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Introduction: Lactate can influence the fibrotic process by regulating cellular 
metabolism, inflammatory responses, and cell proliferation, which may be 
closely related to macrophage function in diseases. Therefore, this research 
sought to identify biomarkers linked to lactate metabolism and macrophages in 
renal fibrosis (RF). 

Methods: Firstly, key modular genes associated with macrophage score and lactate 
metabolism score were identified by combining single-sample gene set enrichment 
analysis (ssGSEA) and weighted gene co-expression network analysis. Then, 
candidate genes were obtained by overlapping them with differentially expressed 
genes between RF and control groups. Subsequently, candidate genes were 
incorporated into machine learning algorithms to identify key feature genes 
associated with RF. Expression analysis was then completed to determine 
biomarkers for this study. Furthermore, the relationship between biomarkers and 
RF was elucidated by a series of bioinformatics methods, including enrichment 
analysis, immunosignature analysis, and molecular regulatory analysis. Finally, we 
validated these key biomarkers in animal experiments. 

Results: The ssGSEA results showed significantly higher macrophage score and 
lower lactate metabolism score in the RF samples compared to control samples. 
Next, AGR3, CD74, and SYT11 were identified as biomarkers for this study 
because they had consistent expression trends in GSE76882 and GSE135327 
datasets and were significantly different between RF and control samples. 
Moreover, receiver operating characteristic curves showed their excellent 
accuracy in predicting the occurrence of RF. Subsequent enrichment analysis 
revealed that three biomarkers were collectively enriched to 50 signaling 
pathways, including “Toll-like receptor signaling pathway”, “oxidative 
phosphorylation”, and  “P53 signaling pathway”. Notably, CD74 showed a

significant positive correlation with macrophages. In lncRNA-miRNA-mRNA 
network, multiple relationship pairs could be found, e.g., hsa-miR-548x-3p and 
hsa-miR-548aj-3p were regulators of AGR3, as well as multiple lncRNAs (PCAT6, 
POLR2J4, SMIM25) could co-regulate CD74 through hsa-miR-4731-5p. Animal 
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experiments also confirmed that the expression of key biomarkers were 
significantly elevated in the RF rat/mice model. Moreover, the localization and 
expression of these biomarkers were related to infiltrating inflammatory cells in 
the kidney tissue. 

Conclusion: In this study, we found that AGR3, CD74, and SYT11 were 
biomarkers associated with lactate metabolism and macrophages in RF, 
providing valuable insights for further RF research. 
KEYWORDS 

lactate metabolism, macrophages, biomarkers, machine learning, renal fibrosis 
1 Introduction 

Chronic kidney disease (CKD) is a chronic (more than 3 
months) disorder of kidney structure and function due to various 
causes. The global prevalence rate of CKD is more than 10%, 
especially in the elderly, hypertensive and diabetic populations, 
which poses a serious threat to human health (1). Renal fibrosis 
(RF) is a common pathological change in vaeious progressive forms 
of CKD, manifested by destruction of normal renal tissue, fibroblast 
proliferation and excessive deposition of extracellular matrix 
(ECM) (2). Extensive renal fibrosis is the core pathological 
mechanism for the continuous deterioration of renal function and 
even progression to end-stage renal disease in patients with CKD 
(3). There is currently a lack of effective drugs for the treatment of 
RF. Although several clinical trials have been conducted to evaluate 
targeted treatment strategies for fibrosis drivers and signaling 
pathways, their efficacy and safety have been unsatisfactory (4, 5). 
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The pathogenesis of RF involves multiple aspects, but not limited to, 
excessive EMC deposition, activation and proliferation of renal 
innate cells, and a persistent inflammatory response. However, the 
exact pathological mechanism of RF is not fully understood. 
Therefore, there is an urgent need to further explore the 
mechanisms underlying the development and progression of RF 
so that more effective treatment strategies can be developed to 
improve the quality of life and prognosis of patients with CKD. 

Macrophages are phagocyte subsets of white blood cell. They 
are immune cells that are widely distributed in all tissues and organs 
of the body. Their main functions include phagocytosis and 
removal of pathogens, damaged cells and cell debris, while also 
secreting a variety of cytokines (such as TNF-a, IL-6) that regulate 
immune and inflammatory responses in various tissues (6–8). 
Macrophages play a key role in maintaining tissue homeostasis 
and repair processes (9, 10). There is a close relationship between 
macrophages and RF. Studies have shown that macrophages can 
promote the damage of renal tubular epithelial cells (RTECs) and 
the activation of interstitial fibroblasts by secreting pro-
inflammatory cytokines and pro-fibrotic factors in pathological 
conditions, thus accelerating the process of RF (11). In addition, 
macrophages can further exacerbate RF by affecting the deposition 
and degradation of ECM (12). Lactic acid metabolism refers to the 
process in which cells produce lactic acid through glycolysis under 
hypoxic or aerobic conditions (13). Lactic acid is not only a product 
of cellular energy metabolism, but also plays an important role in a 
variety of physiological and pathological processes (14, 15). Studies 
have found that lactic acid can promote the proliferation of 
fibroblasts and collagen synthesis by activating specific signaling 
pathways, thus exacerbating RF (16). In addition, lactic acid may 
also be indirectly involved in the pathological process of RF by 
affecting the function of immune cells, such as regulation of 
macrophage polarisation, induction of metabolic reprogramming 
of T cells, inhibition of dendritic cell maturation, etc. (17). Lactic 
acid metabolism plays an important role in the physiological and 
pathological processes of macrophages. Macrophages produce large 
amounts of lactic acid during phagocytosis and metabolism, which 
in turn can affect macrophage function and phenotype (18). For 
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example, high levels of lactic acid can promote the polarization of 
macrophages towards pro-inflammatory phenotypes, thereby 
exacerbating inflammatory responses and tissue damage (19). 
Overall, the link between lactate metabolism and macrophages 
provides a new perspective for our understanding of RF. In-depth 
study of the specific mechanisms and interactions between them 
will help to provide new ideas and methods for the treatment of RF. 

