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2Department of Oncology, The First Af�liated Hospital, College of Clinical Medicine, Henan University
of Science and Technology, Zhengzhou, China, 3Department of Oral and Maxillofacial Surgery, The
First Af�liated Hospital of Zhengzhou University, Zhengzhou, China
Background: Patients suffering from head and neck squamous cell carcinoma
(HNSCC) have a high recurrence rate and poor prognosis. Nicotinamide adenine
dinucleotide (NAD+) is crucial in the progression of the tumor. Currently, the
speci�c role of NAD+ in HNSCC remains elusive.

Methods: First, weighted gene co-expression network analysis (WGCNA) was
utilized to screen gene modules linked to NAD+ metabolism-related genes
(NMRGs), and the expression pro�les obtained were taken as intersections with
differentially expressed genes (DEGs) between HNSCC and control samples. The
genes were further compressed and risk modeled using LASSO and stepwise
regression analyses. Then the gene mutation landscapes of different risk
subgroups of HNSCC were analyzed using MuTect 2 software. Differences in
biological function and immune in�ltration analyses between different subgroups
were explored. In addition, scratch and transwell assays were carried out to
explore the role of PSME1 in HNSCC cells.

Results: Here, we screened two speci�c modules with the strongest relation to
HNSCC by WGCNA and subsequently took the intersection of 6160 DEGs with
the module genes, obtaining a total of 359 intersected genes. 6 (ICOS, PSME1,
SERPINA1, SH3KBP1, SP100 and ZAP70) characterized genes linked to HNSCC
prognosis were selected for risk modeling. We categorized patients by the risk
scores into high- and low-risk groups. Overall survival (OS) of patients in the low-
risk group was signi�cantly better than those in the high-risk group. Compared to
the low-risk group, the mutation rates of FAT1, TP53, TTN genes were higher in
the high-risk group, with a coexistence between the mutated genes. The
expression of the characterized genes showed a positive association with the
level immune cell in�ltration, for example, activated CD8 T cells. The enrichment
analysis demonstrated that differential genes in the high-risk HNSCC group were
signi�cantly enriched in the ribosome and other pathways, while the differential
genes in the low-risk group were mainly involved in arachidonic acid metabolism
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and other pathways. Further in vitro assay revealed that downregulated PSME1
attenuated the migratory and invasive abilities of FaDu cells.

Conclusions: The current work provided theoretical references for future study
on potential biomarkers of prognosis and immune in�ltration in patients suffering
from HNSCC.
KEYWORDS

WGCNA analysis, prognostic modeling, head and neck squamous cell carcinoma, gene
mutation, immune in� ltration
Introduction

Head and neck squamous cell carcinoma (HNSCC) ranks as the
sixth most frequent malignancy globally, affecting the larynx,
pharynx, and oral cavity (1, 2). It has an annual incidence of
approximately 600,000 and causes over 300,000 deaths (3). Most
newly diagnosed HNSCC patients are in locally advanced stages,
and most of them also have regional lymph node metastasis at
presentation (4–6). Although current therapies (surgical and
adjuvant) have shown good progress, the 5-year survival for
HNSCC patients is only around 50% because of high rates of
lymphatic metastasis and postoperative recurrence (7). Human
tumor virus, alcohol, and tobacco have all been identi�ed as
signi�cant risk factors for HNSCC (8). New treatment targets
have been shown to potentially enhance the results of HNSCC
(9). Although some progress has been made on some of the
molecular mechanisms of HNSCC, the overall pathogenesis is not
yet fully understood and still needs to be further explored.

Metabolic reprogramming to promote high rates of proliferation
and biomass production—both essential for tumor formation and
survival—is one of the characteristics of cancer (10, 11). Cancer cells
depend on glycolysis and several pathways related to glycolysis, such
as serine and fatty acid synthesis, pentose phosphate pathway (PPP),
glutamine catabolism, to produce macromolecules and mitigate
oxidative stress caused by accelerated proliferation (12). The
essential metabolite nicotinamide adenine dinucleotide (NAD+),
which has been linked to several redox and non-redox processes,
including in�ammatory responses, post-translational modi�cations,
cell signaling, senescence, apoptosis, DNA repair, is necessary for all of
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these up-regulated pathways (13). In addition to being a crucial
coenzyme in oxidative processes, NAD+ is also essential for
immunological response, genomic stability, cell homeostasis, and
cell division and death (14, 15). During glycolysis, the cytoplasmic
lactate dehydrogenase (LDH) process can produce NAD+, which
promotes the proliferation of tumor cells. In comparison to non-
cancerous cells, tumor cells have greater ratios of NADP+/NADPH
and NAD+/NAD, indicating that NAD+ is crucial to this metabolic
change (16). In addition, disturbed NAD+ metabolism not only affects
the redox homeostasis of tumor cells, but is also closely associated with
malignant phenotypes such as immune escape, therapeutic resistance,
and cell proliferation in cancer (17). However, the mechanism of this
role in HNSCC remains unclear.

