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Background: Pleomorphic giant cell adenocarcinoma (PGCA) of the prostate is a

rare, aggressive variant characterized by multinucleated giant cells, sarcomatoid

features, and resistance to conventional therapies. Despite its recognition in the

WHO 2016 guidelines, themolecular drivers and clinicopathological correlates of

PGCA remain poorly characterized. This study presents the first integrative

clinicogenomic profiling of PGCA, revealing a novel prognostic gene signature

with direct implications for diagnosis and treatment.

Methods:We conducted comprehensive clinicopathological and genomic analyses

of a treatment-refractory PGCA case using histology, immunohistochemistry (IHC),

whole-exome sequencing (WES), clonal evolution modeling, and multicohort

validation. IHC assessed key prostate cancer markers (AR, AMACR, KLK3, PTEN,

NKX3-1, VIM), while WES compared somatic alterations in PGCA, adjacent

adenocarcinoma, and stromal tissue. Public datasets (prostate_dkfz_2018,

prad_tcga, prad_mcspc_mskcc_2020) were used for external validation.

Results: PGCA displayed profound pleomorphism, necrosis, and complete loss

of luminal markers (AR/AMACR/KLK3), along with strong vimentin (VIM)

expression, consistent with epithelial–mesenchymal transition. WES revealed

PGCA-specific mutations enriched in cell-cycle and inflammatory response

pathways, distinct from metabolic alterations in the adjacent adenocarcinoma.

Clonal evolution analysis showed divergent progression from a shared ancestral

clone. Importantly, mutations in ADAMTS7, CDH1, DRD5, MGAT5, and TP53

emerged as a robust five-gene signature predictive of biochemical recurrence,

metastasis, and poor survival, validated across multiple independent cohorts.
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Conclusion: Our study provides the first molecular roadmap of prostatic PGCA

to date, establishing a novel five-gene prognostic signature and revealing

fundamental insights into its pathogenesis through divergent evolution from

conventional adenocarcinoma. These insights offer new opportunities for

precise diagnosis, prognostic stratification, and targeted therapeutic strategies

for this lethal prostate cancer variant.
KEYWORDS

prostate cancer genomics, pleomorphic giant cell adenocarcinoma, divergent tumor
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Introduction

Pleomorphic giant cell adenocarcinoma (PGCA) is a rare and

highly aggressive malignancy that has been identified in various

organs, including the lung, pancreas, thyroid, bladder, and prostate

(1–5). In the context of prostate, PGCA is histologically

characterized by the presence of bizarre multinucleated giant

cells, marked nuclear atypia, and sarcomatoid differentiation,

setting it apart from the conventional prostatic adenocarcinoma

(6). With the increasing number of similar cases reported in

prostate, PGCA was classified by the World Health Organization

(WHO) 2016 as a variant of prostatic adenocarcinoma (7).

Clinically, prostatic PGCA manifests with non-specific symptoms

such as urinary obstruction, hematuria, and pelvic pain, yet

distinguishes itself through rapid progression, early metastasis to

bones and visceral organs, and a median survival of less than 12

months post-diagnosis (8). In comparison, patients with

conventional prostatic adenocarcinoma harboring high-grade

Gleason scores (9, 10) exhibit a mortality rate of less than 10%

within 4 years post-diagnosis following standard therapeutic

interventions (9, 10).

Therapeutic management of prostatic PGCA remains a

significant challenge due to its intrinsic resistance to conventional

treatments for prostate cancer (PCa), including androgen

deprivation therapy (ADT), chemotherapy, and radiation (11).

Moreover, previous treatments may even be responsible for the

clonal evolution of PGCA, particularly ADT (6). Compounded by

the inefficacy of immunotherapy in most advanced PCa cases (12–

14), no currently therapeutic options can bring progression-free

survival (PFS) and overall survival (OS) benefits. As an

exceptionally rare entity, only approximately 50 cases have been

reported in the medical literatures, accounting for <0.1% of all

prostatic malignancies (15). Given this rarity, prostatic PGCA often

presents significant treatment challenges, exacerbated by its

aggressive nature and poor prognosis, underscoring the need for

more comprehensive data on this rare pathologic entity.

Histopathological analyses reveal a high mitotic index, extensive

necrosis, and heterogeneous cellular architecture, features that

correlate with its aggressive phenotype (15, 16). Limited available
02
molecular data have identified a variety of gene alterations such as

PTEN loss; TP53, BRAC2, and PIK3CA mutation; and TMPRSS2–

ERG fusion as the genomic signature of PGCA (6, 11, 17, 18).

