
dinucleotide metabolism-
related genes to predict immune
status and prognosis for head
and neck squamous cell
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Background: Patients suffering from head and neck squamous cell carcinoma

(HNSCC) have a high recurrence rate and poor prognosis. Nicotinamide adenine

dinucleotide (NAD+) is crucial in the progression of the tumor. Currently, the

specific role of NAD+ in HNSCC remains elusive.

Methods: First, weighted gene co-expression network analysis (WGCNA) was

utilized to screen gene modules linked to NAD+ metabolism-related genes

(NMRGs), and the expression profiles obtained were taken as intersections with

differentially expressed genes (DEGs) between HNSCC and control samples. The

genes were further compressed and risk modeled using LASSO and stepwise

regression analyses. Then the gene mutation landscapes of different risk

subgroups of HNSCC were analyzed using MuTect 2 software. Differences in

biological function and immune infiltration analyses between different subgroups

were explored. In addition, scratch and transwell assays were carried out to

explore the role of PSME1 in HNSCC cells.

Results: Here, we screened two specific modules with the strongest relation to

HNSCC by WGCNA and subsequently took the intersection of 6160 DEGs with

the module genes, obtaining a total of 359 intersected genes. 6 (ICOS, PSME1,

SERPINA1, SH3KBP1, SP100 and ZAP70) characterized genes linked to HNSCC

prognosis were selected for risk modeling. We categorized patients by the risk

scores into high- and low-risk groups. Overall survival (OS) of patients in the low-

risk group was significantly better than those in the high-risk group. Compared to

the low-risk group, the mutation rates of FAT1, TP53, TTN genes were higher in

the high-risk group, with a coexistence between the mutated genes. The

expression of the characterized genes showed a positive association with the

level immune cell infiltration, for example, activated CD8 T cells. The enrichment

analysis demonstrated that differential genes in the high-risk HNSCC group were

significantly enriched in the ribosome and other pathways, while the differential

genes in the low-risk group were mainly involved in arachidonic acid metabolism
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and other pathways. Further in vitro assay revealed that downregulated PSME1

attenuated the migratory and invasive abilities of FaDu cells.

Conclusions: The current work provided theoretical references for future study

on potential biomarkers of prognosis and immune infiltration in patients suffering

from HNSCC.
KEYWORDS

WGCNA analysis, prognostic modeling, head and neck squamous cell carcinoma, gene
mutation, immune infiltration
Introduction

Head and neck squamous cell carcinoma (HNSCC) ranks as the

sixth most frequent malignancy globally, affecting the larynx,

pharynx, and oral cavity (1, 2). It has an annual incidence of

approximately 600,000 and causes over 300,000 deaths (3). Most

newly diagnosed HNSCC patients are in locally advanced stages,

and most of them also have regional lymph node metastasis at

presentation (4–6). Although current therapies (surgical and

adjuvant) have shown good progress, the 5-year survival for

HNSCC patients is only around 50% because of high rates of

lymphatic metastasis and postoperative recurrence (7). Human

tumor virus, alcohol, and tobacco have all been identified as

significant risk factors for HNSCC (8). New treatment targets

have been shown to potentially enhance the results of HNSCC

(9). Although some progress has been made on some of the

molecular mechanisms of HNSCC, the overall pathogenesis is not

yet fully understood and still needs to be further explored.

Metabolic reprogramming to promote high rates of proliferation

and biomass production—both essential for tumor formation and

survival—is one of the characteristics of cancer (10, 11). Cancer cells

depend on glycolysis and several pathways related to glycolysis, such

as serine and fatty acid synthesis, pentose phosphate pathway (PPP),

glutamine catabolism, to produce macromolecules and mitigate

oxidative stress caused by accelerated proliferation (12). The

essential metabolite nicotinamide adenine dinucleotide (NAD+),

which has been linked to several redox and non-redox processes,

including inflammatory responses, post-translational modifications,

cell signaling, senescence, apoptosis, DNA repair, is necessary for all of
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these up-regulated pathways (13). In addition to being a crucial

coenzyme in oxidative processes, NAD+ is also essential for

immunological response, genomic stability, cell homeostasis, and

cell division and death (14, 15). During glycolysis, the cytoplasmic

lactate dehydrogenase (LDH) process can produce NAD+, which

promotes the proliferation of tumor cells. In comparison to non-

cancerous cells, tumor cells have greater ratios of NADP+/NADPH

and NAD+/NAD, indicating that NAD+ is crucial to this metabolic

change (16). In addition, disturbed NAD+ metabolism not only affects

the redox homeostasis of tumor cells, but is also closely associated with

malignant phenotypes such as immune escape, therapeutic resistance,

and cell proliferation in cancer (17). However, the mechanism of this

role in HNSCC remains unclear.

