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Regenerative potential
of immune cells after
traumatic muscle injury
Su Pu, Guangmin Hu, Yulu Cao, Guoming Shen*

and Yuqing Wang*

School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine,
Hefei, China
Traumatic muscle injury (TMI) causes significant morbidity and socioeconomic

burden. Immune cells are central to the subsequent regenerative response,

orchestrating dynamic interactions between innate and adaptive immunity.

This review systematically summarizes the current understanding of the roles

of key immune cells (neutrophils, macrophages, eosinophils, basophils, T

lymphocytes, B lymphocytes) in TMI pathophysiology and repair, based on a

comprehensive analysis of recent literature. Their intrinsic mechanisms,

contributions to tissue regeneration, and therapeutic implications are

discussed. Furthermore, we explore therapeutic strategies targeting immune

cells, including biomaterials, pharmacologic interventions, cell therapies, and

physical modalities. The aim of this review is to provide a consolidated

understanding of immune-mediated repair mechanisms in TMI and to identify

critical knowledge gaps and future research directions necessary for developing

novel immunomodulatory therapies to optimize muscle regeneration and

functional recovery.
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Introduction

Traumatic muscle injury comprises a range of skeletal muscle pathologies induced by

direct trauma to muscle tissue, characterized by structural disruption and potential loss of

function (1, 2). Such injuries have a significant impact on athletes (3), military personnel

(4), and the elderly population (5), contributing not only to pain and functional limitations

but also to a significant socio-economic burden. In the United States, the annual healthcare

expenditure associated with sports-related injuries has been reported to reach up to 55.1

billion USD (6). TMI also reduces productivity and diminishes social participation, further

compounding its economic impact (5, 6). Beyond the acute phase, traumatic muscle

injuries frequently result in chronic complications such as fibrosis and muscle atrophy,

which may predispose individuals to secondary osteoarthritis and significantly reduce long-

term quality of life (7).
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According to the international consensus classification system

outlined in the Munich Declaration, these injuries are systematically

categorized into four grades based on severity and pathological

progression (8). As shown in Table 1, Grade I injuries involve

minimal muscle fiber disruption (< 5%) without fascial rupture and

are characterized by edema detectable on magnetic resonance

imaging (MRI) during the acute inflammatory phase,

accompanied by negligible functional impairment (8, 9, 16).

Grade II injuries involve muscle fiber tears exceeding 5% and/or

partial disruption of the fascia, accompanied by a moderate loss of

function, transitioning from the acute to the subacute phase,

requiring physical therapy and adjunctive interventions for

recovery (11, 12, 17). Grade III injuries are characterized by

complete muscle fiber rupture with retraction and a total loss of

function, corresponding to the phase from subacute-to-

regeneration phase and typically requiring surgical intervention

(13, 18). Grade IV injuries involve complete rupture of both muscle

fibers and the surrounding fascia, marking entry into the

reconstruction phase and necessitating surgical structural repair

(8, 14, 15).

The interplay between TMI, therapeutic interventions, and the

immune system is governed by an orchestrated network of immune

cells and molecular mediators (1). This review focuses on the roles

of immune cells in the repair and regeneration of traumatic muscle

injuries. Specifically, the functions of each type of immune cell are

outlined as follows. This search covered multiple databases,

including PubMed, EMBASE, and Cochrane Library. Keywords

used included “traumatic muscle injury”, “immune cells”, “muscle

regeneration”, “neutrophils”, “macrophages”, “T lymphocytes”,

“regulatory T cell”, “B lymphocytes”, “eosinophils”, “basophils”,

“inflammation”, “fibrosis”, “satellite cells”, “immunomodulation”,

and “biomaterials”. Priority was given to studies published from

2015 to the present. Emphasis was placed on preclinical models and

clinical studies involving humans or rodents. Articles focusing on

non-traumatic muscle diseases (e.g., genetic myopathies) were

excluded. Also excluded were articles lacking original data on

immune cell mechanisms.

