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analysis and clinical validation 
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Yi Qin1, Jin Yang Huang1*, Na Lin1* and Jie Wei3* 
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Guangxi, China, 2Department of Urology, Baise People’s Hospital, Baise, Guangxi, China, 3Department 
of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China 
Background: Respiratory syncytial virus (RSV) is a leading cause of severe lower 
respiratory infections in children, yet biomarkers for assessing disease severity 
remain limited. Herein, we investigated the differential expression biomarkers 
between RSV infected hospitalized patients, healthy groups and RSV 
infected outpatients. 

Methods: Two publicly available transcriptomic datasets (GSE77087 and 
GSE188427) were retrieved from the Gene Expression Omnibus (GEO) 
database. The GSE77087 dataset comprised peripheral blood samples from 81 
children with confirmed RSV infection (61 hospitalized and 20 outpatient) and 23 
healthy controls. The GSE188427 dataset included 147 RSV-infected children 
(113 hospitalized and 34 outpatient) and 51 healthy controls. Genes with |log2 
fold change (logFC)| > 0 and false discovery rate (FDR) < 0.05 were considered 
differentially expressed. Overlapping DEGs between the two datasets were 
identified using the VennDiagram package. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses 
were conducted on the intersecting DEGs via the clusterProfiler package, with 
terms deemed significant at FDR < 0.05.The CIBERSORT algorithm was applied 
to estimate the relative proportions of 22 immune cell types in 228 RSV-infected 
samples. Potential drug interactions for hug genes were predicted using the 
Drug-Gene Interaction Database (DGIdb). Competing endogenous RNA (ceRNA) 
networks were constructed using the SpongeScan database to identify lncRNAs 
interacting with the target miRNAs. Networks were visualized using Cytoscape 
(v3.10.1).Finally, Machine Learning-Based Biomarker Selection and hub gene 
identification and validation 

Results: Differential gene expression analysis revealed 81 overlapping genes 
between hospitalized and outpatient RSV-infected children. Machine learning 
models, particularly SVM (area under the curve, AUC = 0.950), prioritized CD79A 
and GADD45A as key predictors of hospitalization. CD79A was significantly 
downregulated in severe cases, correlating with impaired B-cell responses and 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1609183/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1609183/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1609183/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1609183/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1609183/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1609183/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1609183&domain=pdf&date_stamp=2025-07-03
mailto:2069564626@qq.com
mailto:15606856716@163.com
mailto:linna7766328@163.com
https://doi.org/10.3389/fimmu.2025.1609183
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1609183
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2025.1609183 

Frontiers in Immunology 
cytotoxic immunity, while GADD45A, upregulated in severe infections, linked to 
oxidative stress and neutrophil-driven inflammation. Immune cell profiling 
highlighted distinct infiltration patterns, with severe cases showing elevated 
naïve B cells and M0 macrophages versus activated NK cells and M1 
macrophages in mild cases. Clinical validation in 92 children confirmed CD79A 
suppression and GADD45A elevation in severe RSV (p < 0.001), aligning with 
younger age, lower weight, and respiratory distress. Functional enrichment 
implicated endoplasmic reticulum stress and neutrophil extracellular traps in 
disease progression. Drug-target predictions and ceRNA networks further 
revealed therapeutic potential. 

Conclusion: These findings establish CD79A and GADD45A as clinically 
actionable biomarkers for RSV severity, offering insights into immune 
dysregulation and guiding personalized management strategies. 
KEYWORDS 

RSV, biomarkers, CD79A and GADD45A, machine learning, severity assessment 
1 Introduction 

Human respiratory syncytial virus (RSV) is an enveloped, 
negative-strand RNA virus belonging to the Pneumoviridae 
family of the Mononegavirales order. RSV is a ubiquitous 
pathogen that affects people of all age groups, with a significant 
impact on the pediatric population. children, immunocompromised 
individuals, and the elderly are at risk of developing severe RSV 
infections. RSV exhibits a seasonal transmission pattern, typically 
peaking during the colder months in temperate regions, where RSV 
infections often reach their apex. RSV is a leading cause of severe 
acute lower respiratory infections (ALRI) among children 
worldwide (1). Bronchiolitis, primarily caused by various 
respiratory viruses and most commonly by RSV, is a major 
reason for children hospitalization (2). It is estimated that RSV 
causes approximately 100,000 deaths among children under 5 years 
old annually, with the highest death toll in developing countries (3). 
RSV also contributes to a significant disease burden among young 
children. In 2015, it was estimated that 3.2 million hospitalizations 
in this age group were due to RSV (4). Additionally, approximately 
500,000 hospitalizations and deaths were attributed to RSV-related 
acute respiratory infections among the elderly in 2015 (5). The only 
method to prevent bronchiolitis is palivizumab, a monoclonal 
antibody targeting the RSV virus. However, this medication is 
expensive, costing between $3,221 and $12,568 for protection 
during the entire RSV season (6). The percentage of pediatric 
intensive care unit(PICU)/high dependency unit (HDU) 
admissions is 11.6% for RSV alone, compared to 10.6% for the 
RSV-negative group, depending on the children’s birth weight and 
time of birth (7). 
02 
Based on RSV leading to lots of the children and elder people 
suffer acute respiratory infection, it will be demonstrated the overall 
cost burden of RSV on health services, supporting the need for 
prevention and improved clinical management. The most 
important is the with the better assessing the severity of RSV 
infection, especially for children RSV infected patients. 