The present study created NAD+ metabolism-related genes

(NMRGs) model to improve the prognostic outcomes and immune

infiltration of HNSCC patients. Based on the expressions of NMRGs, a

prognosis model of HNSCC patients was established to separate

patients into low- and high-risk groups. We also analyzed the

correlation between characterized genes independently linked to

HNSCC prognosis and immune infiltration based on NMRGs, and

explored the differences between related signaling pathways and

biological functions among different subgroups. Overall, the present

work offered a new method for evaluating patient prognosis and

immune infiltration based on prognosis-related features by

combining several common bioinformatics algorithms for HNSCC,

which offers a novel direction for the treatment and prognostic

assessment for patients with HNSCC.
Methods

Data collection

The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) included the gene expression profiling,

somatic mutation, and clinical phenotype data of HNSCC. The

RNA-seq data were then log2 transformed and converted to TPM

format. All patients were assured to have a survival time longer than

0 days, and samples with missing survival time and survival status
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were eliminated when processing the TCGA-HNSCC data.

Screening produced 499 HNSCC samples and 44 control samples.

Furthermore, the GSE41613 data was collected from Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

database. A sum of 97 tumor samples were acquired by selecting

the GEO cohort with survival time, converting the probes to Symbol

according to the annotation file, and excluding samples lacking

clinical follow-up information and overall generation rate data. The

set of NAD+-related genes was then acquired from the MSigDB

database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp),

which contained the reactome database (R-HSA-196807) and

KEGG pathway database (pathway: hsa00760).
Weighted gene co-expression network
construction

Using ssGSEA in the “GSVA” package, we determined the

NMRGs correlation scores for every TCGA-HNSCC sample (18).

We next used the “WGCNA” package to create weighted gene co-

expression network to find co-expression networks and select genes

from various clusters (19, 20). All samples and missing genes are

first clustered. Second, the optimal soft threshold power (b=16) is
found using the “pickSoftThreshold” R function to identify

significant correlations between modules more effectively. Then,

using the requirement of at least 60 genes per module

(minModuleSize = 60) to identify gene modules, we conducted a

hierarchical cluster analysis. Last but not least, we employed the R

package "Heatmap" (21) to extract various module signature genes

according to the first principal component of module expression.

Then, we assessed the relationship between the module genes and

the diagnosis of clinical signature to test the association between

module and signature scores. The genes contained in the modules

were extracted by filtering the modules with the highest

correlations (22).
Identification of DEGs and enrichment
analysis

In the TCGA cohort, the “limma” package was utilized to find

DEGs between HNSCC and control samples (23). Using p-adj <

0.05 and |log 2(FC)|>log2(1.5), the gene expression profile was

professionally summarized, quartile normalized, and background

adjusted in order to screen for significant DEGs. Following their

intersection with the DEGs, the midnightblue and green modular

genes were found and examined using the R package

“clusterProfiler” (24) to examine the module genes’ KEGG

function and gene ontology (GO) (the screening criteria was p-

value < 0.05). To assess the modular gene enrichment pathways and

biological processes, respectively, we created bubble diagrams by

charting the top 10 functions enriched to the three terms of the GO

enrichment results and the top 10 enriched KEGG pathway results.

We used the R package “clusterProfiler” to compute the GSEA of

the high- and low-risk groups of TCGA-HNSCC to look into the
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pathways of various biological processes in various subgroups. The

KEGG database was used the reference for enriched pathways

during analysis (25).
Risk modeling and validation

To find genes significantly linked with prognosis in TCGA-

HNSCC patients (p<0.05), the R package “survival” (26) was used to

conduct univariate Cox proportional risk regression on intersecting

genes. To enhance the model generalization, 10-fold cross-

validation was employed and LASSO Cox regression analysis of

the R package "glmnet" (27) to compress the genes in order to

maximize gene number in the risk model. Furthermore,

multifactorial stepwise regression analysis was employed to check

for important genes and correlation coefficients that were

independently linked to the prognosis of HNSCC, and risk scores

were computed for every patient. The following is the formula:

Riskscore=Sbi×Expi, where Expi is the expression of each gene

gathered, i is the gene expression level, and b is the associated gene’s
Cox regression coefficient. Following zscore normalization, the

Riskscore was used to assign the TCGA-HNSCC patients into

high- and low-risk groups by the Riskscore’s optimal critical

value. The R package “survminer” (28) was then utilized to

conduct survival analysis between the low- and high-risk groups.

Kaplan-Meier (KM) survival curves were then displayed for

prognosis analysis, followed by using log-rank test to evaluate

significant differences. Further, we examined the prediction of the

model by displaying time-dependent receiver operating

characteristic (ROC) curves using the R package “timeROC” (29)

and calculated 1-, 2-, 3-, 4- and 5-year area under the curve (AUC).