Neutrophils constitute the first line of immune defense

following TMI, rapidly infiltrating the damaged tissue to clear

necrotic debris and potential pathogens. They initiate the

inflammatory phase through the release of pro-inflammatory

cytokines, including interleukin-6 (IL-6) and tumor necrosis

factor-a (TNF-a), and by recruiting circulating monocytes to the
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injury site. However, excessive or prolonged neutrophil activity

intensifies tissue damage, underscoring the importance of tightly

regulated inflammatory responses (19). Following neutrophil

infiltration, macrophages transition from pro-inflammatory M1

phenotypes to anti-inflammatory M2 phenotypes. M1

macrophages facilitate the clearance of cellular debris and secrete

inflammatory mediators, such as TNF-a and IL-1b. M2

macrophages promote tissue regeneration through the release of

growth factors including transforming growth factor-b (TGF-b)
and IL-10, and support neovascular post-traumatic (20). This

macrophage polarization is essential for effective muscle fiber

regeneration and vascular remodeling. T lymphocytes, particularly

cluster of differentiation 8 positive T cells (CD8+ T cells) and

regulatory T cells (Tregs), further modulate the immune

microenvironment (21). CD8+ T cells enhance macrophage

recruitment by inducing monocyte chemoattractant protein-1

(MCP-1) expression (22–24), while Tregs attenuate excessive

inflammation and facilitate satellite cell activation (25). Other

immune cell types, such as eosinophils and basophils, contribute

indirectly by secreting cytokines such as IL-4 and IL-13, which

regulate fibroblast unction and extracellular matrix remodeling

(26–30). The immune response to TMI entails a highly

coordinated interaction among immune cells, mediated by

cytokines such as high-mobility group box 1 protein (HMGB1),

interleukin-33 (IL-33), and other various damage-associated

molecular patterns (31). Disruption of this immunological

b a l anc e may r e su l t i n pe r s i s t en t i nflammat ion o r

immunosuppression, hindering tissue regeneration and functional

recovery (32–35). Understanding these mechanisms is significant

for developing targeted therapies to optimize muscle repair (36).

Despite recent advances, significant challenges remain in

translating immune modulation strategies into clinical

applications (37). Firstly, the temporal and spatial dynamics of

immune cell phenotypes are not fully elucidated, especially in aging

populations where macrophage polarization capacity is reduced

(38). Secondly, current surgical treatments for Grades III-IV

injuries frequently fail to restore native muscle architecture,

highlighting the need for combinatorial approaches involving

cytokine-targeted biologics, such as anti-TGF-b antibodies (39)

and biomaterials engineered to emulate macrophage-derived

Wnt7a signaling (40). Novel interventions, including inhibition of

neutrophil extracellular traps (NETs) to mitigate chronic

inflammation (41) and chimeric antigen receptor - regulatory T
TABLE 1 The grading system, pathological characteristics, and therapeutic interventions corresponding to the severity of TMI.

Grade
Muscle Fiber

Damage
Fascial Tear

Inflammatory
Phase

Functional
Impairment

References

I Mild (<5%) None Acute (MRI-visible edema) Minimal (8–10)

II >5% or partial Partial Acute to subacute Partial (8, 11, 12)

III
Complete with muscle
retraction

None Subacute to regeneration Total (8, 13)

IV Complete Complete Reconstruction None (8, 14, 15)
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cells (CAR-Treg cell) therapies aimed at fibrosis suppression, show

promise in preclinical models but require thorough validation in

clinical trials (42).
Etiology and clinical symptoms of TMI

TMI generally result from either indirect non-contact

mechanisms, such as strains and fractures, or direct contact

injuries, including contusions and lacerations, often caused by

mechanical forces and frequently associated with sports-related

trauma (1, 43). These injuries generally occur when a muscle is

overexerted or subjected to sudden mechanical shock (44),

frequently linked to the overstretching of muscle fibers.