However, a comprehensive genomic landscape of PGCA remains

sparse, with the limited gene alteration information obtained mostly

from gene panel sequencing. Notably, another critical barrier for

better understanding the mutational landscape of PGCA besides the

scarcity is the profound tumor heterogeneity, evidenced by the

coexisting adenocarcinoma, more differentiated, yet high-grade (8,

19). Such heterogeneity not only fuels therapeutic resistance but

also complicates the molecular mechanism underneath (20).

In the present study, we examined the histology characteristics

of a prostatic PGCA patient with bone metastasis through H&E

staining and immunohistochemical profiling. To delineate the

mutational landscape of PGCA precisely, laser-capture

microdissection was employed to isolate specific regions,

including PGCA, conventional adenocarcinoma, and adjacent

stromal compartments for whole-exome sequencing (WES).

Functional enrichment analysis and clonal evolution modeling

based on somatic mutations were performed to interrogate

dysregulated biological pathways and the mechanistic origins of

PGCA. Gene mutations significantly correlated with dismal

prognosis in PGCA were identified and further verified with the

transcriptional profiles of PCa patients from public datasets. Our

findings revealed the distinct molecular signatures of PGCA and

coexisting adenocarcinoma, uncovering potential driver mutations

that may underlie PGCA pathogenesis and confer resistance to

current therapies.
Materials and methods

Patient characteristics and tissue samples

One 74-year-old Chinese man with elevated PSA for a month

was admitted to Shenzhen People’s Hospital in March 2019. Digital

rectal examination (DRE) showed an obvious intrarectal lump, and

then the patient underwent needle biopsy. A total of 12 biopsy

samples were collected from different spots of prostate. After a
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series of treatments, the samples were embedded in paraffin and

further sectioned for H&E staining. Two qualified pathologists

diagnosed this prostatic disorder as PGCA according to the

morphology alterations. Furthermore, bone scan showed potential

metastasis in multiple spots. The patient received hormone therapy

for 3 months with a second elevation of PSA and then took

chemotherapy additionally. Eventually the patient underwent

TURP and received the combination of hormone therapy and

chemotherapy. The resected samples were consistently treated as

before and performed H&E staining and gene mutation analysis.
Immunohistochemical staining

Needle biopsy and transurethral resection samples were

sectioned for immunohistochemical staining to explore the

expression characteristics of PCa pathology markers. The sections

were immersed in 3% H2O2 for 10 min at room temperature to

block endogenous peroxidase and incubated in citrate buffer at 95°C

for 40 min for antigen retrieval. After being blocked with 3% bovine

serum albumin for 1 h at room temperature, they were incubated by

primary antibodies anti-AR (diluted at 1:500, Abcam, cat. no.

ab133273), AMACR (diluted at 1:100, Abcam, cat. no. ab194396),

KLK3 (diluted at 1:1,000, Abcam, cat. no. ab76113), NKX3-1

(diluted at 1:500, Abcam, cat. no. ab196020), PTEN (diluted at

1:2,000, Abcam, cat. no. ab267787), and VIM (diluted at 1:500,

Abcam, cat. no. ab92547) at 4°C overnight. HRP-linked secondary

antibody (Abcam, cat. no. ab7090) incubation was performed

subsequently followed by 3,3′-diaminobenzidine (DAB) staining.

The sections were counterstained with hematoxylin to

detect nucleus.
Whole-exome sequencing

To obtain relatively precise genomic information of PGCA, we

collected different tissue areas mainly consisting of pleomorphic

giant cells, adenocarcinoma cells, and stromal cells by Applied

Biosystems ArcturusXT™ LCM. The transurethral resected

samples were sectioned and put on the special slide used for

LCM. After H&E staining, we performed LCM to collect PGCA,

PCa, and stroma samples from various spots. Genomic DNA of

these samples were isolated by QIAamp DNA FFPE Tissue Kit

(QIAGEN, cat. no. 56404) according to the manufacturer’s

instructions and sent to Genergy Biotechnology Inc., Shanghai,

China, for whole-exome sequencing (WES).
Data processing and mapping

Raw sequencing data were processed by fastp (v0.12.6) as the

following criteria: 1) removing adaptors; 2) removing reads with

more than five uncertain bases (N); 3) removing reads with more

than 40% low quality bases (phred quality score ≤20); 4) sliding

window trimming (four bases). Clean reads were mapped to the
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reference GRCh37/hg19 genome using the BWA mem function.