Despite the clinical importance of RSV, current biomarkers for 
assessing disease severity remain limited. To date, previous study 
indicated that the innate immune system plays a crucial role in 
defending against RSV (8). Although some pattern recognition 
receptors (PRRs) in the innate immune system can sense RSV 
pathogen-associated molecular patterns (PAMPs) and induce 
interferon (IFN) production, nasal washes from RSV-infected 
children contain only low to undetectable levels of IFN-a and 
IFN-b (9, 10). This is unlike other respiratory viruses, such as 
influenza A virus and parainfluenza virus (11). Furthermore, 
monocytes from children with RSV-induced bronchiolitis 
produce very low levels of IFN-a (12). These finding indicated 
that the immune system response play the critical roles for RSV 
infection process. And the immune response can have a deep 
influence on the severity of RSV infection. However, these 
traditional biomarkers lack the specificity and sensitivity required 
to accurately predict disease progression and severity. 

There is an urgent need to understand the immune system 
status of RSV-positive and RSV-negative children and young 
children.  This  understanding  can  help  assess  whether  
hospitalization is necessary and evaluate the differences in the 
immune systems of patients with mild and severe RSV infections. 
To address these limitations, our study employs an integrated 
multi-omics approach combined with machine learning 
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algorithms. Unlike traditional methods that focus on individual 
biomarkers, machine learning can analyze complex datasets and 
identify patterns that are not immediately apparent. In this study, 
we first analyzed immune gene expression related to immune status 
in hospitalized and non-hospitalized RSV-positive children, as well 
as RSV-negative children, using public databases. Then, we 
constructed a model using machine learning to identify core 
differentially expressed molecular markers. Finally, we compared 
the clinical characteristics and test results of recent severe and non-
severe RSV-infected children in our hospital and validated the 
expression levels of the identified immune status-related 
molecular markers. Our aim is to individualize treatment for 
pediatric RSV patients, reduce the economic and medical burden 
on families and society, and explore potential drug targets to 
improve the efficacy of RSV infection treatment. 
2 Materials and methods 

2.1 Data collection 

We downloaded the GSE77087 dataset from the GEO database, 
which includes blood samples from 81 children diagnosed with 
respiratory syncytial virus (RSV) infection on the first day of 
diagnosis (20 outpatient and 61 inpatient) and 23 blood samples 
from children without RSV infection. Another dataset, GSE188427, 
contains blood samples from 147 children diagnosed with RSV 
infection on the first day of diagnosis (34 outpatient and 113 
inpatient) and 51 blood samples from children without 
RSV infection. 

We selected the GSE77087 and GSE188427 datasets based on 
the following considerations. 
Fron
1. Both datasets are derived from peripheral blood samples 
with relatively large sample sizes, comprising 81 patients 
(61 hospitalized with severe RSV infection and 20 
outpatient with mild symptoms) and 23 healthy controls 
in GSE77087, and 147 patients (113 hospitalized, 34 
outpatient) and 51 healthy controls in GSE188427, which 
provides a solid statistical foundation; 

2. GSE77087 was generated using the Illumina HumanHT-12 
V4.0 expression beadchip platform (GPL10558), while 
GSE188427 was generated using the Affymetrix Clariom 
S Pico Assay HT platform (GPL25336). The use of distinct 
representative platforms facilitates validation of findings 
across platforms; 

3. All patients were confirmed cases of RSV infection and were 
categorized into inpatient (severe) and outpatient (mild) 
groups. Peripheral blood samples were collected on the day 
of diagnosis, minimizing time-related variability. 
Thus, these two datasets are complementary and suitable for 
identifying transcriptomic differences between severe and mild RSV 
infection in pediatric patients. 
tiers in Immunology 03 
2.2 Differential gene expression analysis 
between inpatient and outpatient children 