Moreover, the deformation and ensuing failure of the cell

membrane are key components of mechanical injury. Studies

suggest that the cell membrane may experience transient rupture

following deformation, a process commonly referred to as

mechanical porosity (45).

After TMI, just as shown in Table 2, varied signs may arise,

with pain and discomfort being particularly common, especially

following unaccustomed or intense physical activity. This

response is attributed to the release of pro-inflammatory

mediators by immune cells, which sensitize nociceptors and

subsequently induce pain (46). The pain may be immediate or

delayed for several days and is often associated with microscopic
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muscle fiber tears, commonly referred to as delayed onset muscle

soreness (46, 50, 51). Muscle stiffness and a temporary reduction

in strength are additionally frequent, leading to limited movement

after exercise (47). This weakness is primarily caused by structural

damage to the muscle and the inflammatory response (52),

involving protein degradation, apoptosis, and inflammation-

induced ultrastructural damage that impairs muscle function

(53). Muscle functionality may be compromised, including a

range of motion, coordination, and balance, may be

compromised (48). Swelling is another important indicator,

visible either locally or systemically, especially after eccentric

contraction exercises (54–56). The swelling observed is

primarily due to the recruitment of immune cells to the injured

site, which increases vascular permeability, facilitating the

extravasation of plasma proteins and fluids into the surrounding

tissue. These evens collectively reflect the interplay between

structural damage and immune-mediated repair mechanisms in

response to TMI.

TMI leads to significant changes in numerous markers,

including increased activity of biochemical indicators such as

serum creatine kinase (CK), a key marker for assessing the extent

of muscle injury (57). Elevated CK levels indicate cell membrane

damage and the release of intracellular components (58, 59).

Oxidative stress markers, such as malondialdehyde (MDA) and

thiobarbituric acid reactive substances, are elevated following

injury, reflecting increased levels of oxidative stress (59–61). The

immune system releases inflammatory mediators following TMI

and modulates immune cell activity. This is reflected in alterations

in the number of white blood cells and lymphocytes, which are

likely associated with immune activation (62). Research has

demonstrated a strong relationship between changes in

biochemical markers and the functional status of the immune

system (19). For example, serum adenosine deaminase (ADA)

activity is elevated following muscle injury, indicating immune

system activation. Furthermore, a post-injury immunosuppressed

state may arise due to a subsequent decline in immune

function (63).

The onset and progression of these responses are influenced by

multiple factors, including the type, intensity, and duration of

exercise, as well as the individual’s adaptive capacity to physical

activity. Early detection of these responses is essential for timely

diagnosis and intervention in traumatic muscle injuries, thus

facilitating recovery and reducing the risk of further tissue damage.
Diagnosis and treatment of TMI

Based on these symptoms, a preliminary diagnosis can be made,

further supported by diagnostic tools such as ultrasound (64, 65)

and MRI (66). These imaging techniques are commonly used to

identify the location, extent, and severity of the injury (67, 68).

Biomechanical and molecular biological indicators, such as the rate

of force development, serve as more sensitive indirect markers for

assessing TMI than maximum voluntary isometric contraction peak

torque (69).
TABLE 2 Clinical symptoms of TMI.

Symptoms Causes
A link to the

immune system
References

Pain and
discomfort

Tearing of
muscle fibers

Immune cells release
pro-inflammatory
mediators that cause
sensitization of
nociceptors, which
triggers pain.

(46)

Muscle
stiffness

Pain and
limited
movement
after exercise

Inflammation can lead
to muscle stiffness, as
well as decreased
function, etc., because
protein degradation,
apoptosis, and local
inflammatory response
during inflammation can
lead to ultrastructural
damage of muscle cells,
resulting in muscle
being unable to perform
normal function.

(47, 48)

Muscle
dysfunction

Damage to
muscle
structure and
inflammatory
response

Swelling of
muscle

Inflammation
and increased
vascular
permeability

Immune cells are
recruited to the injury
site, resulting in
increased local vascular
permeability, and the
infiltration of proteins
and other liquids in
plasma into the tissue
space causing local
edema or swelling.