In this study, biomarkers associated with macrophage and lactate 
metabolism were identified through a series of bioinformatic 
approaches using data related to RF in public databases. On this 
basis, the molecular mechanisms of the biomarkers were investigated 
by enrichment analysis, immune infiltration analysis, regulatory 
network analysis, etc. Finally, the relevant biomarkers were verified 
by animal experiments. The results are expected to provide a new 
reference for the clinical diagnosis and treatment of RF. 
2 Materials and methods 

2.1 Data collection 

The RF-related datasets GSE76882 and GSE135327 were 
downloaded from the gene expression omnibus (GEO, http:// 
www.ncbi.nlm.nih.gov/geo/) database using the GEOquery 
package (v 3.21) (20). Specifically, the GSE76882 dataset 
(downloaded on June 12, 2024), based on the GPL13158 
platform, contained 274 samples. A total of 42 renal tissue biopsy 
samples with interstitial fibrosis/tubular atrophy (recorded as RF 
samples) and 99 normal samples were selected for analysis. The 
GSE135327 dataset (downloaded on July 24, 2024) (platforms: 
GPL11154 and GPL21290) included 30 samples, among which 18 
were interstitial fibrosis samples (recorded as RF samples) and 12 
were normal renal tissue biopsy samples. The platform files were 
then downloaded, and gene Symbol and probe ID information was 
extracted. Probe IDs were converted to gene Symbols, and duplicate 
genes were removed by retaining the maximum value for each gene. 
Subsequently, sample information and grouping information were 
extracted for subsequent analysis. In molecular signatures database 
(MsigDB, http://software.broadinstitute.org/gsea/msigdb), we 
searched “lactate” and selected the genes contained in five 
p a t h w a y s :  L A C T A T E _M E T A BO L I C _ P R O C E S S ,  
H P _ I N C R E A S E D _ S E R U M _ L A C T A T E ,  H P _  
LACTIC_ACIDOS I S ,  HP_LACTICACIDURIA ,  and  
HP_SEVERE_LACTIC_ACIDOSIS, followed by collecting 320 
lactate metabolism-related genes (LMRGs) by removing 
duplicates (Supplementary Table S1). 
2.2 Single-sample gene set enrichment 
analysis 

In order to obtain most significant differential immune cells, 
ssGSEA algorithm was employed via GSVA package (v 1.42.0) to 
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calculate the scores of the infiltration levels of 28 immune cells in all 
samples for GSE76882 dataset (21, 22). The most significant 
differential immune cells were then obtained by comparing the 
differences in immune cells between RF and control samples using 
the Wilcoxon test (P < 0.05). Additionally, LMRGs with significant 
differences between RF and control samples were analyzed by the 
Wilcoxon test (P < 0.05). The ssGSEA enrichment scores of these 
significantly differentially expressed LMRGs were calculated using 
the GSVA package (v 1.42.0) to obtain LMRGs scores (21). Then, 
the differences in LMRGs scores between RF and control samples 
were analyzed by the Wilcoxon test (P < 0.05). 
2.3 Weighted gene co-expression network 
analysis 

To identify genes associated with both most significant 
differential immune cells and LMRGs scores, WGCNA was 
performed using the differential immune cells and LMRGs scores 
as traits via the WGCNA package (v 1.7.1) in GSE76882 (23). 
Firstly, cluster analysis was performed on all samples to check for 
and eliminate outliers, aiming to ensure accuracy in downstream 
analysis. Next, the relationship between the soft-thresholding power 
(b), scale-free network evaluation coefficient R², and mean 
connectivity was established. The optimal soft thresholding was 
obtained when the scale-free network evaluation coefficient R² was 
set to 0.85, the critical value at which R² first exceeded 0.85, and the 
mean connectivity of the co-expression network approached zero. 
Subsequently, based on the optimal soft threshold, hierarchical 
clustering algorithms were applied to perform cluster analysis on 
genes. With parameters set as minModuleSize=50, deepSplit=2, and 
mergeCutHeight=0.15, genes with similar expression patterns were 
grouped into the same modules, which were labeled with different 
colors. A correlation heatmap between traits and modules was 
constructed, and then modules with the most significant 
correlations with traits were further screened out as key modules 
(|correlation (cor)| > 0.65, P < 0.05). Genes in key modules were 
recorded as key module genes for subsequent analysis. 
2.4 Differential expression analysis 

To obtain the differential expression analysis between the RF 
and control groups, on the basis of the gene expression matrix in 
GSE76882, differentially expressed genes (DEGs) between RF and 
control groups were mined applying limma package (v 3.54.0) (24), 
with screening cutoffs of adj.P value < 0.05 and |log2FoldChange 
(FC)| > 0.5. To understand the distribution of DEGs from a holistic 
perspective, volcano plot and heat map of DEGs were generated by 
ggplot2 package (v 3.4.1) and pheatmap package (v 1.0.12), 
respectively (25, 26). The top 10 upregulated genes and 4 
downregulated genes ranked by log2FC were annotated on the 
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volcano plot. Next, the Venn diagram created by the VennDiagram 
package (v 1.7.1) displayed the intersecting genes of key module 
genes and DEGs, which were recorded as candidate genes (27). 
2.5 Functional enrichment and protein-
protein interactions analyses 

To investigate the functions and pathways involved in candidate 
genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses via the 
clusterProfiler package (v 4.2.2) (28), with screening criteria set at 
P < 0.05. GO involved three components: biological process (BP), 
cellular component (CC), and molecular function (MF). The top 5 
results of each part of GO were displayed in ascending order of P-
values. Following this, a PPI network was created through imputing 
candidate genes into STRING online site (http://www/string­
db.org/), with the aim of exploring candidate gene interactions at 
the protein level (Species: Homosapiens, confidence level ≥ 0.4). 
Cytoscape software (v 3.5.2) was employed to accomplish the 
visualization of PPI network (29). 
2.6 Machine learning algorithms 

Machine learning algorithms were completed in order to 
identify feature genes that were highly correlated with RF from 
the candidate genes in GSE76882 dataset. Specifically, least absolute 
shrinkage and selection operator (LASSO) analysis was carried out 
applying glmnet package (v 4.1-2) (30), and it was founded on the 
idea of using lambda to find significant feature variables and setting 
the coefficients of less important variables to 0. Through 10-fold 
cross-validation, genes with non-zero coefficients at the lowest 
Lambda value in cross-validation were selected as feature genes 1. 
Boruta was completed based on the Boruta package (v 8.0.0) (31), 
which designed to find the really important features from a given set 
of features genes 2. Subsequently, feature genes 1 and feature genes 2 
obtained from the above two kinds of machine learning methods 
were overlapped through the ggvenn package (v 0.1.10) (27), to 
yield key feature genes. 
2.7 Expression analysis and receiver 
operating characteristic analysis 

In order to clarify the expression of key feature genes in RF and 
control samples, the expression of key feature genes was analyzed in 
GSE76882 and GSE135327 datasets, and comparison of 
discrepancies between two groups was accomplished through 
Wilcoxon test. We paid more attention to genes that were 
differentially expressed between groups (P < 0.05) and had 
consistent expression trends in both datasets, which will be 
named as candidate biomarkers. Importantly, ROC curves for the 
candidate biomarkers were plotted in both datasets with the use of 
the pROC-package (v 1.18.0) (32), in order to assess their ability to 
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distinguish between RF patients and control samples. Genes with 
area under curve (AUC) values greater than 0.7 in both datasets 
were identified as biomarkers. 
2.8 Creation and assessment of nomogram 