We used the ‘sva’ package (https://bioconductor.org/packages/ 
release/bioc/html/sva.html ) in R (version 4.3.1) to perform batch 
correction and normalization independently for each dataset. Batch 
effects were removed using the ‘ComBat’ function (parameters 
batch = platform, mod = NULL), followed by z-score 
standardization of the combined expression matrix to ensure 
comparability across platforms. The resulting corrected 
expression matrix was used for downstream DEG identification 
and analyses. Differential genes expression (DEGs) analysis was 
conducted using the limma package (https://bioconductor.org/ 
packages/release/bioc/html/limma.html), with a filtering criterion 
of absolute logFC > 0 and a false discovery rate (FDR) value < 0.05 
to identify DEGs. The intersection of DEGs from the GSE77087 and 
GSE188427 datasets was obtained using the VennDiagram package 
for subsequent analysis. 
2.3 Functional enrichment analysis of DEGs 
between inpatient and outpatient children 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional enrichment analyses were performed 
on the DEGs between inpatient and outpatient children using the 
org.Hs.eg.db and clusterProfiler packages (https://bioconductor.org/ 
packages/release/data/annotation/html/org.Hs.eg.db.html). 
2.4 Machine learning-based feature gene 
selection for RSV 

To obtain more information for predicting whether a child 
requires hospitalization, we combined the GSE77087 and 
GSE188427 datasets. We then applied machine learning 
algorithms, including Extreme Gradient Boosting (XGB), Random 
Forest (RF), Generalized Linear Models (GLM), and Support Vector 
Machines (SVM), using the insertSymbol, randomForest, xgboost, 
and kernlab packages to construct prediction models. Model 
optimization was based on the residual inverse cumulative 
distribution, minimum residual root mean square (RMSE), and 
receiver operating characteristic (ROC) curve area (AUC). Bar 
charts generated by the rms package were used to identify key 
genes in the prediction model. We selected the model with the 
smallest residual inverse cumulative distribution, the smallest 
RMSE, and the largest AUC for subsequent analysis. 
2.5 Identification of hub RSV genes and 
their expression and diagnostic value 

We performed differential gene expression analysis between 
RSV patients and normal controls in the GSE77087 and GSE188427 
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datasets. The intersection of the identified DEGs, the feature genes 
from the SVM model, and the DEGs between inpatient and 
outpatient children was used to obtain key hub genes. Data batch 
correction and merging were performed using the sva package, and 
expression levels of hub genes in normal, outpatient, and inpatient 
children were analyzed. We also used the pROC package to generate 
ROC curves to evaluate the diagnostic accuracy of determining the 
need for hospitalization based on the expression levels of hub genes. 
2.6 Immune cell infiltration analysis in RSV 
between outpatient and inpatient children 

To analyze immune cell differences between outpatient and 
inpatient children, we used the CIBERSORT algorithm (https:// 
cibersort.stanford.edu/) to calculate the relative content of 22 
immune cell types in 228 RSV patients. We also analyzed the 
correlation between the expression levels of hub genes and the 
extent of immune cell infiltration. 
2.7 Potential drug targets and ceRNA 
network construction for hub genes 

Potential drug targets for hub genes were predicted using the 
Drug-Gene Interaction Database (DGIdb) (https://www.dgidb.org/ 
), and visualized using Cytoscape (version 3.10.1). We then used 
four databases (miRDB, miRanda, miRwalk, and TargetScan) to 
predict potential target miRNAs for the key genes. Only miRNAs 
identified in all four databases were considered candidate miRNAs. 
We subsequently used the SpongeScan database to predict lncRNAs 
associated with the target miRNAs. A ceRNA network consisting of 
mRNA-miRNA-lncRNA was constructed using Cytoscape (https:// 
cytoscape.org/). 
 

2.8 Validation analysis 

We selected the sever RSV infected child patients and not severe 
RSV infected patients to compared the clinical characters, and 
collected their peripheral blood to perform PCR to explored the 
CD79A and GADD45A expression levels in RSV infected child 
patients and not severe RSV infected child patients. Total RNA was 
extracted from THP-1 and K562 cells using TRIzol reagent 
(Invitrogen). RNA integrity and quantity were confirmed by agarose 
gel electrophoresis and Nanodrop spectrophotometer (Thermo Fisher 
Scientific). High-quality RNA (A260/A280 ratio 1.8-2.0) was reverse-
transcribed into cDNA using the PrimeScript RT reagent Kit (Takara 
Bio) following the manufacturer’s protocol. Primers for ER stress 
markers (HSP90AA1, ATF6, XBP1, IRE1, PERK, CHOP) and 
GAPDH were designed using Primer3 software and synthesized by 
Sangon Biotech. Primer sequences are listed in Table 1.qRT-PCR was 
performed using SYBR Green Real-time PCR Master Mix (Toyobo) 
on an ABI 7500 system (Applied Biosystems). The 20-µL reaction 
mixture included 10 µL SYBR Green  Master  Mix,  0.4 µL of each
Frontiers in Immunology 04
primer (10 µM), 2 µL cDNA template, and 7.2 µL RNase-free water. 
Thermal cycling 95°C for 30 s, followed by 40 cycles of 95°C for 5s and 
60°C for 34s. Melting curve analysis verified product specificity. 
Relative gene expression levels were calculated using the 2^−DDCt 
method, normalized to GAPDH. Each sample was run in triplicate, 
and experiments were repeated three times independently. 
2.9 Statistical analysis 