Finally, we validated the GSE41613 dataset using the same

methodology to better validate the stability and reliability of our

constructed clinical prognostic model based on risk-related

gene signatures.
Analysis of gene mutations

Since genomic mutations are closely associated with disease

onset and progression (30), we analyzed each sample in the TCGA-

HNSCC cohort for gene mutations. The mutation dataset of

HNSCC samples was processed using MuTect 2 software (31),

and the mutation profiles of the top 10 mutated genes in the low-

and high-risk groups were plotted separately.
Immunological characterization of HNSCC

The association between Riskscore and immune function in

HNSCC was evaluated by analyzing the immune infiltration of the

TCGA dataset samples using the R package “estimate” (32) and

expressed as their respective scores (StromalScore, ImmuneScoreh

and ESTIMATEScore). The association between the Riskscore of

the TCGA dataset and the 10 immune cell scores was calculated
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using the “MCPcounter” package (33). According to the

transcriptomic expression profiles of the samples, we computed

the scores of 28 tumor-infiltrating immune cells (34) in the TCGA-

HNSCC cohort with the ssGSEA function of the R package "GSVA".
Cell culture and siRNA transfection

MEM medium (Gibco, USA) and DMEM medium (Gibco,

Grand Island, NY, USA) were used to culture human pharyngeal

squamous carcinoma cell line (FaDu) and human normal squamous

epithelial cell line (NOK) ordered from Procell Life Science and

Technology Co. Ltd (Wuhan, China), respectively. All cultures were

added with 1% penicillin-streptomycin (Solarbio, Beijing, China) and

10% fetal bovine serum (Clark, Richmond, VA, USA). All the cells

were cultured in an incubator with 5% CO2 at 37°C. Utilizing

Lipofectamine 3000 Transfection Reagent (Thermo Fisher

Scientific, Waltham, MA, USA), si-PSME1 and negative control si-

RNA were transiently transfected. si-PSME1 sequences were as

follows, sense. UGGAUUUGUACCAUUCUUCUG, antisense:

GAAGAAUGGUACAAAUCCAAG.
RNA extraction and quantitative real-time
PCR

Total RNA from NOK and FaDu cells was separated applying

RNA Extraction Kit (TRIzol, Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s protocols. The purity and

concentration of the total RNA were assessed, and cDNA

templates were generated using the HiScript II kit (Vazyme,

Nanjing, China). Quantitative real-time PCR (qRT-PCR) was

conducted using specific primers and the KAPA SYBR® FAST kit

(Sigma Aldrich, St Louis, MO, USA). GAPDH was an internal

control, and the 2-DDCT method was used for data analysis (35).

Table 1 shows the primer sequences of the specific genes.
Wound-healing experiment

Scratch and transwell assays were subsequently carried out to

examine the effect of PSME1 expression on FaDu cell migration and

invasion. For migration assays, collective cell migration was detected in

a wound healing assay. Transfected cells were inoculated into 6-well
T
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plates (5 × 105/ml). 2 ml of cell suspension was inoculated into 6-well

plates and incubated with 5% CO2 in an incubator at 37°C. When the

cell density was approximately 80%, the monolayer was scraped with a

10 mL plastic pipette tip to create a uniform wound. PBS was used to

wash the monolayers, which were then incubated in a non-FBS

medium. The wound edge distances between two edges of migrating

cell sheet were imaged at 0 h and 48 h, respectively. All the experiments

were conducted three times.
Transwell experiments

For the invasion assay, 1 × 105 cells were inoculated into the upper

chamber covered with 10%Matrigel (Corning, Inc., Corning, NY, USA)

for 24-h incubation. After the incubation, cells in the upper chamber

were eliminated by swabbing, while those on the lower chamber were

then fixed by 4% paraformaldehyde and dyed by 0.1% crystal violet

solution. These migrated or invaded cells in the lower chamber were

counted under a microscope using 6 different fields of view (36).
Statistical tests

All statistical analyses were performed using Prism 8 (GraphPad

Software, San Diego, CA, USA) and R software version 3.6.0 ((R

Foundation, Vienna, Austria)). Wilcoxon rank-sum test was utilized to

calculate the difference between the two groups of continuous variables.

Correlations were calculated using the spearman method, and the log-

rank test was employed to compare the survival between patients in

each subgroup. p<0.05 was defined to be statistically different.
Result

WGCNA identifies gene modules
associated with NMRG

Next, we used the ssGSEA method to determine each sample’s

NMRG score in the TCGA dataset. NMRG-related gene modules

were identified using the R package “WGCNA”. To satisfy the scale-

free topology of the network, we selected a soft threshold power of

16 to construct the topological network (Figure 1A). 9 co-

expression modules were ultimately produced when the module

correlation was computed and the module contained a minimum of
ABLE 1 The sequences of primers for RT−qPCR used in this study.