The present study created NAD+ metabolism-related genes
(NMRGs) model to improve the prognostic outcomes and immune
in�ltration of HNSCC patients. Based on the expressions of NMRGs, a
prognosis model of HNSCC patients was established to separate
patients into low- and high-risk groups. We also analyzed the
correlation between characterized genes independently linked to
HNSCC prognosis and immune in�ltration based on NMRGs, and
explored the differences between related signaling pathways and
biological functions among different subgroups. Overall, the present
work offered a new method for evaluating patient prognosis and
immune in�ltration based on prognosis-related features by
combining several common bioinformatics algorithms for HNSCC,
which offers a novel direction for the treatment and prognostic
assessment for patients with HNSCC.
Methods

Data collection

The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) included the gene expression pro�ling,
somatic mutation, and clinical phenotype data of HNSCC. The
RNA-seq data were then log2 transformed and converted to TPM
format. All patients were assured to have a survival time longer than
0 days, and samples with missing survival time and survival status
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were eliminated when processing the TCGA-HNSCC data.
Screening produced 499 HNSCC samples and 44 control samples.
Furthermore, the GSE41613 data was collected from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database. A sum of 97 tumor samples were acquired by selecting
the GEO cohort with survival time, converting the probes to Symbol
according to the annotation �le, and excluding samples lacking
clinical follow-up information and overall generation rate data. The
set of NAD+-related genes was then acquired from the MSigDB
database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp),
which contained the reactome database (R-HSA-196807) and
KEGG pathway database (pathway: hsa00760).
Weighted gene co-expression network
construction

Using ssGSEA in the “GSVA” package, we determined the
NMRGs correlation scores for every TCGA-HNSCC sample (18).
We next used the “WGCNA” package to create weighted gene co-
expression network to �nd co-expression networks and select genes
from various clusters (19, 20). All samples and missing genes are
�rst clustered. Second, the optimal soft threshold power (b=16) is
found using the “pickSoftThreshold” R function to identify
signi�cant correlations between modules more effectively. Then,
using the requirement of at least 60 genes per module
(minModuleSize = 60) to identify gene modules, we conducted a
hierarchical cluster analysis. Last but not least, we employed the R
package "Heatmap" (21) to extract various module signature genes
according to the �rst principal component of module expression.
Then, we assessed the relationship between the module genes and
the diagnosis of clinical signature to test the association between
module and signature scores. The genes contained in the modules
were extracted by �ltering the modules with the highest
correlations (22).
Identi� cation of DEGs and enrichment
analysis

In the TCGA cohort, the “limma” package was utilized to �nd
DEGs between HNSCC and control samples (23). Using p-adj <
0.05 and |log 2(FC)|>log2(1.5), the gene expression pro�le was
professionally summarized, quartile normalized, and background
adjusted in order to screen for signi�cant DEGs. Following their
intersection with the DEGs, the midnightblue and green modular
genes were found and examined using the R package
“clusterPro�ler” (24) to examine the module genes’ KEGG
function and gene ontology (GO) (the screening criteria was p-
value < 0.05). To assess the modular gene enrichment pathways and
biological processes, respectively, we created bubble diagrams by
charting the top 10 functions enriched to the three terms of the GO
enrichment results and the top 10 enriched KEGG pathway results.
We used the R package “clusterPro�ler” to compute the GSEA of
the high- and low-risk groups of TCGA-HNSCC to look into the
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pathways of various biological processes in various subgroups. The
KEGG database was used the reference for enriched pathways
during analysis (25).
Risk modeling and validation