Continuous variables were expressed as median (interquartile 
range) and compared using the Mann-Whitney U test or Wilcoxon 
rank-sum test. Categorical variables were expressed as frequencies and 
percentages, and compared using the chi-square test or Fisher’s exact  
test. For differential gene expression analysis, the limma package was 
used to compute log2 fold changes, and p-values were adjusted using the 
Benjamini-Hochberg  method  (FDR  <0.05  considered  
significant).Model performance was evaluated by receiver operating 
characteristic (ROC) curves and  quantified  by  the area under  the curve  
(AUC); comparisons of AUCs were performed using DeLong’s test.  For  
immune cell proportion data from CIBERSORT, group comparisons 
were performed using Wilcoxon rank-sum tests, and correlations were 
assessed by Spearman’s rank correlation coefficient. All analyses were 
conducted in R version 4.3.1. Gene expression analyses utilized the 
limma, sva, and edgeR packages; machine learning algorithms were 
implemented using kernlab, randomForest, and xgboost; ROC analyses 
and DeLong tests were conducted using the pROC package. Data 
visualization was performed using ggplot2 and ComplexHeatmap. A 
two-sided p-value < 0.05 was considered statistically significant. 
3 Results 

3.1 Differential gene expression analysis 
between outpatient and inpatient children 

Differential expression analysis revealed significant differences in 
gene expression between blood samples from outpatient and 
inpatient children on the first day of diagnosis in RSV-infected 
children. In the GSE77087 dataset, a total of 15,497 DEGs were 
identified, with 8,071 upregulated and 7,426 down-regulated genes 
(Figures 1A, B). In the GSE188427 dataset, 151 DEGs were identified, 
with 63 up-regulated and 88 downregulated genes (Figures 1C, D). 
This comparison was conducted to preliminary analyze potential 
molecular markers that differentiate severely ill children with RSV 
infection from those with mild RSV infection, and to explore whether 
there are markers that can distinguish disease severity. 
3.2 Functional enrichment analysis of 
differential genes between outpatient and 
inpatient children 

Venn diagram analysis showed that the intersection of DEGs 
from the GSE77087 and GSE188427 datasets consisted of 81 DEGs, 
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which were considered potential biomarkers for differentiating 
children requiring hospitalization (Figure 2A). GO and KEGG 
functional enrichment analyses of the 81 DEGs indicated that 
they were primarily involved in biological processes such as 
response to endoplasmic reticulum stress, protein folding, 
response to estradiol, viral genome replication, and hydrogen 
peroxide catabolic process. These genes were also enriched in 
cellular components including specific granules, endocytic vesicle 
lumen, specific granule lumen, melanosome, and endoplasmic 
reticulum chaperone complex. Additionally, they were associated 
with molecular functions such as unfolded protein binding, 
lipopolysaccharide binding, peroxidase activity, oxidoreductase 
activity acting on peroxide as acceptor, and diacylglycerol binding 
(Figure 2B). KEGG pathway analysis showed that these DEGs were 
involved in protein processing in endoplasmic reticulum, antigen 
processing and presentation, natural killer cell mediated 
cytotoxicity, efferocytosis, neutrophil extracellular trap formation, 
transcriptional misregulation in cancer, graft−versus−host disease, 
FoxO signaling pathway, apoptosis, and melanoma pathways 
(Figure 2C). These results highlight the significant role of RSV 
infection in immune regulation. 
3.3 Machine learning-based feature gene 
selection for RSV 

After performing Venn analysis on the DEGs identified from 
GSE77087 and GSE188427, we selected the intersecting genes as 
Frontiers in Immunology 05 
candidate features. Subsequently, machine learning algorithms 
(XGBoost, RF, GLM, and SVM) were applied to prioritize key 
genes for predictive modeling. The SVM model was identified as the 
optimal model, based on the smallest RMSE (Figure 3A), smallest 
residual inverse cumulative distribution (Figure 3B), and the highest 
ROC curve AUC value (0.950) (Figure 3C), demonstrating high 
diagnostic accuracy. A total of 10 key genes were selected for further 
analysis, with high importance in the model (Figure 3D). 
3.4 Identification and expression analysis of 
hub RSV genes 

We first performed differential gene expression analysis 
between RSV-infected children and normal controls in the 
GSE77087 and GSE188427 datasets. In the GSE77087 dataset, a 
total of 5,269 DEGs were identified, with 2,153 upregulated and 
3,116 downregulated genes (Figures 4A, B). In the GSE188427 
dataset, 4,893 DEGs were identified, with 2,124 upregulated and 
2,769 downregulated genes (Figures 4C, D). By intersecting the 
differential genes between normal and RSV-infected children, the 
differential genes between outpatient and inpatient children, and 
the feature genes from the SVM model, we identified two hub genes, 
CD79A and GADD45A (Figure 4E). 