Gene name Forward primer Reverse primer

ICOS 5’ CCCATAGGATGTGCAGCCTTTG 3’ 5’ GGCTGTGTTCACTGCTCTCATG 3’

PSME1 5’ TGATGACCAGCCTCCACACCAA 3’ 5’ TACTCTGCCTCATCCAGCTCGT 3’

SERPINA1 5’ TCTGAAGAGCGTCCTGGGTCAA 3’ 5’ GATGGTCAGCACAGCCTTATGC 3’

SH3KBP1 5’ GCAGTTCGCTATCTGGCATCCT 3’ 5’ GTCTGCTTGTGGTCGGATGACT 3’

SP100 5’ GGAGAAGAGCTTCAGGAAACCTG 3’ 5’ GGCTTCTTGGCACACCTTTTGG 3’

ZAP70 5’ CACTACGCCAAGATCAGCGACT 3’ 5’ GGCTGGAGAACTTGCGGAAGTT 3’

GAPDH 5’ TTGCCCTCAACGACCACTTT 3’ 5’ TCCTCTTGTGCTCTTGCTGG 3’
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60 genes (Figures 1B, C). Out of the 9 modules, the grey module had

a comparatively large number of genes, followed by the salmon

module, as seen in Figure 1D. The gene that was unable to aggregate

to other modules was known as the grey module. To select clinically

important modules, we calculated the correlation of each module
Frontiers in Immunology 05
with NMRG scores and plotted a heat map of module-shape

correlation. Among the nine modules, significant strong positive

correlations were found between midnightblue and green modules

and NMRG scores (midnightblue: cor = 0.7, p = 7.87e-76; green: cor

= 0.49, p = 1.25e-31 and Figure 1E).
FIGURE 1

Construction of co-expression network for TCGA cohort. (A) Scale-free fit index analysis on different soft threshold powers (b), and average
connectivity analysis on different soft threshold powers. (B, C) Gene dendrograms based on dissimilarity metric (1-TOM) clustering. (D) Gene
numbers in each module. (E) Correlation of module eigenvectors with features for each module.
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Differential gene analysis and enrichment
analysis

Figure 2A shows the volcano map of DEGs. Next, we found

DEGs between HNSCC cases and control samples in the TCGA

dataset. In total, we found 1206 strongly down-regulated genes and

4954 significantly up-regulated genes. After that, we found 359

intersecting genes by taking the genes of the midnightblue and

green modules and DEGs (Figure 2B). We used GO and KEGG to

enrich the intersecting genes in order to investigate their regulatory

involvement in the pathophysiology of HNSCC. According to

KEGG analysis, pathways such as epstein-barr virus infection and

cytokine-cytokine receptor interaction were significantly enriched

with the intersecting genes (Figure 2C). GO enrichment analysis

showed that the BPs in which the intersecting genes were largely

involved were defense pathways, for instance, T cell activation and

defense response to another organism (Figure 2D). The CCs that

were mainly localized were side of the membrane, secretory granule

membrane, endocytic vesicle and other structures (Figure 2E). The
Frontiers in Immunology 06
MFs most significantly enriched for intersecting genes were

pathways such as cytokine receptor activity and chemokine

activity (Figure 2F).
Prognostic model building and validation

To create the risk model, we split the TCGA-HNSCC samples into

training and test sets in a 5:5 ratio. For LASSO, its effectiveness hinges

on the sparsity assumption, which may not hold in the complex genetic

landscape of TCGA-HNSC, potentially causing misidentification of

prognostic genes and coefficient underestimation (37). Moreover, the

data-dependent variable selection process increases the risk of

overfitting. As for stepwise regression, the arbitrary selection criteria

based on statistical significance, the order-dependence of variable entry/

removal, and the susceptibility to overfitting when the gene to sample

size ratio is high can all lead to suboptimal model performance and

biased results (38). In order to remove redundant confounding genes

and identify the genes that have the biggest influence on patients’
FIGURE 2

Functional enrichment analysis of DEGs with modular gene intersection genes. (A) Volcano map displaying the DEGs of tumor and normal group based
on TCGA cohort. (B) The intersection of differential genes and midnightblue and green module genes. (C-F) Results of enrichment analysis of
intersecting gene pathways.
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prognosis, the R package “survival”was employed to run univariate Cox

proportional risk regression on the aforementioned intersecting genes

using the training set data. To minimize the gene range in the risk

model, we compressed these genes using the “glmnet” package’s LASSO

Cox regression approach. To enhance the model generalization, we

further performed 10-fold cross-validation (Figure 3A). We then used

multifactorial stepwise regression analysis to determine which six

distinctive genes (ICOS, PSME1, SERPINA1, SH3KBP1, SP100 and

ZAP70) were independently linked to prognosis (Figure 3B).

