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Bladder cancer remains a significant global health challenge, particularly

affecting male populations. While radical cystectomy and chemotherapy have

been mainstays of treatment, their substantial morbidity and impact on quality of

life have driven the development of bladder-preserving immunotherapeutic

strategies. Clinical trial data support the use of ICIs as first-line therapy for

cisplatin-ineligible patients, second-line treatment for platinum-refractory

disease, and maintenance therapy. This review comprehensively summarizes

the advances in bladder cancer immunotherapy, focusing on the tumor immune

microenvironment and emerging treatment modalities, as well as the roles of

immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 and CTLA-4

pathways, which have demonstrated remarkable efficacy in both muscle-

invasive (MIBC) and non-muscle invasive bladder cancer (NMIBC). This review

also provides novel approaches including combination immunotherapies, tumor

vaccines, adoptive cellular therapies, and oncolytic viruses. Overall, these

immunotherapeutic advances are transforming bladder cancer management,

offering improved outcomes while reducing treatment morbidity.
KEYWORDS

bladder cancer, immunotherapy, immune checkpoint inhibitors, tumor
microenvironment, PD-1/PD-L1, CAR-T cells
1 Introduction

Bladder cancer remains one of the most common malignancies among male

populations (1, 2). Conventional treatment modalities, such as radical cystectomy and

neoadjuvant chemotherapy, are associated with considerable morbidity and a profound

impact on patients’ quality of life, prompting increasing interest in bladder-preserving

therapeutic approaches (3, 4). While radical cystectomy demonstrates favorable oncological
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control, high recurrence rates and suboptimal five-year survival

rates persist—even in cases with negative surgical margins and

lymph node involvement—highlighting the urgent demand for

novel anti-tumor strategies (5).

Recent advancements in immunotherapy have revolutionized

the therapeutic paradigm for bladder cancer. Immune checkpoint

inhibitors, particularly those targeting CTLA-4 and PD-1/PD-L1

pathways, play a crucial role in counteracting tumor immune

evasion mechanisms (6, 7). These developments not only enhance

treatment efficacy but also provide valuable insights into the

mechanisms underlying tumor immune escape. Key approaches

include immune checkpoint inhibitors, tumor vaccines, adoptive

cellular immunotherapy, oncolytic immunotherapy, and biological

response modifiers. Among these, CAR-T cell therapy and immune

checkpoint inhibitors have demonstrated particularly promising

clinical outcomes (8, 9). This review synthesizes current research on

the immunological microenvironment and immunotherapy in

bladder cancer, with a focus on strategies designed to reactivate

the immune system against tumor cells. Besides, this review further

provides evidence-based insights and potential directions for future

bladder cancer treatment.
2 Immune microenvironment of
bladder cancer

The tumor microenvironment (TME) consists of malignant

cells, immunomodulatory components, and stromal elements, with

the immune compartment exerting a profound influence on disease

progression (10–12). In urothelial carcinoma, major immune

effectors include CD4+ T helper cells, cytotoxic CD8+ T

lymphocytes (CTLs), dendritic cells (DCs), tumor-associated

macrophages (TAMs), and myeloid-derived suppressor cells

(MDSCs) (13). CD4+ T cells differentiate into Th1 and Th2

subsets, with Th1 cells mediating antitumor immunity via IFN-g
and TNF-a, whereas Th2 cells promote oncogenesis through IL-4

and IL-5 (14). A Th2-skewed immune milieu, characterized by

increased IL-4, IL-5, and IL-10, is frequently observed in affected

patients (15). IL-10, in particular, exerts immunosuppressive effects

primarily through activation of the JAK1/STAT3 pathway, which

impairs dendritic cell and macrophage maturation, suppresses co-

stimulatory molecule expression (CD80/CD86 and MHC-II), and

diminishes proinflammatory cytokine secretion (16–18). These

changes result in defective priming and expansion of cytotoxic

CD8+ T lymphocytes, thereby fostering an immune-privileged

tumor niche (19, 20). Concurrently, IL-10–driven STAT3

activation facilitates regulatory T cell differentiation, reinforcing

immune tolerance and enabling tumor immune evasion (21, 22).

Notably, neutralization of Th2-associated IL-10 has been shown to

enhance the therapeutic efficacy of BCG immunotherapy (14, 23, 24).