BAM files were sorted by the Sentieon tools (v201808), and the

duplicate reads were removed using Sambamba (v0.6.6).
Gene mutation annotation

Aligned reads were further processed with GATK (v.4.1.1.0) for

base quality recalibration. Somatic mutations were determined via

MuTect2 (v4.1.1.0) and annotated by ANNOVAR (v2018-04-16).

Those outside the target region, supported by <3 reads or covered

by <10 reads, were disregarded. Low-confidence somatic mutations

considered likely germline in ESP6500, 1000 Genomes, or

ExAC_EAS (global minor allele frequency >0.1%) were also

dismissed, excluding those with presence in the COSMIC

database. In addition, synonymous mutations were filtered out for

further analyses. R package ComplexHeatmap (v1.20.0) was used to

visualize the mutational landscape.
Clonal evolution analysis

The evolutionary relationships and temporal order of each area

collected from PGCA samples during disease progression were

evaluated by cellular frequency (CCF) of gene mutations using

PyClone-VI (v0.1.0). Clusters containing at least five mutations

were used to infer a consensus clonal evolution model

using ClonEvol.
Gene functional enrichment analysis

Mutated genes specific in pleomorphic giant cells and

adenocarcinoma cells compared with stroma were identified.

Functional enrichment analysis was performed using Fisher’s

exact test as implemented in the clusterProfiler package (v3.8.1),

with a Bonferroni correction and an adjusted p-value of 0.05.
Clinical correlation analysis

Gene mutations and clinical information of the PCa patients

from public datasets were downloaded from cBioPortal. The

cBioPortal datasets used in this analysis include “Prostate Cancer

(DKFZ, Cancer Discov 2018),” “Prostate Adenocarcinoma (TCGA,

PanCancer Atlas),” “Prostate Cancer, Metastatic Castration-

Sensitive (MSKCC, Cancer Cell 2020),” and “Prostate Cancer,

PI3K Pathway Alterations” (MSKCC, Nat Med 2021). To estimate

independent prognostic factors from PGCA mutations, we

constructed a Cox proportional hazards model with genomic and

prognosis information from dataset prostate_dkfz_2018. Other

public datasets were divided into mutant and wild type by

candidate gene mutations for PFS and OS analysis to verify their

clinical relevance to adverse prognosis. Furthermore, we used a chi-

square (c2) test to examine the correlation of candidate gene
frontiersin.org
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mutations with pathology grade (Gleason score) and metastatic

potentials. DEGs between samples frommutation carriers and wild-

type PCa patients provided by public datasets were identified with

Linear Models for Microarray Data (limma) as the FDR-adjusted p-

value <0.05 and fold change >2. Functional enrichment of these

DEGs was analyzed as the same method above.
Results

Distinct morphological and
immunohistochemical characteristics of
PGCA

A patient with elevated serum prostate-specific antigen (PSA)

for a whole month underwent DRE and bone emission computed

tomography (ECT), suggesting a possible prostatic neoplasm with

multiple bone metastases (Figure 1A). The morphology

observations from needle biopsies confirmed the presence of both

conventional adenocarcinoma and PGCA components (Figure 1A).

The patient was administered with systemic therapies including

chemotherapy (docetaxel) and endocrinotherapy (goserelin and

bicalutamide) for 5 months, followed by transurethral resection of

the prostate (TURP) due to the massive tumor burden and the

replacement of bicalutamide with abiraterone (Figure 1A). Despite

aggressive treatment, the patient exhibited disease progression and

died within 6 months post-diagnosis, underscoring the aggressive

nature of PGCA. Needle biopsies and transurethral resected

samples were both performed H&E staining for histological

analysis, demonstrating distinct morphological features of PGCA.