Compared to normal control blood samples, CD79A was 
significantly downregulated in RSV-infected children, particularly 
in inpatient children (Figures 5A, B). ROC curve analysis 
demonstrated that the expression level of CD79A could effectively 
TABLE 1 Clinical baseline characteristics. 

Parameter Severe General X2 Z P 

Gender (n) Male 18 39 0.072 — 0.788 

Female 12 23 

Term Children (n) Yes 27 57 0.095 — 0.757 

No 3 5 

Dwelling environment (n) Village 19 31 1.449 — 0.229 

City 11 31 

Background disease (n) Yes 4 1 3.364 — 0.067 

No 26 61 

Pant (n) Yes 14 9 11.146 — 0.001 

No 16 53 

Fever (n) Yes 16 38 0.528 — 0.467 

No 14 24 

Increased C-reactive protein (n) Yes 11 21 0.07 — 0.792 

No 19 41 

Age (years) M (P25,P75) 0.4 (0.3, 0.8) 0.9 (0.6, 2.0) — 3.9 <0.0001 

Hospitalized weight (kg) M (P25,P75) 7.35 (5.5, 9.0) 9.0 (7.5, 11.7) — 3.78 <0.0001 

Length of stay M (P25,P75) 8.0 (7.0-10.3) 6.0 (5.0-6.0) — 5.38 <0.0001 
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distinguish between inpatient and outpatient children, with an AUC 
value of 0.758 (Figure 5C). 

In contrast, GADD45A was significantly upregulated in RSV-
infected children, particularly in inpatient children (Figures 5D, E). 
ROC curve analysis showed that the expression level of GADD45A 
could also effectively differentiate between inpatient and outpatient 
children, with an AUC value of 0.716 (Figure 5F). 
3.5 Immune cell infiltration analysis 

To ensure compatibility across platforms for immune cell 
infiltration analysis, we first performed batch correction. Then, the 
log2-RMA normalized values (from Affymetrix microarray, 
GSE77087) and the log2(CPM+1) values (from RNA-seq, 
GSE188427) were converted back to linear scale (i.e., 2^expression 
or CPM+1). The combined expression matrix was then standardized 
using z-score normalization and submitted as input to the 
CIBERSORT algorithm. CIBERSORT requires non-log-transformed 
Frontiers in Immunology 06
expression data, and we ensured compliance with this requirement 
during preprocessing. Using the CIBERSORT algorithm, we 
calculated the relative immune cell infiltration of 228 RSV-infected 
children (Figure 6A). The results showed that the immune cell 
infiltration profiles of inpatient children were significantly different 
from those of outpatient children. In inpatient children, the relative 
content of naïve B cells and M0 macrophages was higher, while 
outpatient children showed higher levels of memory B cells, activated 
plasma cells, activated NK cells, M1 macrophages, and activated 
dendritic cells (Figure 6B). Correlation analysis between hub gene 
expression and immune cell infiltration levels showed that CD79A 
expression positively correlated with the infiltration of naïve B cells, 
activated NK cells, memory B cells, and CD8+ T cells, while 
negatively correlating with the infiltration of resting CD4+ T cells, 
neutrophils, M2 macrophages, and M0 macrophages (Figure 6C). 
GADD45A expression positively correlated with neutrophil, M0 
macrophage, M2 macrophage, and activated mast cell infiltration, 
and negatively correlated with M1 macrophages, activated NK cells, 
naïve CD4+ T cells, and CD8+ T cell infiltration (Figure 6D). 
FIGURE 1 

Differential gene expression analysis between outpatient and inpatient children with RSV. (A, B) Heatmap and volcano plots showing DEGs in the 
GSE77087 dataset between outpatient and inpatient children on the first day of diagnosis. (C, D) Heatmap and volcano plots for the GSE188427 
dataset showing DEGs between outpatient and inpatient children. 
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3.6 Potential drug targets and ceRNA 
network construction for hub genes 

We predicted potential drug targets for the hub genes using the 
DGIdb database. For CD79A, we identified a clear drug target 
inhibitor, DIOA. For GADD45A, we predicted 7 drugs, including 
BRIVUDINE PHOSPHORAMIDATE, GENISTEIN, CISPLATIN, 
DOXORUB IC IN  HYDROCHLORIDE ,CGS - 2 7 0 2 3A ,  
WORTMANNIN,  and  TROGLITAZONE  (Figure  7A).  
Furthermore, we constructed a ceRNA network consisting of 2 
hub gene mRNAs, 28 miRNAs, and 87 lncRNAs (Figure 7B), 
revealing potential regulatory mechanisms of these genes in RSV 
infection and providing targets for future therapeutic strategies. 
3.7 Validation analysis 