To �nd genes signi�cantly linked with prognosis in TCGA-
HNSCC patients (p<0.05), the R package “survival” (26) was used to
conduct univariate Cox proportional risk regression on intersecting
genes. To enhance the model generalization, 10-fold cross-
validation was employed and LASSO Cox regression analysis of
the R package "glmnet" (27) to compress the genes in order to
maximize gene number in the risk model. Furthermore,
multifactorial stepwise regression analysis was employed to check
for important genes and correlation coef�cients that were
independently linked to the prognosis of HNSCC, and risk scores
were computed for every patient. The following is the formula:
Riskscore=Sbi×Expi, where Expi is the expression of each gene
gathered, i is the gene expression level, and b is the associated gene’s
Cox regression coef�cient. Following zscore normalization, the
Riskscore was used to assign the TCGA-HNSCC patients into
high- and low-risk groups by the Riskscore’s optimal critical
value. The R package “survminer” (28) was then utilized to
conduct survival analysis between the low- and high-risk groups.
Kaplan-Meier (KM) survival curves were then displayed for
prognosis analysis, followed by using log-rank test to evaluate
signi�cant differences. Further, we examined the prediction of the
model by displaying time-dependent receiver operating
characteristic (ROC) curves using the R package “timeROC” (29)
and calculated 1-, 2-, 3-, 4- and 5-year area under the curve (AUC).
Finally, we validated the GSE41613 dataset using the same
methodology to better validate the stability and reliability of our
constructed clinical prognostic model based on risk-related
gene signatures.
Analysis of gene mutations

Since genomic mutations are closely associated with disease
onset and progression (30), we analyzed each sample in the TCGA-
HNSCC cohort for gene mutations. The mutation dataset of
HNSCC samples was processed using MuTect 2 software (31),
and the mutation pro�les of the top 10 mutated genes in the low-
and high-risk groups were plotted separately.
Immunological characterization of HNSCC

The association between Riskscore and immune function in
HNSCC was evaluated by analyzing the immune in�ltration of the
TCGA dataset samples using the R package “estimate” (32) and
expressed as their respective scores (StromalScore, ImmuneScoreh
and ESTIMATEScore). The association between the Riskscore of
the TCGA dataset and the 10 immune cell scores was calculated
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using the “MCPcounter” package (33). According to the
transcriptomic expression pro�les of the samples, we computed
the scores of 28 tumor-in�ltrating immune cells (34) in the TCGA-
HNSCC cohort with the ssGSEA function of the R package "GSVA".
Cell culture and siRNA transfection

MEM medium (Gibco, USA) and DMEM medium (Gibco,
Grand Island, NY, USA) were used to culture human pharyngeal
squamous carcinoma cell line (FaDu) and human normal squamous
epithelial cell line (NOK) ordered from Procell Life Science and
Technology Co. Ltd (Wuhan, China), respectively. All cultures were
added with 1% penicillin-streptomycin (Solarbio, Beijing, China) and
10% fetal bovine serum (Clark, Richmond, VA, USA). All the cells
were cultured in an incubator with 5% CO2 at 37°C. Utilizing
Lipofectamine 3000 Transfection Reagent (Thermo Fisher
Scienti�c, Waltham, MA, USA), si-PSME1 and negative control si-
RNA were transiently transfected. si-PSME1 sequences were as
follows, sense. UGGAUUUGUACCAUUCUUCUG, antisense:
GAAGAAUGGUACAAAUCCAAG.
RNA extraction and quantitative real-time
PCR

Total RNA from NOK and FaDu cells was separated applying
RNA Extraction Kit (TRIzol, Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocols. The purity and
concentration of the total RNA were assessed, and cDNA
templates were generated using the HiScript II kit (Vazyme,
Nanjing, China). Quantitative real-time PCR (qRT-PCR) was
conducted using speci�c primers and the KAPA SYBR® FAST kit
(Sigma Aldrich, St Louis, MO, USA). GAPDH was an internal
control, and the 2-DDCT method was used for data analysis (35).
Table 1 shows the primer sequences of the speci�c genes.
Wound-healing experiment