The adenocarcinoma component showed typical glandular

structures with relatively uniform nuclei and moderate cytoplasm

(Figure 1B). In contrast, PGCA exhibited significant cellular

pleomorphism, abundant multinucleated giant cells and extensive

necrosis, showing a more aggressive histological phenotype

(Figure 1B). To further explore the cellular and molecular basis of

PGCA pathogenesis, we performed immunohistochemical staining

with key PCa markers and found that AR and AMACR were highly

expressed in the adenocarcinoma component, consistent with

luminal differentiation, yet no expression was found in PGCA,

indicative of lineage plasticity (defined as the ability of cancer cells

to switch lineage identity in response to therapeutic pressure or

microenvironmental cues, is increasingly recognized as a

mechanism of treatment resistance and tumor progression in

prostate cancer) and dedifferentiation (Figure 1C). As one of the

downstream genes of AR, KLK3 was also negatively stained in

PGCA, suggesting that the elevation of PSA was derived from the

coexisting adenocarcinoma (Figure 1C). Loss of PTEN and

amplification of NKX3-1, the representative hallmarks of PCa

progression, were found both in PGCA and adenocarcinoma

components (Figure 1C). Additionally, VIM was highly expressed

in the densely fibrotic stroma of adenocarcinoma region, not in the

tumor cells (Figure 1C). In contrast, the positive signal of VIM

staining was significantly enriched in the pleomorphic giant cells of

the PGCA region, suggesting a transition to a more primitive,
Frontiers in Immunology 04
treatment-resistant phenotype (Figure 1C). These findings

indicated that the PGCA component was more aggressive and

likely to be the fundamental element for therapeutic resistance

and adverse prognosis.
Mutational landscape of PGCA and its
aberrant enrichment cell cycle and
apoptosis

To precisely elucidate the mutational profiles of prostatic

PGCA, we performed WES on microdissected samples, including

PGCA, coexisting adenocarcinoma and stroma (Figure 2A). Genes

mutated specifically in the PGCA component and significantly

associated with dismal prognosis were identified and further

validated with transcriptional profiles (Figure 2A). Mutations

including single-nucleotide variants (SNVs) and insertions/

deletions (indels) across genomic regions showed that PGCA

exhibited a higher proportion of mutations in gene expression-

related regions and fewer mutations in intergenic regions,

demonstrating a significantly elevated mutational burden in

PGCA (Figure 2B). The mutational signature analysis showed a

notable prevalence of C > T base substitution in both PGCA and

adenocarcinoma components, suggesting potential DNA repair

deficiencies or treatment resistance mechanisms (Figure 2C). This

C>T transition pattern is a hallmark of spontaneous 5-

methylcytosine deamination, often linked to aging, oxidative

stress, or treatment-induced DNA damage (21). Its prominence

suggests potential defects in DNA repair mechanisms or therapeutic

pressure-driven mutagenesis that may contribute to the aggressive

behavior of PGCA. With the background the mutations in stroma,

we found a striking predominance of Signature87 (SBS87,

thiopurine chemotherapy) in PGCA, suggesting a potential

association with resistance to DNA-damaging therapies

(Figure 2D). Furthermore, indel signatures ID5, correlated with

the age of cancer diagnosis, was significantly enriched in

adenocarcinoma and also reported may accumulate in normal

cells (Figure 2D). In contrast, the indel signatures involved in

DNA mismatch repair deficiency, including ID3, ID4, ID7, and

ID16, were exclusive to PGCA, further underscoring the genomic

instability (Figure 2D).

Particularly, somatic mutations in ANKRD1, FASN, and TP53

were identified in both PGCA and adenocarcinoma components,

with these alterations demonstrating significant associations with

adverse prognosis in PCa (Figure 3A). The mutated genes in PGCA

were predominantly enriched in cell cycle dysregulation, such as

negative regulation of DNA biosynthetic process and cell-cycle G2/

M phase transition, explaining the presence of bizarre

multinucleated giant cells in PGCA by mitotic failure

(Figures 3B, C). Furthermore, they were also involved in

inflammatory factor response with potential correlation with

apoptosis and immunosuppression, including TP53-related DNA

damage response, response to inflammatory factors like TGFb and

TNF, and negative regulation of the TGFb receptor signaling

pathway, collectively contributing to enhanced DNA damage
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1609340
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1609340
tolerance, immunosuppressive microenvironment, and therapeutic

resistance (Figures 3B, C). In contrast, adenocarcinoma exhibited

mutational enrichment in TP53-regulated apoptosis, such as

positive regulation of DNA damage response, signal transduction

by the p53 (tumor suppressor protein coded by TP53 gene) class

mediator, and positive regulation of the signal transduction by p53

class mediator, suggesting a survival advantage under therapeutic
Frontiers in Immunology 05
pressure (Figures 3B, C). Furthermore, adenocarcinoma showed

marked aberrations in central carbon metabolism and fatty acid

biosynthesis, both of which are well-established contributors to

malignant progression. Central carbon metabolism, particularly

through enhanced glycolysis (Warburg effect), provides rapidly

proliferating tumor cells with energy and biosynthetic precursors.