To estimate diagnostic value of the biomarkers in the clinical 
setting, nomogram was created in GSE76882 dataset applying the 
rms package (v 6.5-1) (33). Biomarkers were scored using a 
nomogram, with each biomarker corresponding to a score. The 
total score was calculated by summing the scores of all biomarkerss, 
and the incidence of RF could be inferred based on the total score— 
the higher the score, the higher the likelihood of RF. To validate the 
predictive efficacy of the nomogram, the calibration curve was 
plotted using the regplot package (v 1.1) to reflect the prediction 
ability of the nomogram model (34). Meanwhile, the Hosmer-

Lemeshow (HL) test was performed to determine the discrepancy 
between predicted and actual values (p > 0.05). The closer the 
calibration curve was to the diagonal position, the stronger the 
prediction ability of the nomogram model. Additionally, the ROC 
curve of the nomogram was drawn using the pROC package (v 
1.18.0) to evaluate its diagnostic value, with AUC > 0.7 considered 
as the model having accuracy (32). Finally, the decision curve 
analysis (DCA) was plotted using the ggDCA package (https:// 
www.rdocumentation.org/packages/ggDCA/versions/1.1) to assess 
the clinical practicality of the prediction model. 
2.9 Gene set enrichment analysis 

To explore the signaling pathways involved in the biomarkers, 
GSEA was performed on the biomarkers in the GSE76882 dataset. 
Briefly, Spearman correlation coefficients between each biomarker 
and remaining genes were first computed using the psych package 
(v 2.2.9) (35), following which these genes were sorted by 
correlation coefficients in descending order to obtain gene list 
corresponding to each biomarker. Then, clusterProfiler package 
(v 4.2.2) was used to complete the GSEA (28), and the reference 
gene set was “c2.cp.kegg.v7.4.symbols.gmt” in MSigDB database, 
with P < 0.05 and |NES| > 1 as screening criteria for 
enrichment pathways. 
2.10 Immunological characterization 

VEGF, IL-17, IL-6, IL-8, IL-1Ra, TNF-a, IL-34, and TGF-b 
were generally regarded as pro-fibrotic factors during the fibrosis 
process (36–41). To explore the roles of these cytokines in RF, the 
expression differences of these cytokines between the RF group and 
the control group were compared via the Wilcoxon test (P < 0.05) in 
the GSE76882 dataset. Next, Spearman correlation analysis was 
completed to explore the correlation of biomarkers with 28 immune 
cells and cytokines (P < 0.05, |cor| > 0.3). 
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2.11 Recognition of molecular patterns and 
exploration of biological functions 

To determine the possibility of biomarkers guiding molecular 
subtyping of RF, consensus clustering analysis was performed on 42 
RF  s ample s  f rom  t he  GSE76882  da ta s e t  us ing  the  
ConsensusClusterPlus package (v 1.66.0) based on the biomarkers 
(42), the best clustering was selected by combining the cumulative 
distribution function. To confirm the dependability of the 
consensus clustering results, the expression profiles of the 
identified molecular patterns were subjected to principal 
component analysis (PCA) using the procmp function in the stats 
package (v 4.3.2). 

Next, DEGs between different molecular patterns were mined 
through limma package, with screening thresholds of P < 0.05 and | 
log2FC| > 1. Following this, these DEGs were incorporated into 
enrichment analyses exploring GO function and KEGG pathways 
associated with these genes, which were completed using 
clusterProfiler (P < 0.05). Furthermore, the pathway enrichment 
scores of samples from different molecular patterns were calculated 
by gene set variation analysis (GSVA) applying “hallmark pathway 
genes set” in MSigDB database as the background gene set, followed 
by comparison of the differences in the biological pathways between 
different molecular patterns by Wilcoxon (P < 0.05). 

Finally, ssGSEA was applied to calculate the infiltration score of 
28 immune cells in 42 RF samples, and Wilcoxon test was utilized to 
accomplish comparison of discrepancies in infiltration score in 
different molecular patterns (P < 0.05). In addition, differences in 
cytokines in different molecular patterns were also emphasized. 
2.12 Molecular regulation analysis 

The microRNAs (miRNAs) regulating the biomarkers were 
predicted applying the Diana_microtT (https://dianalab.e­
ce.uth.gr/microt_webserver/) and  miRDB (https://mirdb.org). 
Subsequently, upstream long non-coding RNAs (lncRNAs) of 
miRNAs were retrieved by accessing miRNet database (https:// 
www.mirnet.ca). Based on above results, lncRNA-miRNA-mRNA 
(biomarker) network was generated with the use of Cytoscape 
software. Additionally, transcription factors (TFs) targeting 
biomarkers were retrieved from ChEA3 (https://maayanlab.cloud/ 
chea3) database. TFs with P < 0.05 were selected for visualization. 
2.13 Drug prediction and molecular 
docking 

To further screen potential drugs for the treatment of RF, 
biomarkers were entered into the DGIdb database (https:// 
dgidb.org/) to retrieve drugs targeting the biomarkers. Crystal 
structure of the protein corresponding to the biomarker was 
retrieved using Protein Data Bank (PDB) database (https:// 
www.rcsb.org/), and 3D structure of the drug was retrieved using 
PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Then, 
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molecular docking was accomplished and binding energy was 
obtained with the help of Autodock software. It was generally 
accepted that binding energy ≤ -5 kcal/mol was considered to 
have a strong binding capacity. 
2.14 Animal experiments verification 

2.14.1 Animal experiments protocol 
Ten specific pathogen free (SPF) male Sprague Dawley (SD) rats 

(42–48 days old, weighing 200-250g) were purchased from Beijing 
Weilitonghua Laboratory Animal Technology Co., Ltd. (Animal 
Production License No.: SCXK (Jing) 2021-0006). The experimental 
animals were housed in the SPF-level animal room provided by the 
Experimental Animal Center of Nanjing University of Chinese 
Medicine (Animal Use License No.: SYXK (Su) 2023-0077), and 
were fed with SPF-level maintenance feed and given free access to 
water. This study adheres to the guidelines of the National Institutes 
of Health for the care and use of laboratory animals. The 
experimental protocols comply with the relevant ethical 
regulations and requirements for animal experiments and have 
been approved by the Animal Ethics Committee of Nanjing 
University of Chinese Medicine (Approval No.: ACU231205). 
After one week of adaptive feeding, all SD rats were randomly 
divided into two groups, with five rats in each group: the control 
group (Ctrl group) (sham operation + standard feed diet), and the 
RF model group (Model group) (5/6 nephrectomy + 1% high 
choline diet). The RF model was based on our previous research, 
where the combination of a 1% high choline diet with a common 
nephropathy model could further aggravate the progression of RF 
(43, 44). The rats in both groups were euthanized 8 weeks after 
modeling, and the relevant specimens were retained for detection 
and analysis before euthanasia. 