The clinical baseline characteristics of severe and non-severe 
RSV-infected children are summarized in Table 1. Among the 30 
severe cases and 62 non-severe cases, no significant differences were 
observed in gender distribution (male: 60.0% vs. 62.9%, (p = 0.788), 
Frontiers in Immunology 07 
term birth status (90.0% vs. 91.9%, (p = 0.757), dwelling 
environment (63.3% rural vs. 50.0% urban, (p = 0.229), or 
presence of background diseases (13.3% vs. 1.6%,(p = 0.067). 
However, severe cases exhibited significantly younger age (median 
age: 0.4 years [IQR: 0.3–0.8] vs. 0.9 years [IQR: 0.6–2.0], (p < 
0.0001), lower hospitalized weight (median: 7.35 kg [IQR: 5.5–9.0] 
vs. 9.0 kg [IQR: 7.5–11.7], (p < 0.0001), and longer hospital stays 
(median: 8.0 days [IQR: 7.0–10.3] vs. 6.0 days [IQR: 5.0–6.0],(p < 
0.0001)). Additionally, severe cases had a higher incidence of 
panting (46.7% vs. 14.5%,(p = 0.001), but no differences were 
observed in fever or elevated C-reactive protein levels. These 
findings highlight age, weight, and respiratory distress (panting) 
as critical clinical indicators of RSV severity. 
3.8 Real-time PCR validation of CD79A and 
GADD45A expression levels 

Real-time PCR analysis confirmed that CD79A expression was 
significantly down-regulated in RSV-infected children compared to 
healthy controls (p < 0.001). In contrast, GADD45A expression was 
FIGURE 2 

Venn diagram and functional enrichment of differential genes. (A) Venn diagram showing the overlap of DEGs between GSE77087 and GSE188427, 
identifying 81 common DEGs as potential biomarkers. (B) GO enrichment analysis of the 81 DEGs. (C) KEGG pathway analysis of the 81 DEGs. 
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markedly upregulated in RSV-infected children, particularly in 
severe (inpatient) cases (p < 0.001). And CD79A and GADD45A 
expression levels are significant up-regulation in sever RSV infected 
children (p < 0.001) (Figures 8A–D). 
4 Discussion 

The present study identified CD79A and GADD45A as novel 
biomarkers capable of distinguishing severe from non-severe RSV 
infections in children and young children. Although a relatively 
lenient threshold of |log2FC| > 0 was used initially, supplementary 
analyses confirmed that the key genes (e.g., CD79A, GADD45A) 
remained significant when applying a stricter |log2FC| > 1 (FDR < 
0.05) criterion. Considering the sample size and cross-platform 
variability, we opted for a sensitive initial threshold to avoid 
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omitting biologically relevant genes with modest fold changes. 
This strategy was complemented by machine learning-based 
prioritization to enhance biological relevance and predictive 
utility. Integration analysis of transcriptomic datasets, machine 
learning-based feature selection, and clinical validation, these 
genes demonstrated significant differential expression patterns 
and diagnostic utility in predicting hospitalization needs. The 
findings provide critical insights into the molecular mechanisms 
underlying RSV severity and highlight the interplay between host 
immune responses and viral pathogenesis. Below, we contextualize 
these results within the broader understanding of RSV 
immunobiology, discuss their biological plausibility, and explore 
their implications for understanding disease progression. 

CD79A, a component of the B-cell receptor (BCR) complex, 
plays a pivotal role in B-cell development and antigen presentation 
(13). Its down-regulation in RSV-infected inpatients aligns with 
FIGURE 3 

Machine learning model performance. (A) Residual RMSE for four machine learning models (XGB, RF, GLM, SVM). (B) Residual reverse cumulative 
distribution for each model. (C) ROC curve for each model. (D) key genes of high importance in each model. 
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previous observations of impaired B-cell function during severe 
viral infections. Reduced CD79A expression may reflect B-cell 
exhaustion or dysregulated humoral immunity (14), limiting the 
production of neutralizing antibodies and exacerbating RSV-
induced pathology. This hypothesis is further supported by 
immune cell infiltration analysis, which revealed lower levels of 
Frontiers in Immunology 09
memory B cells and activated plasma cells in hospitalized children. 
These cell types are critical for mounting adaptive immune 
responses, and their suppression could prolong viral persistence, 
increase inflammation, and necessitate prolonged hospitalization. 
The positive correlation between CD79A expression and activated 
NK cells or CD8+ T cells further underscores its role in 
FIGURE 4
 

Hub genes identification. (A, B) Heatmap and volcano plots showing DEGs in GSE77087 between RSV-infected children and controls.
 