Scratch and transwell assays were subsequently carried out to
examine the effect of PSME1 expression on FaDu cell migration and
invasion. For migration assays, collective cell migration was detected in
a wound healing assay. Transfected cells were inoculated into 6-well
T
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plates (5 × 105/ml). 2 ml of cell suspension was inoculated into 6-well
plates and incubated with 5% CO2 in an incubator at 37°C. When the
cell density was approximately 80%, the monolayer was scraped with a
10 mL plastic pipette tip to create a uniform wound. PBS was used to
wash the monolayers, which were then incubated in a non-FBS
medium. The wound edge distances between two edges of migrating
cell sheet were imaged at 0 h and 48 h, respectively. All the experiments
were conducted three times.
Transwell experiments

For the invasion assay, 1 × 105 cells were inoculated into the upper
chamber covered with 10% Matrigel (Corning, Inc., Corning, NY, USA)
for 24-h incubation. After the incubation, cells in the upper chamber
were eliminated by swabbing, while those on the lower chamber were
then �xed by 4% paraformaldehyde and dyed by 0.1% crystal violet
solution. These migrated or invaded cells in the lower chamber were
counted under a microscope using 6 different �elds of view (36).
Statistical tests

All statistical analyses were performed using Prism 8 (GraphPad
Software, San Diego, CA, USA) and R software version 3.6.0 ((R
Foundation, Vienna, Austria)). Wilcoxon rank-sum test was utilized to
calculate the difference between the two groups of continuous variables.
Correlations were calculated using the spearman method, and the log-
rank test was employed to compare the survival between patients in
each subgroup. p<0.05 was de�ned to be statistically different.
Result

WGCNA identi� es gene modules
associated with NMRG

Next, we used the ssGSEA method to determine each sample’s
NMRG score in the TCGA dataset. NMRG-related gene modules
were identi�ed using the R package “WGCNA”. To satisfy the scale-
free topology of the network, we selected a soft threshold power of
16 to construct the topological network (Figure 1A). 9 co-
expression modules were ultimately produced when the module
correlation was computed and the module contained a minimum of
ABLE 1 The sequences of primers for RT� qPCR used in this study.

Gene name Forward primer Reverse primer

ICOS 5’ CCCATAGGATGTGCAGCCTTTG 3’ 5’ GGCTGTGTTCACTGCTCTCATG 3’

PSME1 5’ TGATGACCAGCCTCCACACCAA 3’ 5’ TACTCTGCCTCATCCAGCTCGT 3’

SERPINA1 5’ TCTGAAGAGCGTCCTGGGTCAA 3’ 5’ GATGGTCAGCACAGCCTTATGC 3’

SH3KBP1 5’ GCAGTTCGCTATCTGGCATCCT 3’ 5’ GTCTGCTTGTGGTCGGATGACT 3’

SP100 5’ GGAGAAGAGCTTCAGGAAACCTG 3’ 5’ GGCTTCTTGGCACACCTTTTGG 3’

ZAP70 5’ CACTACGCCAAGATCAGCGACT 3’ 5’ GGCTGGAGAACTTGCGGAAGTT 3’

GAPDH 5’ TTGCCCTCAACGACCACTTT 3’ 5’ TCCTCTTGTGCTCTTGCTGG 3’
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60 genes (Figures 1B, C). Out of the 9 modules, the grey module had
a comparatively large number of genes, followed by the salmon
module, as seen in Figure 1D. The gene that was unable to aggregate
to other modules was known as the grey module. To select clinically
important modules, we calculated the correlation of each module
Frontiers in Immunology 05
with NMRG scores and plotted a heat map of module-shape
correlation. Among the nine modules, signi�cant strong positive
correlations were found between midnightblue and green modules
and NMRG scores (midnightblue: cor = 0.7, p = 7.87e-76; green: cor
= 0.49, p = 1.25e-31 and Figure 1E).
FIGURE 1

Construction of co-expression network for TCGA cohort. (A) Scale-free �t index analysis on different soft threshold powers (b), and average
connectivity analysis on different soft threshold powers. (B, C) Gene dendrograms based on dissimilarity metric (1-TOM) clustering. (D) Gene
numbers in each module. (E) Correlation of module eigenvectors with features for each module.
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Differential gene analysis and enrichment
analysis