Aberrant fatty acid biosynthesis, often driven by upregulation or
FIGURE 1

Histopathology characterization of PGCA and coexisting adenocarcinoma by H&E staining and immunohistochemical evaluation. (A) Schematic
drawing illustrating diagnostic procedures and therapeutic interventions for the PGCA case, including pharmacological management and surgical
resection. (B) Histopathology examination of biopsy and surgical samples from PGCA and adenocarcinoma components. (C) Immunohistochemical
staining demonstrating the expression characteristics of AR, AMACR, KLK3, NKX3-1, PTEN, and VIM in PGCA and adenocarcinoma. Positive signals
with different antibodies were stained in brown. The cell nucleus was stained with hematoxylin and presented blue.
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mutation of FASN, promotes membrane biosynthesis, oncogenic

signaling, and lipid-mediated protection from oxidative stress,

supporting tumor growth and resistance to apoptosis (Figures 3B,

C) (22–24). Taken together, the mutational landscape of PGCA was
Frontiers in Immunology 06
defined by defects in cell-cycle regulation and immune response

pathways, whereas the coexisting adenocarcinoma displayed

abnormalities in metabolic signaling and p53-mediated apoptosis.

These molecular distinctions underline the divergent biological
FIGURE 2

Mutational signatures of PGCA and adenocarcinoma revealed by WES. (A) Experimental design of genomic analysis and transcriptional validation.
LCM-isolated PGCA, adenocarcinoma, and stroma components from TRUP to perform WES. Prognostic gene mutations identified by PFS and OS
analyses and further validated by transcriptional profiles from public datasets. (B) Proportional distribution of SNVs and indels across genomic
regions. (C) Bar plot showing the mutation signatures of PGCA and adenocarcinoma. (D) Pie charts illustrating compositional differences in mutation
signatures.
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behaviors and clinical outcomes of PGCA and conventional

prostate adenocarcinoma.
Clonal evolution of heterogeneous PGCA
and coexisting adenocarcinoma

Given that the adenocarcinoma components survived the

aggressive treatments like PGCA, and their mutational

enrichment in TP53-regulated apoptosis, we suspected if these

malignant cells could be the precursor cells or daughter cells of

PGCA. Therefore, we conducted a comprehensive analysis of clonal

evolution in PGCA and the coexisting adenocarcinoma (Figure 4A).

The clonalities of mutations represented by the variant allele
Frontiers in Immunology 07
frequency (VAF) distributions were divided into a total of three

clusters (Figure 4B). Both of the PGCA and adenocarcinoma

components contained cluster 1, making it the founding clone

(Figures 4C, D). The adenocarcinoma contained cluster 2

uniquely, and the cluster 3 were specifically found in PGCA,

indicating distinct clonal hierarchies between PGCA and

coexisting adenocarcinoma (Figures 4C, D). The temporal

evolution trajectory of clonal dynamics revealed a linear evolution

pattern of both components that the ancestor clone 1 developed

into two branches across time, with the end of clone 2 as the

adenocarcinoma and clone 3 as the PGCA (Figures 4E, F). These

findings revealed that PGCA and adenocarcinoma had the same

origin and developed into two different forms of tumor cells during

the malignancy progression.
FIGURE 3

Mutational profiles and functional enrichment analysis. (A) Mutational landscape of PGCA and adenocarcinoma compared with stromal tissue. Rows
represented mutated genes and sorted according to the frequency of mutations. Columns represent different legions of PGCA and adenocarcinoma.
Different colors represent different types of mutations. (B) GO terms and (C) KEGG pathways enriched in PGCA and adenocarcinoma mutations.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1609340
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1609340
Identification of PGCA mutations
associated with adverse prognosis

To explore the potential clinical relevance of mutations

identified in PGCA, we first analyzed the somatic mutations

detected in PGCA via cBioWES and focused on those with likely

roles in tumor progression. Given the limited number of PGCA

cases and associated clinical follow-up, we employed the

prostate_dkfz_2018 dataset—comprising a larger prostate cancer

cohort with comprehensive genomic and prognostic data—to assess

the prognostic value of PGCA-derived mutations. Using a Cox

proportional hazards model, we identified five genes—ADAMTS7,

CDH1, DRD5, MGAT5, and TP53—whose mutations were

significantly associated with biochemical recurrence (Figure 5A).