(49)
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Treatment for TMI involves several approaches, including

initial management, non-surgical and surgical treatments,

rehabilitation, and preventive measures. Initial management

typically involves protection, rest, optimal use of the injured limb,

and cold therapy, following the RICE principle of “rest, ice,

compression, and elevation” (70). For more severe injuries,

immobilizing the limb for a few days may be necessary to

facilitate scarring. Most muscle injuries recover well with

conservative, non-surgical treatments, such as non-steroidal anti-

inflammatory drugs (NSAIDs) (71), ultrasound therapy (64, 65),

strengthening and stretching training (72), and painless joint

mobility exercise (1, 9). Surgical treatment is reserved for cases of

complete muscle tears or total loss of function (73, 74). Procedures

may include hematoma drainage (75) and muscle-tendon

reattachment and reinforcement (76). The recovery phase

commences after initial treatment, emphasizing rehabilitation to

restore function rather than merely alleviating symptoms (77).

Primary rehabilitation objectives encompass accurate diagnosis,

mitigating the adverse local effects of acute injury, promoting

proper healing, preserving motor function, and restoring normal

activity levels (78, 79).

Preventive measures are crucial for reducing the risk of muscle

injuries, especially in athletes involved in sports such as football.

Key strategies include adequate warm-ups, temperature regulation,

and stretching, all of which help lower the risk of strains. Increasing

muscle strength, endurance, and flexibility is vital for improving

athletic performance and preventing injuries. Although traumatic

muscle injuries are prevalent among athletes, successful recovery is

attainable through proper classification, prompt diagnosis, and

effective treatment.
Immune cells response to TMI repair

After TMI, the immune system initiates an inflammatory

response to remove damaged cells and tissue debris, setting the

stage for muscle tissue repair. This process involves vasodilation,

cell migration, and the activation of inflammatory cells (80).

Simultaneously, the immune system orchestrates and regulates

the functions of diverse cellular components, with macrophages

playing a central role in driving muscle tissue repair and

regeneration following TMI (81). After an injury, the immune

system activates muscle stem cells, transitioning them from a

quiescent state to active proliferation, which forms the basis for

effective muscle tissue repair and regeneration (82). The immune

system induces fibroblasts to differentiate into myofibroblasts,

which produce collagen and other extracellular matrix

components vital for providing structural support to the newly

formed muscle tissue (83). It also promotes angiogenesis, ensuring a

sufficient nutrient supply and oxygenation for the regenerating

muscle tissue.

Moreover, the immune system orchestrates the activities of

immunocompetent cells such as macrophages, lymphocytes, and

dendritic cells, which secrete multiple cytokines to enhance muscle

repair and regeneration (80). The interaction between the immune
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system and muscle repair is highly coordinated, involving the

recruitment and functional transformation of immune cells and

other key processes. Continued research in this area improves our

understanding of muscle repair mechanisms and may provide novel

strategies for treating related disorders.

TMI triggers an intricate host response that disrupts immune

homeostasis, increasing susceptibility to opportunistic infections

and inflammatory complications such as infections, multiple organ

dysfunction syndrome (MODS) (84), immunosuppression (85),

and associated inflammatory responses. Following trauma, the

body initiates a cascade of immune reactions to control

inflammation at the injury site and support tissue repair (86).

However, excessive production of pro-inflammatory cytokines can

drive the immune response into an immunosuppressive state (86),

significantly contributing to complications like nosocomial

pneumonia, systemic inflammatory response syndrome, and

MODS (86). Severe trauma often leads to increased activation of

innate immune cells and overproduction of inflammatory

mediators (87). This over-activation can result in systemic pro-

inflammatory circulation and cytokine storms (88) that provoke

strong non-infectious systemic inflammatory responses (89).