CTLs eliminate malignant cells through perforin–granzyme cytotoxicity

and Fas–FasL signaling, with tumor-specific neoantigens augmenting

their activity (25). In addition, CD8+ T cells induce ferroptosis via IFN-g,
thereby promoting antigen cross-presentation (26). Importantly,

immune cell density and spatial organization within bladder tumors
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are heterogeneous (27, 28). Formation of tertiary lymphoid structures

(TLS) at the tumor-stroma interface is associated with augmented

antigen presentation, a favorable CD8+/Treg ratio, and improved

patient survival, whereas an immune-excluded phenotype

characterized by CD8+ T cells restricted to the tumor periphery

without core infiltration is often linked to poor responses to immune

checkpoint inhibitors (29, 30).

Regulatory T cells (Tregs) suppress effector T-cell activity

through the secretion of immunosuppressive cytokines, including

transforming growth factor−b (TGF−b) and IL−10, and by

expressing inhibitory receptors such as CTLA−4 and LAG3, both

of which are associated with BCG resistance and early disease

recurrence (31, 32). Additional checkpoint receptors, notably TIM

−3 and TIGIT, are frequently upregulated on Tregs and exhausted

CD8+ T cells within the bladder TME, where they foster an

immunosuppressive milieu and contribute to therapeutic

resistance (33, 34). A high CD8+/Treg ratio has been linked to

improved prognosis (35, 36). MDSCs further impair antitumor

immunity by suppressing T- and natural killer (NK)-cell function

through arginase−1 (ARG1) and inducible nitric oxide synthase

(iNOS), while also exerting profound metabolic constraints on

cytotoxic lymphocytes (37–39). ARG1 depletes extracellular L

−arginine, diminishing CD3z chain expression and TCR signaling

in T cells, whereas iNOS generates nitric oxide that forms

peroxynitrite, leading to nitration of TCR components and

subsequent T−cell apoptosis (40–42). These mechanisms

collectively suppress CD8+ T−cell proliferation and cytotoxicity,

creating an immunosuppressive niche that favors tumor

progression and correlates strongly with advanced disease and

poor clinical outcomes (23, 43, 44). TAMs, particularly the M2-

polarized subset, are key orchestrators of this suppressive TME (45,

46). IL−4 and IL−13 secreted by Th2 cells activate STAT6 in

macrophages, driving M2 polarization (47). M2−TAMs secrete

VEGF, which promotes angiogenesis and tumor vascularization,

and TGF−b, which facilitates extracellular matrix remodeling,

invasion, and cytotoxic immune suppression (48). In addition,

they produce IL−10 and ARG1, reinforcing immune tolerance by

dampening effector T−cell function and promoting Treg expansion

(23, 43). These mechanisms collectively contribute to tumor

progression, immune evasion, and resistance to immunotherapy.

Furthermore, PD-1/PD-L1 interactions between immune and

tumor or stromal cells are central to local immune tolerance (49).

Other checkpoint molecules including CTLA-4, LAG3 and TIGIT

represent additional therapeutic targets currently under active

investigation (50). Together, these immune components

constitute a dynamic ecosystem where the balance between

antitumor immunity mediated by factors such as CD8+ T cells

and tertiary lymphoid structure formation, and immunosuppressive

mechanisms involving regulatory T cells, myeloid-derived

suppressor cells, tumor-associated macrophages and checkpoint

engagement dictates disease evolution and therapeutic outcomes

(51, 52). Elucidating these complex immune interactions provides a

strong rationale for developing immune checkpoint blockade,

adoptive cell therapy and combinatorial immunotherapeutic

strategies in bladder cancer (Figure 1).
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3 Immunological diagnosis of
bladder cancer