Characteristics indicative of the prognostic outcomes in the TCGA-

HNSCC training set were developed based on the expressions of the

characterized genes and the regression coefficients as described below:

Riskscore = (-0.685*ICOS) +0.749*PSME1 + 0.25*SERPINA1 +

0.41*SH3KBP1 + 0.24*SP100+(-0.368*ZAP70). Based on the best

critical value of the Riskscore, TCGA training set patients were

classified into low-risk and high-risk groups. KM curves showed that

compared with the high-risk group, patients in the TCGA-HNSCC

training set (p< 0.0001), validation set (p< 0.0019), and the low-risk

group of the TCGA cohort (p< 0.0001) had better overall survival (OS)

(Figures 3C–E). To investigate the diagnostic accuracy of the prognostic

risk model, ROC analyses for 1-, 2-, 3-, 4- and 5-year prognostic

predictions were conducted using the “timeROC” R package. The

results indicated that the TCGA-HNSCC training set, test set, and

TCGA cohort displayed high AUC values at 1-, 2-, 3-, 4- and 5-years

(training set: 0.77, 0.78, 0.78, 0.75 and 0.7; test set: 0.59, 0.65, 0.59, 0.62

and 0.52; TCGA cohort: 0.68, 0.71, 0.69, 0.68 and 0.62, Figures 3F–H),

demonstrating good classification accuracy for prognosis features.

Subsequently, we analyzed the expressions of the characterized genes

between patients in the low- and high-risk groups of the TCGA cohort.

ICOS and ZAP70 were low-expressed in the high-risk group than the

low-risk group, whereas PSME1, SERPINA1, SH3KBP1 and SP100 had

markedly higher expression in the high-risk group than the low-risk

group (Figure 3I).

We utilized the GSE41613 dataset to assess the model robustness

using comparable models and equivalence coefficients to those utilized

in the training set to confirm the stability and dependability of our

developed model using NMRG-related signature genes. The training

set finding that the prognostic outcomes of high-risk HNSCC patients

were more unfavorable (p<0.0001, Figure 3J) was supported by the

validation data. For the 1-, 3- and 5-year periods, the GSE41613

validation set’s AUC values were 0.72, 0.73 and 0.74, respectively

Figure 3K). For patients with HNSCC, it showed that the prognostic

model had good prognostic prediction.
Mutation characterization in HNSCC high
and low-risk groups

We further analyzed the gene mutations in the low- and high-

risk groups. In the TCGA-HNSCC samples, we observed that in the

high-risk group, 141 (94%) HNSCC patients out of 150 samples

showed high-frequency mutations top 10 genes, of which the top 3

mutated genes were TP53 (73%), TTN (39%) and FAT1 (26%)
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(Figure 4A). In contrast, the top 10 mutated genes in HNSCC

patients showed mutations in 315 out of 344 samples (91.57%) in

the low-risk group, with TP53 as the gene with the most mutations

of 65% in the samples, followed by TTN and FAT1 in 39% and 21%

respectively (Figure 4B). Subsequently, we revealed the mutational

co-occurrence or mutual exclusion patterns between the top 10

mutant gene pairs in different risk subgroups of HNSCC,

respectively. Statistical results showed frequent co-occurrence

between the TNN gene with MUC16 gene, CDKN2A gene with

TP53 gene and FAT1 genes in the high-risk group (p < 0.05,

Figure 4C). Significant co-occurrence was also shown in the low-

risk group, especially between TTN and SYNE1, LRP1B, MUC16

and CSMD3 (p < 0.05, Figure 4D). This may imply that the co-

occurring genes have a synergistic role in the associated

pathological processes.
Immunological characterization of HNSCC
high and low-risk groups

To analyze the association between the Riskscore and immune

microenvironment of HNSCC, we calculated immune cell

infiltration using different methods. We first used ESTIMATE

algorithm to assess immune cell infiltration and found that the

HNSCC high-risk group had lower immune infiltration

(Figure 5A). Based on MCPcounter, the immune cell score was

calculated for the TCGA dataset. The results showed that the

myeloid dendritic cells, immune cell scores of T cells, B lineage,

CD8 T cells, cytotoxic lymphocytes were all lower in the high-risk

group (Figure 5B). Using the ssGSEA function of the R package

“GSVA”, the scores of 28 types of immune cells in HNSCC were

analyzed, and their correlations with Riskscore and signature genes

were computed. The data showed that Riskscore was closely

negatively linked to the scores of the majority of the immune

cells in HNSCC, including MDSC, immature B cells, activated CD8

T cells, mast cells, activated CD4 T cells, activated B cells. On the

other hand, the signature genes were positively linked to the scores

of the majority of the immune cells in HNSCC, while Riskscore was

closely negatively linked to the scores of most of the

cells (Figure 5C).
Differences in enriched pathways between
high and low-risk HNSCC subgroups

To investigate the differences in biological pathways in different

risk groups, we performed a KEGG pathway enrichment analysis of

DEG between high- and low-risk groups of HNSCC patients. Based

on the enrichment results, it was found that the high-risk group was

significantly enriched in the pathways of the ribosome, proteasome,

and spliceosome (Figure 6A). Low-risk group was notably enriched in

metabolism-related pathways, including linoleic acid metabolism and

arachidonic acid metabolism (Figure 6B).
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FIGURE 3