(C, D) Heatmap and volcano plots showing DEGs in GSE188427 between RSV-infected children and controls. (E) Venn diagram showing hub genes
 
identified from venn analyses: CD79A and GADD45A.
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FIGURE 5 

Expression and diagnostic value of hub genes. (A, B) Boxplot of CD79A expression levels in normal blood sample, RSV-infected outpatient children, 
and inpatient children. (C) ROC curve for CD79A in distinguishing inpatient from outpatient children (AUC = 0.758). (D, E) Boxplot of GADD45A 
expression levels in normal blood sample, RSV-infected outpatient children, and inpatient children expression. (F) ROC curve for GADD45A in 
distinguishing inpatient from outpatient children (AUC = 0.716). 
FIGURE 6 

Immune cell infiltration in RSV-infected children. (A) Relative abundance of 22 immune cell types in 228 RSV-infected children. (B) Comparison of 
immune cell infiltration between outpatient and inpatient children. (C) Correlation between CD79A expression and immune cell infiltration. 
(D) Correlation between GADD45A expression and immune cell infiltration. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 
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coordinating cytotoxic immune responses, which are essential for 
viral clearance (15–17).Conversely, its negative association with M0 
macrophages and neutrophils suggests that CD79A downregulation 
may contribute to unresolved inflammation, a hallmark of severe 
RSV infections. 

GADD45A, a stress-response gene involved in DNA repair and 
apoptosis (18), exhibited marked upregulation in hospitalized RSV 
patients. This finding aligns with studies linking GADD45A 
overexpression to cellular damage caused by viral replication. 
RSV induces oxidative stress and endoplasmic reticulum (ER) 
disturbances in infected epithelial cells, triggering pathways such 
as the unfolded protein response (UPR) (19). The GO and KEGG 
analyses in this study highlighted ER stress and protein folding as 
enriched pathways among differentially expressed genes (DEGs), 
providing a plausible mechanistic link between GADD45A 
activation and RSV severity. Furthermore, GADD45A’s positive 
correlation with neutrophils and M0 macrophages cell types 
associated with tissue damage and pro-inflammatory cytokine 
production suggests its involvement in amplifying inflammatory 
cascades. Neutrophil extracellular trap (NET) formation, another 
enriched pathway, is known to exacerbate lung injury in severe RSV 
cases. Funchal GA et al. research RSV fusion protein promotes 
human neutrophil extracellular trap formation through a Toll-like 
receptor 4-dependent mechanism and exacerbate inflammatory 
symptoms in young children and children (20). Moreover, 
Cortjens B.et al revealed that Neutrophil extracellular traps cause 
airway obstruction during respiratory syncytial virus disease 
(21).Compared with the healthy people, the expression levels of 
GADD45a were up-regulated in RSV infected and the hospitalized 
RSV patients, these indicated that GADD45A may drive NET 
formation in RSV infected patients and leading to the 
disease progression. 

The role of GADD45A and CD79A have the significant 
regulation for inflammation and the cell stress response, and 
these biological process main parts are immune cells. Herein, we 
further explored the association immune cell infiltration and 
Frontiers in Immunology 11 
severity RSV patients. The immune cell infiltration profiles 
revealed distinct patterns between outpatient and inpatient 
cohorts. Hospitalized children exhibited higher proportions of 
naïve B cells and M0 macrophages, indicative of an immature or 
suppressed immune state. Naïve B cells require activation to 
differentiate into antibody-producing plasma cells or memory 
cells, and their predominance in severe cases may reflect a failure 
to transition to adaptive immunity.M0 macrophages, which can 
polarize into pro-inflammatory M1 or anti-inflammatory M2 
subtypes, were more abundant in inpatients, suggesting 
unresolved polarization that perpetuates inflammation. In 
contrast, outpatient profiles featured elevated memory B cells, 
activated NK cells, and M1 macrophages, all of which are 
associated with effective viral containment. These findings align 
with previous reports that robust NK cell activity correlate with 
milder RSV outcomes (22). Enhanced innate immune activation 
induces protective RSV-specific lung-resident memory T cells in 
neonatal mice (23). The inverse relationship between GADD45A 
expression and M1 macrophages further supports the notion that 
cellular stress pathways inhibit protective immune responses, 
creating a permissive environment for viral proliferation, the 
same results can be found in the An L et al. Study showed that 
Qingdian Oral Liquid promotes fatty acid-dependent M1 to M2 
macrophage polarization via the Akt signaling pathway, thereby 
alleviating RSV-induced lung inflammation (24). 