Ten male C57BL/6J mice aged 8–10 weeks (weighing 18-22g) 
were purchased from Zhejiang Weitong Lihua Laboratory Animal 
Technology Co., Ltd. (Animal Production License No.: SCXK (Su) 
2022-0006) and were raised under the same conditions as described 
previously. This experiment also adhered to the guidelines of the 
National Institutes of Health for the care and use of laboratory 
animals and was approved by the Ethics Committee of the Affiliated 
Hospital of Nanjing University of Chinese Medicine (Approval 
Document No.: 2023 DW-016-01). All mice were randomly divided 
into two groups: the control group (Ctrl group) (sham operation), 
and the RF model group (Model group) (unilateral ureteral 
obstruction). The method for establishing the unilateral ureteral 
obstruction (UUO) RF model was the same as in our previous study 
(45). Fourteen days after modeling, all mice were anesthetized by 
intraperitoneal injection of 3% pentobarbital sodium (0.5 ml/100 g), 
relevant specimens were retained before euthanasia. 

2.14.2 Detection of renal function related 
indicators 

The levels of serum creatinine (SCR) and blood urea nitrogen 
(BUN) in rats were detected using a Dimension EXL200 automatic 
biochemical analyzer (Siemens, Germany). 
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2.14.3 Renal tissue pathological staining 
Renal tissue specimens fixed in 4% paraformaldehyde solution 

were taken. After routine dehydration, clearing, wax immersion and 
embedding, paraffin sections of about 4 mm were made, with the 
section direction perpendicular to the long axis of the kidney. The 
renal tissue paraffin sections were stained with hematoxylin-eosin 
(HE), Masson and periodic acid-Schiff (PAS) to observe the changes 
in renal cortical tissue structure and collagen deposition by using a 
light microscope (magnification×200, Nikon Eclipse Ni-U, Japan). 

2.14.4 Immunohistochemistry 
After dewaxing paraffin sections to water, antigen retrieval was 

performed at high temperature and high pressure (antigen retrieval 
solution: pH 9.0 EDTA). Then, endogenous peroxidase was blocked 
with 3% hydrogen peroxide, and the sections were circled with a 
histochemical pen. After incubation with 10% goat serum at room 
temperature for blocking, 100 ml of the working solution of CD74 
(1:200) (Affinity, China), AGR2 + AGR3 (1:300) (since AGR3 and 
AGR2 are highly related homologous genes, we chose the AGR2 + 
AGR3 antibody for subsequent detection, Abcam, USA), and 
SYT11 (1:200) (Proteintech, China) primary antibodies were 
added to each tissue section and incubated at 4°C overnight. The 
next day, after rewarming and washing, 100 ml of the working 
solution of the secondary antibody corresponding to the species of 
the primary antibody was added to each section and incubated at 
37°C for 45 minutes. After washing, 100 ml of fresh DAB was added 
to each section. Color development was observed under a 
microscope and stopped with tap water. Sections were 
counterstained with hematoxylin, differentiated with alcohol ­
hydrochloric acid, and blued. Then, they were dehydrated with 
gradient alcohol, dried, and sealed with an eco - friendly mounting 
medium (46). Finally, the expression and localization of related 
proteins in kidney cortical tissue were observed at ×200 
magnification using a Nikon Eclipse Ni - U microscope and 
images were collected (positive expression was brown or 
dark brown). 

2.14.5 Immunofluorescence 
After dewaxing paraffin sections to water, antigen retrieval was 

performed under high temperature and high pressure (antigen 
retrieval solution: EDTA, pH 9.0). Circles were drawn on the 
sections with a histochemical pen, and then 10% donkey serum 
was added for blocking. 50-100 ml of the primary antibody working 
solution (CD74 (1:200), AGR2 + AGR3 (1:200), and SYT11 (1:200) 
primary antibody) was dropped onto each section and incubated at 
4°C overnight. The next day, after rewarming and washing, 1 ml of  
Alexa Fluor® 488 donkey anti-rabbit IgG (H+L) secondary 
antibody solution was added to 400 ml of TBST to prepare the 
secondary antibody working solution. 50-100 ml (depending on the 
size of the tissue) of the secondary antibody working solution was 
dropped onto each section and incubated at 37°C for 45 minutes. 
After routine TBST washing, 50-100 ml of DAPI working solution 
was dropped onto each section, and the nuclei were stained in the 
dark for 5 minutes. Then, the sections were washed with TBST 
again and sealed with a fluorescence mounting medium. Finally, the 
Frontiers in Immunology 06
fluorescence intensity and localization of the related proteins in the 
kidney cortical tissue were observed using a fluorescence 
microscope (magnification×400, Nikon Eclipse C1, DS-U3, 
Japan), and images were collected and analyzed. 

2.14.6 Western blot 
Equal amounts of 20 μg proteins of each group were loaded and 

separated by 10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE). The separated proteins were 
transferred to activated polyvinylidene difluoride (PVDF) 
membranes by wet transfer method and then blocked. The 
membranes were incubated with primary antibodies CD74 
(1:500), AGR3 (1:500), and SYT11 (1:500) overnight at 4°C, and 
then incubated with the corresponding secondary antibodies at 
room temperature for 1 hour. The bands were developed using ECL 
chemiluminescent solution and photographed using the 
ChemiDocTM XRS+ with Image Lab Software (Bio-Rad, 
Hercules, CA, USA) chemiluminescence system (47). The gray 
values of the target bands were determined using Image J (1.52a) 
software. The gray value of b-tubulin (1:3000) (Proteintech, China) 
was used as an internal reference. 
2.15 Statistical analysis 

R program (v 4.2.0) was utilized for bioinformatic statistics 
analysis. The scoring tests between two groups were analyzed using 
Wilcoxon-test. Discrepancies were deemed statistically meaningful 
when P value was below 0.05. 

Animal experiments statistical analysis was performed using 
SPSS 19.0 software. All experimental data were expressed as mean ± 
standard deviation (SD). The Student’s t-test was used for 
comparison between groups. The P value < 0.05 was considered 
statistically significant. 
3 Results 

3.1 Identification of 692 key modular genes 
associated with macrophage and lactate 
metabolism 

In GSE76882 dataset, the ssGSEA algorithm revealed that 25 
immune cells including macrophages were markedly distinct 
between RF and control groups (P < 0.05), and all were highly 
expressed in RF group (Figure 1A). Moreover, we noted that RF 
group had significantly lower LMRGs score in comparison to the 
controls (P < 0.05) (Figure 1B). 