Establishment of a prognosis model for HNSCC patients and validation. (A) A number of LASSO Cox shrinkage genes. (B) Multifactorial random forest
plot. (C) KM survival curves was plotted for the TCGA training data cohort. (D) KM survival curves was plotted for the TCGA validation cohort. (E) KM
survival curves was plotted for the TCGA cohort. (F) ROC curves for Riskscore in the TCGA training data cohort. (G) ROC curve for Riskscore in the
TCGA validation data cohort. (H) ROC curve of Riskscore in TCGA cohort. (I) The expressions of the prognosis genes in the TCGA cohort. (J) KM
survival curves of Riskscore in the GSE41613 cohort. (K) ROC curve of Riskscore in the GSE41613 cohort. ns, p > 0.05, not statistically significant;
*p < 0.05; ***p < 0.001; ****p < 0.0001.
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Downregulation of PSME1 impairs
migration and invasion of HNSCC cells

The mRNA expressions of 6 key genes in NOK and FaDu cells

using qPCR. The corresponding results demonstrated that in

comparison to NOK cells, the levels of ICOS, PSME1, SERPINA1,

and SH3KBP1 genes were notably upregulated in FaDu cells, while

the expressions of PSME1 and SERPINA1 genes were higher

(Figure 7A). It has been reported that PSME1 has been shown to

serve as a therapeutic target in a variety of tumors (39, 40).

Therefore, we explored the role of PSME1 in HNSCC

progression. Here, this study analyzed the effect of the PSME1

gene on FaDu cell invasion and metastasis by wound healing assay

and transwell assay. The results showed that the reduction of

PSME1 significantly inhibited the migration and metastasis of

FaDu cells (Figures 7B, C).
Discussion

Recent studies have shown that disturbances in NAD+

metabolism are associated with cell division, proliferation and

apoptosis, all of which can accelerate tumor growth and spread

(41). As a result, it is being investigated as a potential tumor

treatment. For instance, following examination, scientists
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discovered that NMRGs accurately evaluated the treatment

response and prognostic outcomes for liver cancer patients (42).

Furthermore, individuals with stomach cancer who had low levels

of NMRG expression often had longer survival times, while those

with high levels of NMRG expression had a worse prognosis (43,

44). Therefore, NRMGs also have important research and

application value in HNSCC. Here, the present research screened

six (ICOS, PSME1, SERPINA1, SH3KBP1, SP100 and ZAP70)

signature genes independently associated with HNSCC prognosis

through integrative analysis. These characterized genes showed

good predictability in prognostic assessment in both the training

cohort and the validation cohort. They may be mainly involved in

defense-related processes such as secretory factor receptor activity

and immunity.

These 6 important prognostic genes are strongly linked to

carcinogenesis, progression, and treatment, per earlier research in

the literature. In particular, tumors expressing high levels of ICOS

show increased immune cell infiltration, and ICOS is a positive

prognostic factor in the B7 immune checkpoint co-stimulatory

factor family in HNSCC and oral squamous cell carcinoma (45).

Advanced-stage cancers had decreased levels of ICOS expression,

and tumors with high ratios of PD-L1/ICOS, PD-L2/ICOS, or

CD276/ICOS expression have a worse prognosis and a worse

prognosis for patients with positive lymph nodes (46). Genes

including PSME1 were found to be positively related to T-cell
FIGURE 4

Landscape of gene mutations in HNSCC. (A) TCGA cohort high-risk group high frequency mutations top 10 genes. (B) TCGA cohort low-risk group
high-frequency mutation top 10 genes. (C) Interactions of high-frequency mutation top 10 genes in the high-risk group of the TCGA cohort.
(D) Interactions of high-frequency mutation top 10 genes in the low-risk group of the TCGA cohort. ns, p > 0.05, not statistically significant;
*p < 0.05.
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infiltration and PD-1 expression, in HNSCC, which may influence

anti-PD1 treatment efficacy by modulating immune cell infiltration,

especially T-cell depletion (39). Potential salivary diagnostic

indicators for oral squamous carcinoma include higher salivary

levels of SERPINA1 in individuals with oral squamous cell

carcinoma, which correspond with advanced tumor stage (47).

Gliomas have high levels of SH3KBP1, and these levels have been

linked to glioma patients’ lower survival rates. Glioma cell motility,

proliferation, and stem cell self-renewal ability are all markedly

reduced when SH3KBP1 is silenced, both in vitro and in vivo when

xenograft tumors are growing (48). Poor clinicopathological

characteristics and a poor patient prognosis are directly linked to

SP100 family members with a high expression in pancreatic cancer

tissues. Mechanistically, the expressions of SP100 family members,

which are activated in several carcinogenic pathways and strongly

co-expressed with M6A methylation regulators, are significantly

linked with TP53 mutations (49). It was discovered that HNSCC

patients in the low-risk group were more sensitive to

immunotherapy in the risk model developed by Liu et al. based
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on genes like ICOS and ZAP70 (50). ZAP70 expression was also

down-regulated in HNSCC, and its involvement in the predictive

risk model of HNSCC patients in the high-risk group revealed a

comparatively lower amount of immune cell infiltration and a

shorter survival time (51). According to these findings, signature

genes may be linked to tumor immune infiltration and treatment, as

well as having distinct functions in malignancies. However, based

on the analyses that are currently available, they are mostly linked to

immune infiltration, invasion and metastasis, cell proliferation, and

treatment response, all of which may be useful for predicting

prognosis in HNSCC.