These five genes were initially identified as somatically mutated in

the PGCA component and subsequently validated for prognostic

relevance using the prostate_dkfz_2018 dataset due to its larger

sample size and clinical annotation. Functional annotation of these

five genes revealed diverse roles in tumor progression. ADAMTS7 is

involved in extracellular matrix remodeling and promotes

metastasis (25). CDH1, encoding E-cadherin, regulates epithelial

adhesion, and its loss facilitates epithelial–mesenchymal transition

(EMT) (26, 27). DRD5, a dopamine receptor, is implicated in

immune modulation and cell signaling (28). MGAT5 contributes

to aberrant glycosylation promoting invasion and immune evasion

(29). TP53 is a master regulator of DNA damage response and

apoptosis, and its mutation disrupts genome stability and enables

therapeutic resistance (30). The PFS analysis was performed to
Frontiers in Immunology 08
examine the correlation of candidate gene mutations and clinical

recurrence, exhibiting significantly reduced recurrence-free rates in

mutation carriers (Figure 5B). These findings were also validated in

an alternative PCa cohort from public dataset prad_tcga, where

mutation carriers exhibited significantly shorter recurrence-free

survival (Figure 5C). Furthermore, we analyzed the OS rates of

patients harboring mutations in the identified genes with the

prad_mcspc_mskcc_2020 and prad_pik3r1_msk_2021 cohorts

and found a significantly shorter OS compared with wild-type

counterparts (Figure 5D). Together, these findings explicitly

emphasized the prognostic value of identified mutation signature

in PGCA.

Enormous evidence has demonstrated that prognostic factors

generally participated in malignant progression. We therefore

evaluated the potential associations of candidate gene mutations

with pathology grades (Gleason score) and metastatic status.

Stratified analysis by Gleason score revealed that mutation carriers

were significantly enriched in high-grade tumors (Gleason score ≥ 8)

across multiple cohorts, suggesting a positive correlation of the

identified gene mutations and pathology grades (Figures 5E, F).

Additionally, the mutation carriers exhibited notably higher

frequencies of metastasis, and the gene mutations were mostly

enriched in metastatic samples, suggesting a potential role for these

mutations in driving metastatic progression (Figures 5G, H). These

clinical correlation analyses with multiple cohorts revealed that

mutations in ADAMTS7, CDH1, DRD5, MGAT5, and TP53

significantly correlated with and potentially responsible for the

malignant progression and therapeutic resistance.
FIGURE 4

Clonal evolution patterns in PGCA and adenocarcinoma components. (A) Clonal evolution inference pipeline. (B) Boxplot comparing variant allele
frequency (VAF) of each cluster. (C) Bell plot showing that the mutation signatures changed over the pseudo-tumor progression. (D) Spheres of cells
presenting clonal subpopulations. (E, F) Node-based and branch-based trees depicting the clonal relationships of PGCA and adenocarcinoma.
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Transcriptional validation of candidate
gene mutations in malignant progression

To delineate the molecular landscape of PCa driven by PGCA

prognostic mutations, we examined the differentially expressed genes
Frontiers in Immunology 09
(DEGs) between mutation carriers and non-carriers from several

cohor t s , inc lud ing prad_su2c_2019 , prad_tcga , and

prostate_dkfz_2018 (Figure 6A). These datasets were specifically

selected because they represent extensive, conventional PCa cohorts

with rich genomic and clinical annotations, enabling robust
RE 5FIGU

Clinical correlation of PGCA mutations in PCa cohorts. (A) Cox regression analysis identifying mutations associated with biochemical recurrence
(prostate_dkfz_2018 dataset). (B, C) Kaplan–Meier curves predicting the recurrence-free rates of PCa patients with signature mutations
(prostate_dkfz_2018 and prad_tcga dataset). (D) OS analysis with PCa patients based on the signature mutations (prad_mcspc_mskcc_2020 and
prad_pik3r1_msk_2021 dataset). (E) Pathology grades (Gleason score ≥8 and ≤7) distribution stratified by mutation status. (F) Mutation prevalence
across pathology grades (Gleason score ≥8 and ≤7). (G) Metastasis incidence by mutation status. (H) Mutation frequency comparison between
primary and metastatic tumors. * p < 0.05, ** p < 0.01, *** p < 0.001.
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comparative validation of PGCA-derived mutations in a broader

oncological context. Although PGCA is a rare and aggressive variant,

evaluating its candidate mutations within these larger, conventional

PCa cohorts allowed us to investigate the wider relevance and

prognostic potential of these alterations beyond the rare subtype.