With respect to WGCNA, no significant outliers between the 
samples were observed through cluster analysis, revealing excellent 
clustering (Figure 1C). Based on the fact that R2 was equal to 0.85 
and the mean connectivity tended to 0, we choose the optimal b-
value of 8 to satisfy the scale-free topology of the network 
(Figure 1D). Subsequently, a clustering tree diagram was 
constructed by gene correlation and adjacency, and 21 co-
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expressed gene modules were acquired (Figure 1E). Correlation 
analysis showed that MEgreen had significantly and strongly 
correlations with both macrophage score and LMRGs score (|cor| 
> 0.65,  P < 0.05), with  MEgreen  having the highest positive 
correlation with macrophage score (cor = 0.83, P < 0.05) and the 
most that negative correlation with LMRGs score (cor = -0.66, P < 
0.05) (Figure 1F). Therefore, 692 genes contained in MEgreen were 
considered as key modular genes highly correlated with 
macrophage score and LMRGs score. 
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3.2 Revealing the biological functions and 
PPI of 384 candidate genes 

In total, 951 DEGs were identified between RF and control 
groups in GSE76882 dataset through differential expression 
analysis, including 648 up-regulated genes 303 down-regulated 
genes in RF samples (Figure 2A). Heat map demonstrated top 
10 up-regulated genes and top 10 down-regulated genes 
(Figure 2B). Thereafter, intersecting genes of 692 key module 
FIGURE 1 

Identification of key modular genes associated with macrophage and lactate metabolism. (A) Differences in immune cells between renal fibrosis (RF) 
and control samples. ns, not significant; **P value < 0.01; ***P value < 0.001; ****P value < 0.0001. (B) Single-sample gene set enrichment analysis 
(ssGSEA) score raincloud plots of lactate metabolism-related genes (LMRGs). (C) Sample hierarchical clustering plot. Each branch in the clustering 
tree represents a sample, and the vertical coordinate represents the Euclidean distance of sample expression levels. (D) Selection of soft threshold. 
(E) Identification of co-expression modules. (F) Correlation heatmap between modules and ssGSEA. The darker the color, the higher the correlation. 
Red indicates positive correlation, and blue indicates negative correlation. The number in each cell represents the correlation and significance. 
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genes and 951 DEGs were collected, resulting in 384 candidate 
genes (Figure 2C). 

Subsequent enrichment analysis of these 384 candidate genes 
yielded 875 GO entries and 67 KEGG pathway (P < 0.05). In GO-BP 
term, candidate genes were mainly engaged in “leukocyte mediated 
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immunity”, “cell killing”, “leukocyte migration”, “regulation of T 
cell activation”, etc (Figure 2D). In GO-CC, candidate genes were 
mainly localized to “MHC class II protein complex”, “endocytic 
vesicle”, “secretory granule membrane”, etc (Figure 2D). GO-MF 
associated with candidate genes included “chemokine receptor 
FIGURE 2 

Revealing the biological functions of candidate genes. (A) Volcano plot of differentially expressed genes. (B) Heatmap of differentially expressed 
genes. (C) Venn diagram for identification of candidate key genes. Pink represents genes related to macrophage-related genes (MRGs) and LMRGs, 
while blue represents genes related to differentially expressed genes (DEGs). (D) Bar chart of Gene Ontology (GO) enrichment. The pathways shown 
are biological processes (BP), cellular components (CC), and molecular functions (MF), with the top 5 pathways ranked by significance (P value from 
smallest to largest). (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment chord diagram. The color of the genes on the left represents 
the logFoldChange(FC) of the genes, and the different color bands on the right represent different pathways. 
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binding”, “MHC protein complex binding”, “peptide antigen 
binding”, etc (Figure 2D). Furthermore, KEGG analysis revealed 
that candidate genes were engaged in “chemokine signaling 
pathway”, “cytokine-cytokine receptor interaction”, etc (Figure 2E). 

PPI network of 384 candidate genes contained 339 nodes and 
6046 edges, in which genes such as ACKR4, CCL11, and CCL19 had 
stronger interactions with the remaining genes (Supplementary 
Figure S1). 
3.3 Screening and diagnostic value of 
AGR3, CD74, and SYT11 in RF 

Depending on the expression of 384 candidate genes in 
GSE76882, machine learning was performed in combination with 
the LASSO and Boruta algorithms to screen the feature genes. With 
LASSO regression analysis, 12 feature genes associated with RF 
were identified based on lambda.min value of 0.03885 (Figure 3A). 
Meanwhile, Boruta algorithm showed 32 feature genes based on the 
importance of each feature (Figure 3B). The Venn diagram 
demonstrated six key feature genes (IGH, UPP1, TMEM173, 
CD74, SYT11, and AGR3) by taking the intersection of feature 
genes in two machine learning methods (Figure 3C). 

Expression analyses showed that AGR3, CD74, and SYT11 had 
the same expression trend in GSE76882 and GSE135327 datasets 
and were markedly different between RF and control groups (P < 
0.05), with higher expression in the RF group (Figures 3D, E). 
Moreover, it could be observed from the ROC curves that the AUC 
values of these three genes were greater than 0.07 in two datasets, 
implying that they exhibited a high accuracy in the diagnosis of RF 
(Figures 3F, G). Therefore, AGR3, CD74, and SYT11 were 
considered as biomarkers associated with macrophage and lactate 
metabolism in RF. 
3.4 Building an effective nomogram for 
diagnosing RF 

By integrating the expression of three biomarkers in GSE76882 
dataset, we created a nomogram to predict the risk of RF (Figure 4A). 
Each biomarker corresponded to a score, and the individual scores 
were summed to obtain a total score; the higher the total score, the 
higher the likelihood of RF. There was no difference between the 
predicted and true values in calibration curve and the value of AUC in 
the ROC  curve was  0.92  (Figures 4B, C), meaning that there was a high 
accuracy in predicting RF using the nomogram. In addition, DCA 
results revealed that net benefit value of the nomogram was higher than 
that of individual biomarkers (Figure 4D), suggesting that the 
nomogram has potential clinical applications. 
3.5 Elucidating the biological mechanisms 
of biomarkers 

GSEA was completed in the GSE76882 dataset to elucidate the 
signaling pathways involved in the three biomarkers. The results 
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showed that the three biomarkers were collectively enriched to 50 
signaling pathways, comprising “oxidative phosphorylation”, “Toll­
like receptor signaling pathway”, “T cell receptor signaling 
pathway”, “JAK-STAT signaling pathway”, “P53 signaling 
pathway”, “phenylalanine metabolism”, etc  (Supplementary 
Tables S2–S4). The top 5 pathways were selected for visualization 
based on significance ranking (Figures 5A–C). The above findings 
suggested that biomarkers influenced the pathological process of RF 
by participating in pathways related tocellular metabolism, energy, 
immune system, and cell transduction. 
3.6 Uncovering the relationship between 
biomarkers and immune profiles 

Comparison of eight cytokines between RF and control groups 
in GSE76882 dataset showed significant differences between groups 
for VEGFA, HGF, IL8, IL6R, IL34, and TGFB1 (P < 0.05), with 
HGF, IL6R, IL8, and TGFB1 being highly expressed in RF samples, 
and IL34 and VEGFA showing the opposite trend (Figure 6A). 