Histopathological evaluation remains the gold standard for

diagnosing urothelial carcinoma, with cystoscopy serving as the

principal modality for both preoperative assessment and postoperative

surveillance (53). Recent advances have introduced non-invasive

immunodiagnostic strategies for urothelial carcinoma, notably assays

for nuclear matrix protein−22 (NMP−22), bladder tumor antigen

(BTA), and urinary cytology–based markers (uCyt+) (54–56). NMP-

22 is a urinary biomarker overexpressed in affected patients, exhibits 52–

59% sensitivity and 87–89% specificity (55, 56). The BTAstat assay

achieves 64–69% sensitivity and 73–77% specificity, whereas the ELISA-

based BTA−TRAK test shows 66% and 69%, with improved detection

of high−grade tumors (57). uCyt+ identifies tumor-associated proteins

in exfoliated urinary cells (73% sensitivity, 66% specificity), thereby

reducing the need for unnecessary cystoscopy (58). Importantly,

immunomagnetic enrichment coupled with immunofluorescence

detection of circulating tumor cells (CTCs) demonstrates 35%

sensitivity and 97% specificity for diagnosing urothelial malignancies,

with CTC presence independently predicting unfavorable prognosis

(59). Beyond simple enumeration, the phenotypic profiling of CTCs has

revealed that PD-L1 expression on CTCs may serve as a dynamic

biomarker of adaptive immune resistance (60). PD-L1–positive CTCs

can directly suppress cytotoxic T cell activity, mirroring the tumor

microenvironment’s immunosuppressive mechanisms.
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4 Emerging immunotherapeutic
strategies for bladder cancer

4.1 Intravesical BCG immunotherapy

Intravesical BCG administration remains the gold standard

therapy for non-muscle invasive urothelial carcinoma. Its

immunomodulatory effects are mediated by multiple mechanisms.

Bacterial cell wall components, including antigen 85, bind to

urothelial fibronectin and promote phagocytosis by antigen-

presenting cells and malignant cells (61). Microbial recognition

relies critically on pattern recognition receptors such as TLR2,

TLR4, and TLR9 (62, 63). In addition to exerting direct cytotoxic

effects, BCG induces the release of inflammatory mediators (IL-6,

IL-8, TNF-a, GM-CSF), which recruit immune effector cells

including T lymphocytes, B cells, and dendritic cells. Secondary

cytokines such as IL-1b, IL-2, IFN-g, and TRAIL subsequently

activate innate and adaptive immune pathways, ultimately

resulting in tumor cell apoptosis (64, 65). Current investigative

efforts focus on three key domains: mechanistic elucidation,

predictive biomarker discovery, and therapeutic optimization.

Clinical parameters such as tumor burden, histological grade, and

prior recurrence patterns influence therapeutic response (66).

Moreover, molecular biomarkers (p53, retinoblastoma protein,

survivin expression) and immunological parameters (urinary

immune cell profiles) are emerging as promising predictive
FIGURE 1

Immune Microenvironment and Immunotherapy of Bladder Cancer.
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potential (66, 67). Notably, increased urinary regulatory T cell

counts following BCG instillation associate with diminished

therapeutic efficacy (68). The CyPRIT trial established a nine-

cytokine signature (incorporating IL-2, IL-6, IFN-g) with 85.5%

predictive accuracy for recurrence (66). Innovative strategies to

improve BCG efficacy include the development of genetically

modified BCG strains (69) and combinatorial approaches with

immunomodulators, particularly immune checkpoint inhibitors,

which hold the potential to redefine the therapeutic standard for

non-muscle-invasive disease (70).
4.2 The application of ICIs in bladder
cancer management

4.2.1 ICIs in advanced bladder cancer
(platinum-refractory)

Therapeutic strategies for cisplatin-ineligible locally advanced

or metastatic urothelial carcinoma now incorporate PD-L1 blockers

(Atezolizumab, Durvalumab, Avelumab) and PD-1 antagonists

(Nivolumab, Pembrolizumab) as secondary interventions (71–73).

First-line approval has been granted to pembrolizumab and

atezolizumab for PD-L1-positive cases or patients unsuitable for

platinum-based regimens (74, 75). The advent of ICIs has

revolutionized bladder cancer management, with PD-1/PD-L1

and CTLA-4 inhibitors representing the most clinically validated

immunotherapies. Translational research concurrently focuses on

identifying predictive biomarkers and managing immune-mediated

adverse events (irAEs) (76). Preclinical evidence suggests selective

targeting of CX-072 toward PD-L1-expressing malignancies,

supported by early-phase data confirming its safety and efficacy in

treatment-refractory solid tumors (77). Emerging agents targeting

alternative immune checkpoints, including LAG3 and killer

immunoglobulin-like receptors (KIR), are under investigation.

LAG3 regulates T-cell function and exhibits antitumor activity,

with compounds like BMS-986016 and LAG-525 showing

promising early results (78).