MODS can arise from an orchestrated inflammatory response

(90). These observations underscore a crucial point: the

complications are closely linked to the immune system, and the

regeneration of TMI relies heavily on the inflammatory processes

during this phase (91). Furthermore, immune cells are essential in

coordinating the inflammatory response, initiating transient

inflammation following various types of injury (92). The

development and function of these cells are modulated by

proteins whose expression is influenced by the surrounding

inflammatory environment (93–95). In summary, most

complications from traumatic muscle injuries are closely

associated with inflammation, primarily driven by immune

responses, including activating pro-inflammatory factors and

immune cell participation.

As shown in Figure 1, the healing process following TMI

progresses through distinct phases, beginning with an

inflammatory response. Upon muscle damage, resident cells

within the affected tissue release a spectrum of cytokines,

including pro-inflammatory mediators such as TNF-a and IL-1b,
as well as anti-inflammatory cytokines such as IL-6, interleukin-8

(IL-8), and interferon-g (IFN-g). These cytokines upregulate

adhesion molecule expression, facilitating the recruitment of

leukocytes from the circulation to the injury site. Neutrophils are

the first immune cells to infiltrate the damaged tissue, where they

play a pivotal role in removing necrotic material and cellular debris,

initiating the repair process (96, 97). As the process advances,

macrophage activation shifts significantly, with pro-inflammatory

macrophages dominating the local microenvironment. These

macrophages secrete pro-inflammatory cytokines, further

promoting myogenic cell proliferation and expanding the satellite

cell population. Depending on their activation phenotype,

macrophages can adopt various roles throughout TMI repair (98).

Tregs also play a significant role. Studies have shown that these cells

can accelerate healing processes when directly injected into
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damaged bone, muscle, or skin (99). Tregs regulate immune

responses while creating a microenvironment conducive to

effective tissue repair (100, 101). Following debris clearance,

satellite cell recruitment and fusion occur: quiescent satellite cells

become activated and proliferate, then migrate to the site of injury,

where they fuse with adjacent muscle fibers to form new myofibers,

ultimately restoring muscle function (102). Finally, new vascular

networks form during the fibrosis and maturation phases, and

collagen deposition occurs, driven by factors released from

macrophages as healing advances. The process culminates in the

maturation stage, where damaged tissues are either fully replaced or

remodeled to restore functional normalcy (103).

The immune system’s response to TMI involves a multifaceted

interplay of mechanisms mediated by immune cells, which are

crucial for post-injury muscle repair. Following trauma, these cells

play pivotal roles, including the activation and differentiation of

muscle stem cells, the regulation of inflammation, the clearance of

damaged tissues, and active participation in tissue regeneration.
Neutrophils

Neutrophils play an important role in both the initial injury and

repair of TMI, serving as an necessary component of the innate
Frontiers in Immunology 05
immune system that combats infections through pathogen

engulfment and the release of antibacterial enzymes (104). In

both murine and human studies, an inflammatory response is

triggered upon TMI, producing diverse inflammatory cytokines

and chemokines (105). These substances, such as IL-6, IL-8, C-X-C

motif chemokine ligand (CXCL) neutrophil chemokines, and TNF-

a, act on endothelial cells adjacent to blood vessels, attracting and

recruiting neutrophils to the site of injury (106, 107). Many

members of the CXCL family, as potent neutrophil chemokines,

are secreted by various cell types such as endothelial cells,

fibroblasts, and macrophages (108). They induce neutrophil

polarization and migration by activating CXCR1 and CXCR2

receptors on neutrophils (109). Moreover, they form a

concentration gradient near the injury site, guiding neutrophils to

migrate from the intravascular space to the damaged area.