Subsequently, the eight cytokines as a whole (Cytokine) were 
analyzed for correlation with the biomarkers, and the results 
indicated a remarkable positive association between Cytokine and 
three biomarkers (P < 0.05) (Figure 6B). Furthermore, we noted the 
highest significant positive correlations between AGR3 and activated 
B cells (cor = 0.420 and P < 0.001), between CD74 and activated 
dendritic cell (cor = 0.696 and P < 0.001), and between SYT11 and 
activated CD4 T cell (cor = 0.689 and P < 0.001) (Figure 6B). 
3.7 Exploration of subtypes associated with 
biomarkers 

Consistent clustering analysis was performed according to the 
expression of three biomarkers in RF samples from the GSE76882 
dataset, yielding two RF-related subtypes (cluster 1 and cluster 2) 
(Figures 7A, B). PCA results indicated a superior differentiation 
between cluster 1 and cluster 2 (Figure 7C). Notably, the expression 
of AGR3 was significantly higher in cluster 1 compared to cluster 
2 (Figure 7D). 

The gene expression matrix was further compared between 
cluster 1 and cluster 2, yielding 50 DEGs, including two up-
regulated genes and 48 down-regulated genes in cluster 1 
(Figures 7E, F). These 50 DEGs were enriched and analyzed, 
yielding 71 GO entries and 8 KEGG pathways (P < 0.05). With 
respect to GO, the entries were mainly related to “muscle system 
process”, “muscle contraction”, “myofibril assembly”, “contractile 
fiber”, “myofibril”, “actin binding”, and  so  on  (Figure 8A). 
KEGG analysis elucidated that these DEGs were engaged in 
“Cytoskeleton in muscle cells”, “Motor proteins”, “Hypertrophic 
cardiomyopathy”, etc  (Figure 8B). In addition, GSVA results 
showed a significant difference in one pathway (Hallmark 
Complement) between cluster 1 and cluster 2 (Figure 8C). 

Finally, four of the 28 immune cells (effector memory CD4 T 
cells, plasmacytoid dendritic cell, type 17 T helper cell, and type 2 T 
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helper cells) could be noticed to be remarkably distinct between 
cluster 1 and cluster 2 (P < 0.05) (Figure 8D). Two cytokines, IL34 
and VEGFA, were also remarkably distinct between cluster 1 and 
cluster 2 (P < 0.05), and all were highly expressed in cluster 
2 (Figure 8E). 
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3.8 Potential regulatory mechanisms of 
biomarkers 

A lncRNA-miRNA-mRNA network comprising 20 miRNAs, 
189 lncRNAs, and three biomarkers was created by predicting 
FIGURE 3 

Screening and diagnostic value of AGR3, CD74, and SYT11 in RF. (A) Least absolute shrinkage and selection operator (LASSO) regression analysis 
screening and cross-validation. (B) Boruta analysis screening results. Blue box: The minimum, average, and maximum Z-values of the shadow 
property; Red: rejection feature; Yellow: features to be confirmed; Green box: Confirmed feature. (C) Intersection of the two algorithms to obtain 
key feature genes. Pink represents genes confirmed by Lasso regression, and blue represents genes confirmed by Boruta as relevant. (D) Expression 
of key feature genes in the training set. (E) Expression of key feature genes in the validation set. (F) Receiver operating characteristic (ROC) analysis 
of candidate key genes in the training set. (G) ROC analysis of candidate key genes in the validation set. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1609903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yong et al. 10.3389/fimmu.2025.1609903 
public databases (Figure 9A). Multiple relationship pairs could be 
found in the network, e.g., hsa-miR-548x-3p and hsa-miR-548aj-3p 
were regulators of AGR3, as well as multiple lncRNAs (PCAT6, 
POLR2J4, SMIM25, etc.) could co-regulate CD74 through hsa-miR­

4731-5p. 
In addition, a search of the ChEA3 database applying threshold 

of P < 0.05 yielded six TFs, in which MEF2A and JUN were co­
regulators of SYT11 and CD74, and FOXM1 and ZNF217C could 
regulate AGR3 (Figure 9B). 
3.9 Binding of biomarkers to potential 
drugs 

Four potential drugs targeting CD74 were retrieved by thorough 
analysis of the DGidb database, namely VU0240551, DIOA, 
milatuzumab, and Platinum (Figure 10A). Unfortunately, no 
drugs targeting SYT11 and AGR3 were retrieved. We chose 
VU0240551 for subsequent molecular docking because of the 
highest interaction score (13.12) between VU0240551 and CD74. 
The results indicated that binding energy between VU0240551 and 
CD74 was -8.0 kcal/mol, implying a strong affinity (Figure 10B). 
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3.10 Animal experiments verification 

The results of animal experiments showed that the kidneys of the 
RF model rats were significantly swollen and had a dull color 
compared with the control group (Figure 11A). The body weight of 
the model group rats was slightly lower than that of the control group, 
but there was no statistical difference between the two groups. The 
SCR and BUN of the RF model rats were significantly higher than 
those of the control group (P < 0.01) (Figure 11B). HE and PAS 
staining showed renal tubule atrophy, lumen reduction, interstitial 
fiber hyperplasia, and a large number of inflammatory cell infiltration 
in model group. Masson staining showed that the collagen deposition 
in the kidneys of the RF model group was significantly increased 
(Figure 11C; Supplementary Figure S2C). The results indicated that 
the RF model group had significant structural and functional damage 
to the kidneys, as well as significant inflammatory cell infiltration and 
RF compared to the control group. 

On this basis, we further verified the results of the 
bioinformatics analysis. We selected the key biomarkers of 
macrophage lactate metabolism and RF for verification. 
Immunohistochemistry and immunofluorescence showed that the 
expressions of AGR3, CD74 and SYT11 were significantly increased 
FIGURE 4 

Building an effective nomogram for diagnosing RF. (A) Nomogram. (B) Calibration curve of the nomogram model. (C) ROC curve of the nomogram. 
(D) Decision curve analysis (DCA) curve of the nomogram. 
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in the RF model group compared to the control group, and the areas 
of high expression partially overlapped with the areas of 
inflammatory cell infiltration (Figures 11D, E; Supplementary 
Figures S2A, B, D–G). Combined with the important role of 
macrophages in the inflammatory cell infiltration, it was further 
confirmed that the expressions of these key biomarkers were 
increased in the macrophages of the RF model kidney tissue. 
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Finally, we detected the differences in the protein expression of 
AGR3, CD74 and SYT11 between the two groups by western blot. 
The results showed that the expressions of these key biomarkers in 
the kidney tissues of the RF model group were significantly higher 
than those of the control group (P < 0.05) (Figure 11F). 