For platinum-resistant metastatic urothelial carcinoma, ICIs

constitute the therapeutic mainstay. KEYNOTE-045 demonstrated

superior efficacy of pembrolizumab versus chemotherapy, achieving a

21.1% response rate and 10.3-month median survival. Enhanced

outcomes (8.0-month survival) were noted in the PD-L1-high (≥10%)

cohort, coupled with fewer severe toxicities (40). Long-term analysis

confirmed enduring survival benefits (79). Similarly, IMvigor211

reported improved median OS (8.6 months) and lower severe toxicity

rates with atezolizumab (10), with sustained survival advantages at 30

months (80–82). In CheckMate 275, nivolumab achieved an ORR of

19.6%, with differential responses across PD-L1 subgroups (28.4%,

23.8%, and 16.1%), alongside 8.6-month median survival and 40% 1-

year survival, with 18% experiencing grade 3~4 toxicities (83, 84). Other

PD-L1 inhibitors, including durvalumab and avelumab, exhibited

comparable efficacy (85, 86). The PD-1 inhibitor tislelizumab yielded

a 24% ORR, median OS of 9.8 months, and median progression-free

survival (PFS) of 2.1 months, with one-year OS and PFS rates of 43%

and 20% (87). CheckMate 032 evaluated nivolumab-ipilimumab
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combinations, revealing ORRs of 25.6% (nivolumab monotherapy),

26.9% (low-dose combination), and 38.0% (high-dose combination),

with corresponding survival durations of 9.9, 7.4, and 15.3 months (88).

Recent findings indicate a 37% response rate in rare urogenital

malignancies with dual checkpoint blockade, though heightened irAEs

necessitate careful patient selection (89) (Supplementary Table S1).

These findings establish PD-1/PD-L1 inhibitors as standard second-

line therapy for advanced platinum-refractory bladder cancer.

4.2.2 ICIs for chemotherapy-naïve advanced
bladder cancer

For cisplatin-ineligible patients with untreated advanced/

metastatic bladder cancer, ICIs provide a non-chemotherapy

option. KEYNOTE-052 assessed pembrolizumab in cisplatin-

ineligible patients, reporting a 24% ORR and 67% six-month OS

rate (90). Five-year data indicated median OS of 11.3 months, with

PD-L1-high (CPS ≥10) patients exhibiting superior outcomes (OS:

18.5 months; ORR: 47.3%) (91). IMvigor210 documented a 23%

ORR, median PFS of 2.7 months, and median OS of 15.9 months

with atezolizumab (92, 93). KEYNOTE-361 detected no PFS

improvement with pembrolizumab-chemotherapy versus

chemotherapy alone (8.3 months), though pembrolizumab

monotherapy correlated with higher durable response rates

(52.0% at 18 months) (94, 95). IMvigor-130 demonstrated

enhanced PFS (8.2 months) and OS (16.0 months) with

atezolizumab-chemotherapy (94). Both trials highlighted reduced

survival in low PD-L1 patients, prompting EMA and FDA to

restrict ICIs to cisplatin-ineligible, high PD-L1 patients (96).

Suboptimal outcomes in PD-L1-low subgroups prompted

regulatory restrictions to cisplatin-ineligible, PD-L1-high

populations (97), but DANUBE showed no significant efficacy

difference between durvalumab ± tremel imumab and

chemotherapy (98). Preclinical models support dual checkpoint

inhibition (99), yet DANUBE revealed no OS benefit with

durvalumab ± tremelimumab versus chemotherapy (100, 101).

Maintenance immunotherapy seeks to prolong clinical responses

while mitigating chemotherapy-induced toxicity. In the

maintenance setting after initial chemotherapy, the phase III

JAVELIN Bladder 100 trial established avelumab’s superiority,

with median OS of 21.4 months. Avelumab exhibited a median

PFS of 5.7 months in PD-L1-positive subgroup (102, 103). In

contrast, pembrolizumab maintenance (phase II) improved PFS

(5.4 months) and ORR (23%) without better OS benefit (22

months) (104).