Figure 2A shows the volcano map of DEGs. Next, we found
DEGs between HNSCC cases and control samples in the TCGA
dataset. In total, we found 1206 strongly down-regulated genes and
4954 signi�cantly up-regulated genes. After that, we found 359
intersecting genes by taking the genes of the midnightblue and
green modules and DEGs (Figure 2B). We used GO and KEGG to
enrich the intersecting genes in order to investigate their regulatory
involvement in the pathophysiology of HNSCC. According to
KEGG analysis, pathways such as epstein-barr virus infection and
cytokine-cytokine receptor interaction were signi�cantly enriched
with the intersecting genes (Figure 2C). GO enrichment analysis
showed that the BPs in which the intersecting genes were largely
involved were defense pathways, for instance, T cell activation and
defense response to another organism (Figure 2D). The CCs that
were mainly localized were side of the membrane, secretory granule
membrane, endocytic vesicle and other structures (Figure 2E). The
Frontiers in Immunology 06
MFs most signi�cantly enriched for intersecting genes were
pathways such as cytokine receptor activity and chemokine
activity (Figure 2F).
Prognostic model building and validation

To create the risk model, we split the TCGA-HNSCC samples into
training and test sets in a 5:5 ratio. For LASSO, its effectiveness hinges
on the sparsity assumption, which may not hold in the complex genetic
landscape of TCGA-HNSC, potentially causing misidenti�cation of
prognostic genes and coef�cient underestimation (37). Moreover, the
data-dependent variable selection process increases the risk of
over�tting. As for stepwise regression, the arbitrary selection criteria
based on statistical signi�cance, the order-dependence of variable entry/
removal, and the susceptibility to over�tting when the gene to sample
size ratio is high can all lead to suboptimal model performance and
biased results (38). In order to remove redundant confounding genes
and identify the genes that have the biggest in�uence on patients’
FIGURE 2

Functional enrichment analysis of DEGs with modular gene intersection genes. (A) Volcano map displaying the DEGs of tumor and normal group based
on TCGA cohort. (B) The intersection of differential genes and midnightblue and green module genes. (C-F) Results of enrichment analysis of
intersecting gene pathways.
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prognosis, the R package “survival” was employed to run univariate Cox
proportional risk regression on the aforementioned intersecting genes
using the training set data. To minimize the gene range in the risk
model, we compressed these genes using the “glmnet” package’s LASSO
Cox regression approach. To enhance the model generalization, we
further performed 10-fold cross-validation (Figure 3A). We then used
multifactorial stepwise regression analysis to determine which six
distinctive genes (ICOS, PSME1, SERPINA1, SH3KBP1, SP100 and
ZAP70) were independently linked to prognosis (Figure 3B).
Characteristics indicative of the prognostic outcomes in the TCGA-
HNSCC training set were developed based on the expressions of the
characterized genes and the regression coef�cients as described below:
Riskscore = (-0.685*ICOS) +0.749*PSME1 + 0.25*SERPINA1 +
0.41*SH3KBP1 + 0.24*SP100+(-0.368*ZAP70). Based on the best
critical value of the Riskscore, TCGA training set patients were
classi�ed into low-risk and high-risk groups. KM curves showed that
compared with the high-risk group, patients in the TCGA-HNSCC
training set (p< 0.0001), validation set (p< 0.0019), and the low-risk
group of the TCGA cohort (p< 0.0001) had better overall survival (OS)
(Figures 3C–E). To investigate the diagnostic accuracy of the prognostic
risk model, ROC analyses for 1-, 2-, 3-, 4- and 5-year prognostic
predictions were conducted using the “timeROC” R package. The
results indicated that the TCGA-HNSCC training set, test set, and
TCGA cohort displayed high AUC values at 1-, 2-, 3-, 4- and 5-years
(training set: 0.77, 0.78, 0.78, 0.75 and 0.7; test set: 0.59, 0.65, 0.59, 0.62
and 0.52; TCGA cohort: 0.68, 0.71, 0.69, 0.68 and 0.62, Figures 3F–H),
demonstrating good classi�cation accuracy for prognosis features.
Subsequently, we analyzed the expressions of the characterized genes
between patients in the low- and high-risk groups of the TCGA cohort.
ICOS and ZAP70 were low-expressed in the high-risk group than the
low-risk group, whereas PSME1, SERPINA1, SH3KBP1 and SP100 had
markedly higher expression in the high-risk group than the low-risk
group (Figure 3I).