The verification results of cross-model animal experiments 
further verified the important role and general involvement of 
FIGURE 5 

Elucidating the biological mechanisms of biomarkers. (A) Gene set enrichment analysis (GSEA) of AGR3. (B) GSEA of CD74. (C) GSEA of SYT11. 
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AGR3, CD74 and SYT11 in the progression of RF. Moreover, the 
results also partially demonstrated their correlation with the 
infiltration of inflammatory cells such as macrophages, which 
provided a reference and basis for improving RF from the 
perspective of macrophage lactate metabolism. 
4 Discussion 

CKD is a chronic progressive disease that seriously endangers 
human health. How to effectively delay RF is very important for the 
treatment of CKD. The close relationship between macrophages 
and lactic acid metabolism and the occurrence and development of 
RF provides a new idea for us to further explore the mechanism of 
RF and develop targeted treatment strategies. Therefore, this study 
found and validated new biomarkers related to RF through 
bioinformatics analysis and animal experiments, and explored the 
molecular mechanisms of these biomarkers. 
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This study identified three biomarkers (AGR3, CD74, and 
SYT11) related to macrophage and lactate metabolism for the 
first time. AGR3 belongs to the Anterior GRadient protein family, 
which includes AGR1, AGR2, and AGR3, and is mainly involved in 
endoplasmic reticulum secretion and the biogenesis of 
transmembrane proteins (48, 49). Although there are no reports 
on the role of AGR3 in RF yet. However, considering its role in 
promoting cell proliferation, which aligns with the pathological 
mechanism of fibrosis (50). It is also suggested that AGR3 may be a 
new target worth exploring in macrophage lactate metabolism and 
RF. CD74 is a type II transmembrane protein mainly expressed on 
antigen-presenting cells (APCs) such as macrophages, it can 
regulate the proliferation, survival, and secretion of inflammatory 
and fibrotic mediators in non-immune and non-tumor cells (51). 
The study found that the knockout of CD74 could alleviate 
glomerular damage induced by anti-GBM antiserum (52). 
However, there are two opposite results regarding its role in RF 
(51, 53). The role of CD74 in the activation of immune cells has 
FIGURE 6 

Uncovering the relationship between biomarkers and immune profiles. (A) Differential expression of cytokines/inflammatory factors. (B) Correlation between 
key genes and all immune features (immune cells, cytokines/inflammatory factors). The values in the cells represent the correlation. ns, P value ≥ 0.05; 
**P value < 0.01; ***P value < 0.001; ****P value < 0.0001. 
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been reported in systemic lupus erythematosus (54). However, this 
study found for the first time that it was positively correlated with 
activated dendritic cells in RF, suggesting that it may promote 
fibrosis through the antigen presentation pathway. SYT11 is a 
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member of the synaptotagmin family, which is associated with 
susceptibility to Parkinson’s disease (PD) and schizophrenia (55, 
56). In recent years, studies have found that SYT11 can also regulate 
Golgi morphology and vesicle transport, thereby altering the ECM 
FIGURE 7 

Exploration of subtypes associated with biomarkers. (A) Clustering effect diagram of two subtypes of RF samples. (B) Consensus cumulative distribution 
function. (C) Principal component analysis (PCA) analysis of expression profiles of different molecular patterns. (D) Box plot of key gene expressions in 
different molecular patterns. (E) Volcano plot of DEGs_2 between different molecular patterns. DEGs_2 represents the differentially expressed gene set 
between cluster1 and cluster2. (F) Heatmap of DEGs_2 between different molecular patterns. ns, P value ≥ 0.05; ****P value < 0.0001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1609903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yong et al. 10.3389/fimmu.2025.1609903 
and promoting epithelial-mesenchymal transition (EMT) (57). If 
SYT11  inh ib i t s  the  sec re t ion  or  ac t i v i ty  of  matr ix  
metalloproteinases, it may lead to a reduction in ECM 
degradation and promote fibrotic deposition (58). This study 
reveals its strong correlation with activated CD4+ T cells, 
suggesting that it may be involved in the T cell-mediated 
inflammatory cascade reaction in RF. 
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The nomogram integrating three biomarkers is significantly 
superior to a single biomarker, and the calibration curve shows a 
high degree of consistency between the predicted values and the 
actual values. This is consistent with the strategy of multi-gene 
combination models improving diagnostic accuracy in previous 
studies (59). Currently, the diagnosis of RF still relies on renal 
biopsy, and serum biomarkers (such as KIM-1, NGAL) have 
FIGURE 8 

Enrichment analysis and immune characteristic differences of different subtypes. (A) GO enrichment between different molecular patterns. The pathways 
shown are the top 5 pathways of BP, CC, and MF in order of significance (P value from smallest to largest). (B) KEGG enrichment between different 
molecular patterns. The color of the genes on the left represents the logFC of the genes, and the different color bands on the right represent different 
pathways. (C) Differences in enriched pathways between different molecular patterns; (D) Differences in immune cells between different molecular 
patterns; (E) Differences in cytokines/inflammatory factors between different molecular patterns. ns, P value ≥ 0.05; *P value < 0.05; **P value < 0.01. 
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insufficient specificity (60). This study converts biomarkers at the 
gene expression level into a predictive model, which has two major 
advantages over traditional protein biomarkers: first, gene 
expression changes occur earlier than protein levels, allowing 
earlier reflection of the pathological process; second, it directly 
links macrophage activation and abnormal lactate metabolism, 
enabling more precise localization of the pathological mechanism. 