4.2.3 ICIs in muscle-invasive disease
In contrast to metastatic disease, MIBC is treated with a curative

intent. Here, ICIs are evaluated as neoadjuvant, adjuvant, or part of

bladder-preserving strategies. While cisplatin-based neoadjuvant

chemotherapy remains standard for MIBC, ICIs offer a less toxic

alternative. PURE-01 reported a 42% pathological complete response

(pT0) rate with pembrolizumab, escalating to 54.3% in PD-L1-high

patients (105). At 23-month follow-up, 24-month event-free survival

was 71.7% (106). ABACUS (phase II) observed a 31% pT0 rate with

atezolizumab (107, 108), while pembrolizumab plus gemcitabine-
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cisplatin achieved pT0N0 in 36% (109). Dual ICIs (nivolumab-

ipilimumab) showed a 46% pT0 rate but frequent high-grade toxicity

(110). Durvalumab plus Tremelimumab achieved 37.5% pT0 with 21%

grade 3+ adverse events (111). Durvalumab-tremelimumab yielded

37.5% pT0 with manageable toxicity (82). Adjuvant nivolumab in

CheckMate 274 doubled median disease-free survival (DFS: 20.8 vs.

10.8 months) without compromising health-related quality of life

(HRQoL) (112, 113). Conversely, IMvigor010 reported no DFS/OS

benefit with adjuvant atezolizumab, underscoring the need for further

validation (114). Radical cystectomy remains the gold standard for

MIBC, offering 5-year survival rates approaching 66%. However, the

procedure carries substantial perioperative morbidity and adversely

impacts patients’ quality of life (115, 116). Consequently, organ-

sparing multimodal therapies have gained traction, particularly with

the integration of ICIs. Radiotherapy has demonstrated

immunomodulatory effects, including expansion of T-cell receptor

repertoires, PD-L1 upregulation, and abscopal tumor regression

(117, 118). The IMMUNOPRESERVE-SOGUG phase II trial

investigated durvalumab and tremelimumab combined with

radiotherapy following transurethral resection (TURBT) in MIBC

patients. This chemotherapy-free regimen achieved 81% complete

response (CR) rates, 73% 1-year bladder-intact disease-free survival

(BIDFS), and 87% 1-year overall survival (OS), with grade ≥3 adverse

events occurring in 31% of participants (119). Similarly, pembrolizumab

with chemoradiation yielded 77% 1-year BIDFS and 80% CR at 12

weeks, albeit with 35% grade ≥3 toxicities (120). An alternative

approach using nivolumab plus gemcitabine-cisplatin (GC)

chemotherapy resulted in 48% CR, 92.4% 1-year OS, and 78% 1-year

BIDFS among responders (121). These findings underscore the

potential of immunotherapy-based bladder preservation strategies.

4.2.4 Immunotherapy in non-muscle invasive
bladder cancer

For high-risk NMIBC, the standard of care involves TURBT

followed by intravesical Bacillus Calmette-Guérin (BCG)

immunotherapy. Nevertheless, up to 50% of patients develop

recurrence or BCG resistance within five years (122). While RC is

an option for BCG-refractory disease, its associated risks necessitate

alternative non-surgical interventions (123). Emerging evidence

indicates that repeated BCG instillations, while initially

stimulating anti-tumor immunity, can eventually induce adaptive

immune resistance (124, 125). Chronic BCG exposure promotes

sustained PD-L1 expression on tumor cells and infiltrating myeloid

populations, thereby inhibiting cytotoxic T cell activity and creating

an immunosuppressive microenvironment that underlies BCG

treatment failure (126). This biological shift provides a strong

rationale for targeting the PD-1/PD-L1 axis in BCG-unresponsive

NMIBC. Emerging evidence implicates PD-1/PD-L1 axis activation

in BCG resistance, with elevated PD-L1 expression observed in

refractory tumors (127). The KEYNOTE-057 trial evaluated

pembrolizumab in BCG-unresponsive NMIBC, demonstrating a

41% pathological CR at 3 months, with a median response duration

of 16.2 months. Notably, no progression to muscle-invasive or

metastatic disease occurred, and 3-year OS rates reached 91%.

Grade III-IV toxicities were reported in 12.7% of patients (128).
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Based on these outcomes, ESMO guidel ines endorse

pembrolizumab for BCG-refractory NMIBC patients ineligible for

or declining RC (113). Similarly, the SWOG S1605 trial reported a

41% CR at 3 months with atezolizumab, alongside a median

response duration of 16.5 months. The 18-month event-free

survival rate was 29%, with 12.3% grade III-IV adverse events

(129, 130). Both agents exhibit comparable efficacy, with ongoing

studies expected to refine their roles in clinical practice.