Patients with candidate gene mutations highly expressed genes

related to cell-cycle arrest and epithelial–mesenchymal transition
Frontiers in Immunology 10
(EMT), such as negative regulation of mitotic cell-cycle phase

transition, negative regulation of mitotic sister chromatid separation,

positive regulation of EMT, and extracellular matrix organization

(Figure 6B). These processes were consistent with the typical PGCA

features including the presence of multinucleated cells and enhanced

metastatic potentials. Furthermore, we found that the mutation carriers

showed high expression levels of genes enriched in IL-4 production and
FIGURE 6

Transcriptomic alterations associated with signature mutations. (A) Volcano plot showing the DEGs between mutation-positive and mutation-
negative tumors. (B) Biological processes and (C) signaling pathways of upregulated genes in PCa patients with signature mutations.
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negative regulation of the immune system process, suggesting an

immunosuppressive potential for tumor growth (Figure 6B). On the

other hand, KEGG signaling pathway enrichment analysis showed that

mutation carriers exhibited aberrant activation of p53 and PI3K-Akt

signaling pathway, both critical for survival and therapeutic resistance,

and dysregulation of biological processes including DNA replication,

cell cycle, and homologous recombination, collectively contributing to

genomic instability (Figure 6C). Concurrently, integration of

multicohort transcriptomic data revealed that PGCA candidate

mutations drive transcriptional reprogramming mainly related to

cell-cycle dysregulation, metastasis, and anti-apoptosis.
Discussion

Emerging evidence indicated pleomorphic giant cells with

polyploidy in tumors associated with drug resistance and adverse

survival (31). In this study, a prostatic PGCA patient administered

with chemotherapy and endocrinotherapy alongside TURP only lived

for 6 months post-diagnosis. Histopathology examinations showed a

distinct phenotype characterized by cellular pleomorphism,

multinucleated giant cells, and necrosis. Cellular pleomorphism of

PGCA indicated significant malignancy of tumor cells, given that

conventional adenocarcinoma, even with a high Gleason score,

typically consists of cells with relatively uniform nuclei (32). Most

multinucleated giant cells, induced by cell-cycle arrest, cell–cell

fusion, or therapeutic stress, were identified around necrotic areas

probably caused by the hypoxic microenvironment (33, 34).

Furthermore, abundant studies have shown that the pleomorphic

giant cells exhibited stem cell-like features with a similar proliferation

cycle to embryonic development and dominated tumor metastasis

(35–38). The unique immunohistochemical profiles examined from

our study showed the absence of AR, AMACR, and KLK3 expression,

coupled with high VIM expression in pleomorphic giant cells. Loss of

AR and the downstream gene expression indicated insensitivity to

androgen, suggesting resistance to endocrinotherapy, which was

reported before in individual cases (8). A large number of studies

showed that an elevated expression of VIM suggested a loss of

epithelial differentiation and acquisition of mesenchymal traits,

potentially linked to EMT and metastatic behaviors (39, 40). These

findings demonstrated the potentially critical roles of pleomorphic

giant cells in multiple drug resistance, attributed to the embryonic

morphology, loss of AR, and overexpression of VIM.

The mutational landscape of PGCA components, examined by

WES with samples obtained from LMD, showed significant

enrichment in cell-cycle dysregulation and growth factor response

with potential correlation with apoptosis. Among the mutated

genes, TP53 and CDC25B have been verified capable of

preventing G2/M-phase cell-cycle arrest, suggesting that the

multinucleated giant cells were induced by cell-cycle arrest in

PGCA (41–43). Early studies indicated that TGFb and TNF were

critical factors responsible for inflammatory microenvironment

construction in malignant tumors and were also involved in a

variety of cellular processes, including proliferation, motility, and

apoptosis (44, 45). Mutations in genes associated with these
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signaling pathways could potentially cause apoptotic effects on

tumor cells and promoted survival from aggressive treatments

and the immune system in PGCA. In comparison, the coexisting

adenocarcinoma also possessed TP53 mutation, among other gene

mutations associated with TP53-mediated apoptotic dysfunction

and metabolic aberrations. These findings demonstrated that both

PGCA and coexisting adenocarcinoma possessed TP53 mutation

and presented tolerance to chemotherapy and endocrinotherapy.