TP53, TTN, and FAT1 mutation rates were high in both high

and low-risk categories of HNSCC patients, according to a gene

mutation study. The KRAS and tumor protein 53 (TP53) genes have

been widely exploited as prognostic and predictive gene targets in

lung adenocarcinoma because they frequently exhibit notable

alterations (52, 53). When cisplatin is used to treat tumors with

concurrent KRAS and TP53 mutations, the clinical results are not

good (54). Lung cancer is one of the many tumor forms that
FIGURE 5

Relationship between Riskscore and HNSCC immune microenvironment. (A) ESTIMATE scores between high and low-risk groups in the TCGA
cohort. (B) MCPcounter assessment of 10 immune cell scores in Riskscore groupings. (C) Correlation of immune infiltration scores assessed by
ssGSEA with Riskscore and prognostic genes. ns, p > 0.05, not statistically significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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frequently have mutations in TTN, the longest-known gene

producing the TITIN protein (55). A higher tumor mutational

burden and objective reactions to immune checkpoint blockade are

closely linked to mutated TTN, which is commonly seen in solid

tumors (56). In human malignancies, one of the most frequently

mutated genes is FAT1, which codes for procalcitonin. Loss of FAT1

function induces a mixed EMT state in human and animal

squamous cell carcinomas, which enhances carcinogenesis,

progression, invasiveness, stemness, and metastasis (57). The high

incidence of somatic TP53 mutations in HNSCC has been linked to

tumor progression and decreased survival by preventing cytotoxic

CD8+ T cell infiltration and encouraging the intra-tumor
Frontiers in Immunology 11
recruitment of regulatory T cells and M2 macrophages (58). The

TP53, FAT1 and TTN genes are the most significantly mutated

genes in HNSCC, which is in line with our findings. These genes

also have high mutation rates in various risk classes of HNSCC

patients (59, 60). In conclusion, immune infiltration may be linked

to tumor growth mediated by TP53, TTN and FAT1 mutations.

The high-risk group of HNSCC has a markedly enhanced

ribosome, proteasome, and spliceosome pathway, according to

pathway analysis. Pathways like the metabolism of linoleic acid

and arachidonic acid were considerably more abundant in the low-

risk group. The expression of proteins linked to ribosome

biosynthesis was inversely connected with antitumor drug
FIGURE 6

GSEA analysis on differentially expressed genes in different risk subgroups of HNSCC. (A, B) KEGG enrichment analysis of HNSCC high and low-risk
groups.
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sensitivity and tumor-infiltrating immune cells in HNSCC, and

their knockdown prevented cell invasion, migration, and

proliferation (61). Protease inhibitors cause the development of

proteins with pro- and anti-apoptotic effects because the

proteasome controls the expression levels of several proteins with

various roles. Signaling proteins and pathways that support cell

survival and intrinsic resistance to proteasome inhibitors and other

anticancer treatments are typically abnormally activated in cancer

cells (62–64). Protease and histone deacetylase co-targeting prevent

HNSCC cells from developing acquired treatment resistance (65).

HNSCC cell lines exhibit a substantial enrichment of splicing-

associated proteins, and splice kinase inhibition dramatically

lowers the ability of HNSCC cell lines to invade and form

colonies (66). Inhibition of arachidonic acid metabolism results in

decreased proliferation and VEGF production in HNSCC cells,

whereas its metabolism enhances cancer cell viability (67). Patients

with oral cancer have much higher levels of salivary linoleic acid

and arachidonic acid, which activate TRPV1 and/or TRPA1 on

sensory neurons and contribute to oral cancer pain (68). This

implies that tumor immunomodulation, invasion, and metastasis
Frontiers in Immunology 12
are intimately linked to the variations in pathways between low-

and high-risk groups of HNSCC.