Recent advances in adoptive cell transfer have highlighted CAR-T

cell therapy as a novel therapeutic strategy for treating solid

malignancies such as bladder cancer (131). Preclinical investigations

have provided evidence supporting the utility of CAR-T cells in BC

models. In one study, Grunewald and colleagues reported that CAR-T

cells directed against EGFR and CD44V6 effectively induced BC cell

lysis, with decitabine, an inhibitor of DNA methyltransferase, further

augmenting their antitumor activity (132). Another preclinical

evaluation revealed that CAR-T cells targeting MUC1 exhibited

cytotoxic effects on BC-derived organoids (133). Additionally,

multiple clinical trials are currently evaluating CAR-T cell therapies

in BC, focusing on antigens including PSMA, FRa, HER2, and ROR2

(134). Notably, SIA-CIgG, a glycosylated form of cancer-derived IgG, is

abundantly expressed in BC and correlates with aggressive tumor

behavior. Compared to HER2-targeting CAR-T cells, which have been

widely tested in clinical settings, SIA-CIgG-specific CAR-T cells exhibit

prolonged persistence and a more moderate tumor-lytic profile (135).
5 Conclusion

The immunotherapy revolution has fundamentally transformed

bladder cancer management, offering new hope for patients across

disease stages. Our review highlights several key advances: First,

immune checkpoint inhibitors have established durable clinical

benefits in advanced disease, with pembrolizumab demonstrating

superior survival over chemotherapy in platinum-refractory

patients and avelumab showing significant survival advantages as

maintenance therapy. Second, bladder-preserving strategies

combining ICIs with radiotherapy achieve impressive complete

response rates (up to 81%) while maintaining organ function,

challenging the traditional dominance of radical cystectomy for

MIBC. Third, in NMIBC, PD-1 inhibitors provide effective salvage

therapy for BCG-unresponsive disease, with pembrolizumab

achieving 41% complete responses and 91% 3-year survival.

Critical challenges remain, including the need for better predictive

biomarkers to guide patient selection, as PD-L1 expression and tumor

mutational burden show imperfect correlation with treatment

response. The management of immune-related adverse events

requires ongoing refinement, particularly for combination therapies

showing increased toxicity. Emerging approaches such as bispecific

antibodies, CAR-T cell therapy, and novel ICIs targeting LAG-3 and

KIR show preclinical promise but require further clinical validation.

Future directions should focus on optimizing combination strategies,

including ICI-chemotherapy-radiotherapy regimens, and developing

next-generation biomarkers through multi-omics approaches. The

integration of artificial intelligence for treatment response prediction
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1609871
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2025.1609871
and the development of personalized neoantigen vaccines represent

exciting frontiers. As these innovations mature, they promise to further

improve outcomes while reducing treatment morbidity, ultimately.
Author contributions

LM: Writing – original draft. XZ: Writing – original draft. XJ:

Writing – original draft. BW: Writing – original draft. HZ: Writing –

original draft. GZ: Writing – original draft. YX: Writing – original

draft. CW: Writing – review & editing, Writing – original draft.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by the Research Fund of the National Natural Scientific Foundation

of China (82473337).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Immunology 06
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1609871/

full#supplementary-material
References
1. Zhou Y, Zhang H, Yan H, Han P, Liu Y. Immune landscape and prognostic
significance of gene expression profiles in bladder cancer: insights from immune cell
infiltration and risk modeling. Iran J Allergy Asthma Immunol. (2025) 24:519–32.
doi: 10.18502/ijaai.v24i4.19132

2. Shen C, Liu J, Hu D, Liu C, Xie F, Wang Y. Tumor-intrinsic ENO1 inhibition
promotes antitumor immune response and facilitates the efficacy of anti-PD-L1
immunotherapy in bladder cancer. J Exp Clin Cancer Res. (2025) 44:207.
doi: 10.1186/s13046-025-03464-x

3. Saito R, Taoka R, Miki J, Fukuokaya W, Matsui Y, Hatakeyama S, et al. Efficacy of
cisplatin-based neoadjuvant chemotherapy and risk factors for residual extravesical
disease in muscle-invasive bladder cancer: insights from a nationwide cohort. Int J Clin
Oncol. (2025). doi: 10.1007/s10147-025-02833-y

4. Mihai IM, Wang G. Biomarkers for predicting bladder cancer therapy response.
Oncol Res. (2025) 33:533–47. doi: 10.32604/or.2024.055155
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