Given that the pleomorphic giant cells have been reported capable

of generating daughter cells with even more aggressive phenotypes

through asymmetric division (46, 47), we analyzed the development

trajectory of these two malignant components to examine if they

had a directive evolutionary relationship. The clonal evolution

analysis showed that they shared the same clonal origin yet

diverged during malignant progression, acquiring distinct

genomic signatures. Such lineage bifurcation explained the

clinical aggressiveness of prostatic PGCA and its resistance to

conventional therapies, also reminding us the aggressive

malignancy of coexisting adenocarcinoma.

Our clinical correlation analysis with multiple public cohorts

identified a total of five genes, namely, ADAMTS7, CDH1, DRD5,

MGAT5, and TP53, whose mutations were significantly associated

with malignant progression and adverse prognosis in PCa. TP53

mutations, well-documented in various malignancies associated with

enhanced genomic instability and therapeutic resistance, were

identified in both PGCA and adenocarcinoma (48, 49). The

remaining gene mutations were all PGCA specific, among which

ADAMTS7 mutations were found associated with oncogenesis and

dismal prognosis in a variety of cancers (50–52). ADAMTS7 is a

cartilage oligomeric matrix protein-cleaving enzyme involved in

extracellular matrix remodeling, whose family members are also

linked to tumor progression by affecting the interplay between the

malignant cells and local microenvironment (53). Notably, tumor-

suppressor CDH1 (E-cadherin) mutations were frequently

inactivated in metastatic tumors with immunosuppressive

microenvironment (54–58), likely contributing to immune evasion

and migrative phenotype of pleomorphic giant cells in this case.

DRD5 is a G protein-coupled receptor with differential expression

and mutational profiles in various cancers. In 12 tumor types

including bladder cancer, breast cancer, esophageal squamous cell

carcinoma, and head and neck cancer, hypermethylation in the

DRD5 promoter region leads to gene expression silencing, whereas

in non-small cell lung cancer, DRD5 expression was elevated in

response to docetaxel (59, 60). Activation of DRD5 by the selective

agonist SKF83959 upregulates reactive oxygen species (ROS) levels in

tumor cells, thereby activating the mitochondrial apoptosis pathway

while inhibiting the mTOR pathway to induce autophagic cell death

(28). However, there were also reports indicating that mutations or

suppression of DRD5 could induce an immunocompromised

microenvironment and promote cell survival from therapeutic

drugs (28, 61, 62). MGAT5 encoding a glycosyltransferase was

found overexpressed in a variety of malignancies, unlike our

findings, whose loss function was noted for tumor suppression and

inhibition of metastasis (63–66), implicating different roles for PGCA

pathogenesis. In ovarian cancer, upregulation of MGAT5 could also
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exacerbate resistance to anti-PD-L1 immunotherapy by catalyzing

branched N-glycans, which enhanced its binding with PD-1 on CD8+

T cells (67). Furthermore, transcriptional profiling confirmed that

mutations in these genes drive transcriptional reprogramming linked

to cell-cycle dysregulation, antiapoptosis, immunosuppression, and

metastasis, reinforcing their functional relevance to the malignant

maintenance of PGCA phenotypes.

This study is based on a single well-characterized case, which

may limit broad generalization. However, given the extreme rarity

of prostatic PGCA, our comprehensive multiomics and pathological

profiling offers valuable insights and establishes a foundation for

future studies in larger cohorts.
Conclusion

This study provides the first integrative characterization of

prostatic pleomorphic giant cell adenocarcinoma (PGCA),

revealing its distinct histological, immunohistochemical, and

genomic features. We identified key mutations—particularly in

ADAMTS7, CDH1, DRD5, MGAT5, and TP53—associated with

malignant progression and poor prognosis. PGCA showed

transcriptional reprogramming related to cell-cycle dysregulation,

immune evasion, and therapeutic resistance. Our findings uncover

novel molecular insights into PGCA pathogenesis and suggest

potential biomarkers and therapeutic targets for this rare and

aggressive prostate cancer subtype.
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