Valine, leucine, and isoleucine are collectively known as 
branched-chain amino acids (BCAAs), and metabolic disorders of 
BCAAs may exacerbate the progression of RF (61). However, their 
specific role remains controversial (62). Studies have shown that the 
concentration of BCAAs in the tissues of mice with lupus nephritis-
associated RF is significantly higher than in the control group (63). 
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However, other researchers have found that the BCAAs in urine 
and the leucine and isoleucine in kidney tissue from UUO rats were 
reduced, and that exogenous BCAAs could significantly alleviate RF 
in these rats (64). Oxidative phosphorylation is the core pathway of 
cellular energy metabolism, particularly in the polarisation process 
of macrophages (65). Macrophage metabolic reprogramming is 
currently considered to be an important mechanism of RF, 
mainly manifested as the transformation of macrophages from an 
oxidative phosphorylation metabolic phenotype (M2 type) to a 
glycolytic metabolic phenotype (M1 type), thereby expressing pro-
inflammatory and pro-fibrotic effects (66). Lactic acid is the main 
metabolite of glycolysis and can be converted to pyruvate to enter 
the tricarboxylic acid cycle, further demonstrating the close 
FIGURE 9 

Potential regulatory mechanisms of biomarkers. (A) Relationship network of lncRNA-miRNA-key genes. Red represents key genes, orange represents 
miRNA, and blue represents lncRNA; (B) Relationship network of differentially expressed transcription factors (TF) and key genes. Red represents 
genes and blue represents TF. 
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relationship between macrophage-lactic acid metabolism-oxidative 
phosphorylation-RF. Therefore, we speculate that the biomarkers 
AGR3, SYT11, and CD74 may all be involved in the regulation of 
oxidative phosphorylation and promote RF by influencing the 
related macrophage metabolic reprogramming. Moreover, AGR3 
and SYT11 may also be involved in the progression of various 
factor-induced RF through pathways such as BCAA. 

Macrophages are the most important immune cells in normal 
kidney tissues and play a dominant role in various kidney injuries and 
RF processes (9). The mechanism by which macrophages promote 
RF mainly includes the secretion of pro-inflammatory and pro-
fibrotic factors and macrophage-myofibroblast transition (67). 
Activated B cells exacerbate RF by secreting pro-inflammatory 
factors and activating fibrotic signaling pathways (68). T cells and 
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B cells, together with intrinsic fibroblasts, can form tertiary lymphoid 
tissues, leading to uncontrolled inflammation and delayed tissue 
repair, thereby exacerbating RF (69, 70). Studies have shown that 
various T cells (such as CD4+ T cells, T helper cell) are involved in 
the progression of RF (71, 72). Comprehensive literature research and 
analysis results suggest that AGR3, CD74, and SYT11 may all 
aggravate RF by affecting the expression of activated B cells, 
and may also participate in the process of RF through their effects 
on these immune cells. In addition, multiple cytokines showed 
significant differences between RF and control samples, and were 
correlated with key biomarkers. Macrophages in the inflammatory 
microenvironment can enhance lactate metabolism through 
glycolysis. The accumulation of lactate not only serves as an energy 
substrate but also regulates the release of pro-inflammatory factors 
FIGURE 10 

Binding of biomarkers to potential drugs. (A) Drug-key gene CD74 relationship network. Red represents key gene CD74 and green represents 
predicted drug names. (B) Molecular docking results of key gene CD74 and small molecule drug VU0240551. 
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FIGURE 11 

Validation of key biomarker expression in animal experiments. (A) Representative kidneys of rats in the two groups at the time of kidney tissue 
collection. (B) Comparison of body weight and renal function between the two groups of rats. (C) HE, Masson and PAS pathological staining of 
kidneys in the two groups of rats. The black arrow indicates the area of this field of view in the renal tissue. (D) Immunohistochemical staining of 
AGR3, CD74 and SYT11 in kidney tissues of the two groups of rats. The black arrow indicates the area of this field of view in the renal tissue. 
(E) Immunofluorescence staining of AGR3, CD74 and SYT11 in kidney tissues of the two groups of rats. The white arrow indicates the area of this 
field of view in the renal tissue. (F) Western blot detection of differences in protein expression of AGR3, CD74 and SYT11 in kidney tissues of the two 
groups of rats. (B; mean ± SD, n=5; F, mean ± SD, n=3; Compared with the control group: ns, P ≥ 0.05; *P < 0.05; **P < 0.01). 
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such as TNF-a and IL-1b by modulating histone deacetylases and 
other mechanisms, participating in the inflammatory metabolic 
regulatory network (73). Moreover, these pro-inflammatory factors 
(such as TNF-a) also directly mediate the occurrence and 
maintenance of fibrosis (74). The results suggest that regulating 
pro-inflammatory factors may be an important medium for key 
genes to regulate immune cells and affect the progression of RF. 

There have been numerous studies on the relationship between 
non-coding RNA and RF. Research has found that miR-19b-3p, 
which is closely related to the regulation of predicted biomarkers, 
can downregulate the levels of a-smooth muscle actin (a-SMA), 
transforming growth factor b1 (TGF-b1) and fibronectin (FN) in 
the kidney tissue of hyperuricemic rats, thereby reducing renal 
interstitial fibrosis (75). Some studies have shown that the predicted 
lncRNA TUG1 can act as a competing endogenous RNA to bind to 
miR-29b-3p of the miR-29 family, thereby blocking the inhibitory 
effect of miR-29b-3p on ECM synthesis and exacerbating RF (76). 
However, other studies have found that overexpression of TUG1 
overexpression can alleviate kidney injury in diabetic nephropathy 
mice and reduce the inflammatory response and fibrosis of high 
glucose-stimulated HK-2 cells through the miR-145-5p/DUSP6 axis 
(77). These results suggest that TUG1 may play multiple roles in RF. 
Based on the research results and literature analysis, we speculate 
that miR-19b-3p and TUG1 may play important roles in the 
macrophage lactate metabolism and pro-fibrotic processes 
through the predicted biomarkers, but further experiments are 
needed to confirm this. 

As a neurotransmitter reuptake inhibitor, VU0240551 is mainly 
used in the treatment of epilepsy, anxiety disorders, neuropathic 
pain and other nervous system-related diseases (78–80). The 
bioinformatics analysis results suggest that VU0240551 may be a 
potential therapeutic agent for RF. Although there have been no 
studies or reports of a direct association between VU0240551 and 
RF, this may be because the link between pathological processes 
associated with RF and the neurotransmitter system has not been 
fully explored. However, with the deepening of the research on the 
mechanism of the disease, and the discovery of the interaction 
between different systems (such as the brain-kidney axis, etc.), it is 
possible to reveal the potential association between VU0240551 and 
RF in the future, so as to provide new ideas for the treatment of RF. 

This study identified the biomarkers related to macrophage and 
lactate metabolism in RF for the first time,and the possible 
mechanisms along with potential targeted therapeutic drugs were 
also explored. In addition, the expressions of these biomarkers were 
verified through animal experiments. The results of this study provide 
a new perspective for understanding the pathogenesis of RF and 
valuable targets for further exploration of targeted intervention 
strategies. However, in this study, we did not strictly validate the 
causal relationship between these biomarkers and RF. Meanwhile, 
there was a lack of observations in terms of functional assays. In the 
future, we plan to conduct in-depth mechanistic and clinical studies 
(such as knockout/overexpression verification and related function 
detection) to fully analyze the specific molecular mechanisms and 
clinical application value of these biomarkers in RF. 
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