All of the biological process may be regulated by various 
moleculars, and these molecular regulated by each other compose 
the pathways. In order to learn these DEGs’ as the parts of what 
signaling pathways and their biological functions. The 81 
overlapping DEGs enrichment functions in pathways related to 
ER stress, viral genome replication, and hydrogen peroxide 
catabolism. ER stress is a well-documented consequence of RSV 
infection, as viral proteins overload the ER’s protein-folding

capacity, activating the UPR (25). Persistent ER stress triggers 
apoptosis and inflammatory signaling, which may explain the 
prolonged hospitalization observed in severe cases (19). The 
FIGURE 7 

Drug targets and ceRNA network for core genes. (A) Predicted drug targets for CD79A and GADD45A using the DGIdb database. (B) ceRNA network 
for CD79A and GADD45A, including mRNAs, miRNAs, and lncRNAs. 
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association of DEGs with hydrogen peroxide catabolism underscores 
the role of oxidative stress in RSV pathology. RSV infection generates 
reactive oxygen species (ROS), which damage host cells and promote 
viral replication (26). GADD45A’s involvement in oxidative stress 
responses may exacerbate this cycle, leading to tissue damage and 
clinical deterioration. Additionally, the enrichment of pathways like 
Frontiers in Immunology 12 
‘Natural killer cell mediated cytotoxicity’ and ‘Apoptosis’ highlights 
the dual role of immune activation-protective in mild cases but 
destructive when dysregulated in severe infections. 

The ROC curve analyses demonstrated that CD79A and 
GADD45A expression levels effectively differentiated inpatient 
from outpatient children, with AUC values of 0.758 and 0.716, 
FIGURE 8 

The qPCR validation CD79A and GADD45A expression levels in sever RSV infection children and no sever children. (A) CD79A expression significantly 
higher in RSV group than Control. (B) GADD45A expression significantly higher in RSV group. (C) CD79Aexpression higher in Hospitalization than 
Outpatient. (D) GADD45A expression higher in Hospitalization. Asterisks indicate statistical significance. ****p<0.0001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1609183
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1609183 

 

respectively. While these values indicate moderate diagnostic 
accuracy, their combination with clinical parameters (e.g., age, 
weight, and C-reactive protein levels) could enhance predictive 
power. CD79A’s down-regulation in severe cases may serve as an 
early warning sign of inadequate B-cell responses, whereas 
GADD45A up-regulation could signal escalating cellular stress. 
These biomarkers complement existing clinical criteria, offering a 
molecular basis for triaging RSV patients. 

Previous studies have identified immune-related genes, such as IFNs 
and chemokines, as potential biomarkers for RSV severity (27).However, 
the novelty of CD79A and GADD45A lies in their specific association 
with hospitalization needs rather than general infection status. For 
instance, while IFN-gis recognized as a key antiviral cytokine in RSV, 
its suppression in lung epithelia limits its diagnostic utility. In contrast, 
CD79A and GADD45A reflect broader immune and cellular stress 
pathways, making them more robust indicators of disease progression. 
The correlation between CD79A and B-cell subsets aligns with reports of 
B-cell depletion in severe RSV, while GADD45A’s role in oxidative stress 
mirrors findings in other viral infections, such as Epstein-Barr virus and 
SARS-CoV-2 (28, 29). This study has several limitations. First, the 
analysis relied on blood transcriptomes, which may not fully capture 
tissue-specific responses in the respiratory tract. Second, the sample size, 
though adequate for machine learning models, requires expansion to 
validate generalizability. Third, the functional roles of CD79A and 
GADD45A in RSV pathogenesis remain hypothetical; mechanistic 
studies in vitro or in animal models are needed to establish causality. 
Finally, Some patients with RSV infection were co-infected with other 
viral or bacterial pathogens, which may contribute to the complexity of 
assessing disease severity in RSV patients. These co-infections could 
introduce additional molecular markers that confound the evaluation of 
RSV-specific severity. However, in this study, we specifically included 
only cases with single RSV infections, both in patients with mild and 
severe RSV infections, to minimize this confounding effect. Due to the 
small sample size, further follow-up studies with larger cohorts are 
needed to validate our findings and better understand the impact of co
infections on RSV severity assessment. 
5 Conclusion 

In summary, this study identified CD79A and GADD45A as 
potential biomarkers for assessing the severity of RSV infection. Their 
expression patterns reflect critical aspects of host-pathogen 
interactions, including B cell dysfunction, oxidative stress, and 
endoplasmic reticulum (ER) dysfunction. By integrating 
transcriptomic data with clinical parameters, these biomarkers 
provide a robust framework for stratifying RSV patients and 
facilitating the development of personalized intervention strategies. 
For patient risk stratification, measuring the expression levels of 
CD79A and GADD45A enables clinicians to more accurately predict 
the severity of RSV infection and to identify high-risk patients who 
are more likely to experience severe outcomes. In guiding treatment 
decisions, these biomarkers help determine the need for 
hospitalization, the appropriate intensity of supportive care, and 
the potential use of antiviral or anti-inflammatory therapies. For 
Frontiers in Immunology 13 
monitoring disease progression, continuous assessment of CD79A 
and GADD45A expression may provide insights into the clinical 
course and treatment efficacy. Future studies should focus on 
elucidating the precise molecular mechanisms through  which
CD79A and GADD45A influence RSV pathophysiology. 
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