We utilized the GSE41613 dataset to assess the model robustness
using comparable models and equivalence coef�cients to those utilized
in the training set to con�rm the stability and dependability of our
developed model using NMRG-related signature genes. The training
set �nding that the prognostic outcomes of high-risk HNSCC patients
were more unfavorable (p<0.0001, Figure 3J) was supported by the
validation data. For the 1-, 3- and 5-year periods, the GSE41613
validation set’s AUC values were 0.72, 0.73 and 0.74, respectively
Figure 3K). For patients with HNSCC, it showed that the prognostic
model had good prognostic prediction.
Mutation characterization in HNSCC high
and low-risk groups

We further analyzed the gene mutations in the low- and high-
risk groups. In the TCGA-HNSCC samples, we observed that in the
high-risk group, 141 (94%) HNSCC patients out of 150 samples
showed high-frequency mutations top 10 genes, of which the top 3
mutated genes were TP53 (73%), TTN (39%) and FAT1 (26%)
Frontiers in Immunology 07
(Figure 4A). In contrast, the top 10 mutated genes in HNSCC
patients showed mutations in 315 out of 344 samples (91.57%) in
the low-risk group, with TP53 as the gene with the most mutations
of 65% in the samples, followed by TTN and FAT1 in 39% and 21%
respectively (Figure 4B). Subsequently, we revealed the mutational
co-occurrence or mutual exclusion patterns between the top 10
mutant gene pairs in different risk subgroups of HNSCC,
respectively. Statistical results showed frequent co-occurrence
between the TNN gene with MUC16 gene, CDKN2A gene with
TP53 gene and FAT1 genes in the high-risk group (p < 0.05,
Figure 4C). Signi�cant co-occurrence was also shown in the low-
risk group, especially between TTN and SYNE1, LRP1B, MUC16
and CSMD3 (p < 0.05, Figure 4D). This may imply that the co-
occurring genes have a synergistic role in the associated
pathological processes.
Immunological characterization of HNSCC
high and low-risk groups

To analyze the association between the Riskscore and immune
microenvironment of HNSCC, we calculated immune cell
in�ltration using different methods. We �rst used ESTIMATE
algorithm to assess immune cell in�ltration and found that the
HNSCC high-risk group had lower immune in�ltration
(Figure 5A). Based on MCPcounter, the immune cell score was
calculated for the TCGA dataset. The results showed that the
myeloid dendritic cells, immune cell scores of T cells, B lineage,
CD8 T cells, cytotoxic lymphocytes were all lower in the high-risk
group (Figure 5B). Using the ssGSEA function of the R package
“GSVA”, the scores of 28 types of immune cells in HNSCC were
analyzed, and their correlations with Riskscore and signature genes
were computed. The data showed that Riskscore was closely
negatively linked to the scores of the majority of the immune
cells in HNSCC, including MDSC, immature B cells, activated CD8
T cells, mast cells, activated CD4 T cells, activated B cells. On the
other hand, the signature genes were positively linked to the scores
of the majority of the immune cells in HNSCC, while Riskscore was
closely negatively linked to the scores of most of the
cells (Figure 5C).
Differences in enriched pathways between
high and low-risk HNSCC subgroups

To investigate the differences in biological pathways in different
risk groups, we performed a KEGG pathway enrichment analysis of
DEG between high- and low-risk groups of HNSCC patients. Based
on the enrichment results, it was found that the high-risk group was
signi�cantly enriched in the pathways of the ribosome, proteasome,
and spliceosome (Figure 6A). Low-risk group was notably enriched in
metabolism-related pathways, including linoleic acid metabolism and
arachidonic acid metabolism (Figure 6B).
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FIGURE 3

Establishment of a prognosis model for HNSCC patients and validation. (A) A number of LASSO Cox shrinkage genes. (B) Multifactorial random forest
plot. (C) KM survival curves was plotted for the TCGA training data cohort. (D) KM survival curves was plotted for the TCGA validation cohort. (E) KM
survival curves was plotted for the TCGA cohort. (F) ROC curves for Riskscore in the TCGA training data cohort. (G) ROC curve for Riskscore in the
TCGA validation data cohort. (H) ROC curve of Riskscore in TCGA cohort. (I) The expressions of the prognosis genes in the TCGA cohort. (J) KM
survival curves of Riskscore in the GSE41613 cohort. (K) ROC curve of Riskscore in the GSE41613 cohort. ns, p > 0.05, not statistically signi�cant;
*p < 0.05; ***p < 0.001; ****p < 0.0001.
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