CD8+ T cells in the tumor microenvironment are well-

recognized antitumor immune cells that govern the anticancer

response to cytokines and are one of the predictors for indicating

immunotherapy success rate for patients (69, 70). Anti-PD-1/PD-

L1 therapy by anti-PD-1 antibody or anti-PD-L1 antibody is

efficacious by reactivating tumor-infiltrating CD8+ T cells in a

subgroup of cancer patients. Anti-PD-L1 plus anti-CTLA4 early

response in HNSCC is characterized by CD4+ T cell activation and

recruitment from tumor-draining lymph nodes (71). Anti-PD-1/

PD-L1 therapy has been reported to benefit from an increase in

tumor-infiltrating cytotoxic T cells (72). Specialized antigen-

presenting cells called dendritic cells take samples of the

surrounding environment and send co-stimulatory and antigenic

signals to adaptive immune system cells (73). In contrast, mast cells

are innate immune cells found in human tissues that control tumor

cell growth and angiogenesis to modify the inflammatory response

and TME homeostasis in patients (74). According to reports, cancer

immunotherapy can help stimulate tumor-specific cytotoxic T cells
FIGURE 7

Exploring the biological role of PSME1 in HNSCC. (A) qPCR detection of gene expression levels of ICOS, PSME1, SERPINA1, SH3KBP1, SP100 and
ZAP70 in NOK and FaDu cells. (B) Representative images of transwell assay of FaDu cells after PSME1 knockdown and statistical analysis of invasive
cell counts. (C) Representative photographs and statistical analysis of wound healing assay in FaDu cells after PSME1 knockdown. Data are shown as
SD ± mean, ns, p > 0.05, not statistically significant; ***p < 0.001; ****p < 0.0001.
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inside the lymphoid organs, increase the activity of cytotoxic T

lymphocytes within the tumor, and create potent and durable anti-

tumor immunity. To maximize the quantity and caliber of the

cytotoxic T lymphocyte response, some dendritic cells will assist in

the signaling process from CD4+ T cells to CD8+ T cells during

initiation (75). Analysis of the immune microenvironment based on

the predictive model of this study showed that the abundance of

CD8 T cells, mast cells, T cells, B lineage, cytotoxic lymphocytes,

and myeloid dendritic cells infiltration was markedly upregulated in

the low-risk group. The upregulation of the level of infiltration of

these immune cells in low-risk patients predicted a higher level of

immunity in the tumor microenvironment, which is an advantage

of immunotherapy.

NAD+ levels can be modulated through dietary intake of NAD+

precursors, such as nicotinamide (NAM), by inhibiting enzymes that

consume NAD+, and by regulating the activity of enzymes involved in

NAD+ biosynthesis (76). Clinical trials demonstrate that the oral

administration of NAM exhibits chemopreventive properties in the

development and recurrence of skin squamous cell carcinoma among

both high-risk immunocompetent individuals and those with

compromised immune systems (77, 78). Furthermore, NAM has

been shown to enhance the effectiveness of radiotherapy for

HNSCC and laryngeal squamous cell carcinoma (79, 80). Current

trials are investigating the efficacy of NAM when used in conjunction

with targeted therapies in patients with advanced non-small cell lung

cancer (81). Further a prognostic NAD+ metabolism-related gene

signature has been developed to predict the response to immune

checkpoint inhibitor in glioma (82).

However, there are still certain limitations in this study. First, this

study relies heavily on publicly available databases for its analysis, and

although representative, the sample size is relatively limited and

sample heterogeneity exists. Therefore, we will incorporate multi-

center, large sample size clinical cohorts in future studies, combined

with prospective follow-up data, to improve the robustness and

generalization ability of the model. In addition, although a

prognostic model based on NMRGs was constructed and the

cellular function of PSME1 was experimentally validated, there is a

lack of mechanistic studies on the functions of other characterized

genes. In the future, the functional roles of the characterized genes in

HNSCC can be verified by in vivo experiments (including knockout/

overexpression models, signaling pathway analysis, etc.) and their

regulatory mechanisms can be revealed. Finally, immune infiltration

analysis is mainly based on algorithmic estimation at the

transcriptome level. Follow-up studies may combine tumor tissue

samples for immunostaining, mass spectrometry flow cytometry, and

other techniques to further confirm the immune cell infiltration status

and its true correlation with characteristic genes.

Future research may explore several avenues. Firstly, it is

essential to conduct thorough investigations into the mechanisms

of the six identified genes. Understanding how these genes influence

tumor development through both in vitro and in vivo experiments

will elucidate their specific roles in HNSCC. Secondly, given the

relationship between gene expression and immune cell infiltration,
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it is important to examine the dynamic interactions involved in

disease progression within the tumor microenvironment.

Longitudinal studies that monitor changes in gene expression

related to immunity could uncover new therapeutic targets.

Lastly, integrating multi-omics data can enhance our

understanding of the heterogeneity of HNSCC and assist in

identifying more precise biomarkers.

From a clinical perspective, our findings hold significant

implications. The developed risk model can categorize patients

effectively, enabling personalized treatment approaches: high-risk

patients may benefit from aggressive treatment options, while low-

risk patients can avoid unnecessary side effects. Additionally, genes

associated with immune cell infiltration have the potential to

predict responses to immunotherapy, assisting patients in

selecting appropriate treatment options. Moreover, developing

and testing pathway-specific drugs that target pathways prevalent

in various risk groups could offer new avenues for treatment in

clinical trials.
Conclusion

This study used machine learning methods and identified six

feature genes independently linked to HNSCC prognosis and

established a prognosis model. The robustness of the model was

confirmed, and it can stably assess the prognosis and immune

infiltration of HNSCC patients, contributing to the personalized

treatment of the cancer. This study could offer a reference for

further investigation into the potential biomarkers for diagnosis and

prognosis prediction in HNSCC patients.
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