Endothelial cells play a crucial role in this process. They not only

secrete chemokines but also upregulate the expression of adhesion

molecules (e.g., selectins) to promote neutrophil rolling and

attachment (110). Additionally, upon treatment with IL-1 or

TNF-a, endothelial cells can synthesize and secrete chemokines

structurally similar to the neutrophil-activating factor (NAF)

derived from human monocytes, further enhancing neutrophil

activation and migration (111). Cytokines such as IL-6 and TNF-

a also play important roles in the inflammatory response; they can

stimulate endothelial cells to produce more chemokines, thereby
FIGURE 1

Immune cell dynamics during TMI repair, including, neutrophils immediately infiltrate within a few seconds, macrophage polarization in a few days,
and Treg-mediated inflammation regulation in weeks. M1, pro-inflammatory macrophage; M2, anti-inflammatory macrophage; IL-6, interleukin-6;
IL-8, interleukin-8; TNF-a, tumor necrosis factor-a; Treg cell, regulatory T cell. The figure was drawn by Figdraw.
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strengthening neutrophil recruitment (112). At the very beginning

of TMI, neutrophils rapidly migrate to the injured area to eliminate

necrotic tissue and cellular debris, creating favorable conditions for

reparative processes. Although the core mechanisms of neutrophil

recruitment and function are conserved between mice and humans,

species-specific differences in cytokine kinetics or receptor

expression may affect the magnitude and duration of their

response (113).

During the early stages of TMI, neutrophils contribute to the

inflammatory response by releasing reactive oxygen species (ROS)

and proteases, which facilitate the initial repair of the injured site

(114, 115). NETosis (Neutrophil Extracellular Trap formation), a

mechanism by which neutrophils release NETs during infection or

inflammation to capture and kill pathogens through reticular

structures, also contributes here (116, 117). Removing cell and

fiber debris facilitates muscle regeneration and connective tissue

deposition and triggers a strong inflammatory response (105). As a

result, the over-activation of neutrophils may lead to further tissue

damage, highlighting the need to precisely regulate their function

(118). However, recent studies highlight the functional plasticity of

neutrophils, with pro-inflammatory N1 and anti-inflammatory N2

phenotypes mirroring the M1/M2 macrophage dichotomy (119). In

the acute inflammatory stage, N1 neutrophils are dominant and

release reactive oxygen species and proteases, such as matrix

metalloproteinase-8 (MMP-8) and MMP-9, which are involved in

the killing of pathogens (120). During the inflammation resolution

phase, N2 neutrophils emerge and express anti-inflammatory

molecules including CD206, Arg1, and IL-10, thereby

participating in tissue repair and scar formation (121).

Furthermore, N2 neutrophils, which appear during the resolution

phase of inflammation, secrete anti-inflammatory mediators such as

IL-10 (122, 123). Notably, under the influence of cytokines such as

CXCL1, neutrophils undergo reverse migration from damaged

muscle tissue (116). This process rapidly depletes local neutrophil

populations, promoting inflammation resolution and creating a

favorable microenvironment for tissue regeneration and repair

(116). Reverse-migrated neutrophils re-enter the vasculature,

transit through the lungs, and return to the bone marrow for

clearance (116). This clearance pathway represents the most

favorable outcome for effective tissue repair. However, aging

significantly impacts this process. The N3 ageing signatures

impacts muscle function, including changes in muscle mass, fiber

type, and reduced regenerative capacity of muscle stem cells (124).

Additionally, age alters immune dynamics post-traumatic muscle

injury (TMI). Compared to young mice, older mice exhibit delayed

neutrophil clearance after peak infiltration and show age-specific

changes in monocyte/macrophage subpopulation abundance (125).

As the inflammatory response at the injury site gradually

subsides, IL-10 from N2 neutrophils promotes macrophage

polarization toward a regenerative phenotype, enhancing

myoblast proliferation and satellite cell activation in murine

models (126–128). However, human studies suggest additional

complexity, with neutrophil-derived extracellular vesicles (EVs)

playing a role in satellite cell regulation (129). Moreover, anti-

inflammatory macrophages release pro-inflammatory cytokines
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such as IL-6 and TNF-a, which stimulate myoblast proliferation

and satellite cell recruitment. These cells then fuse with surrounding

muscle fibers, forming new myonuclei, enhancing protein synthesis,

and promoting muscle regeneration (73, 130, 131). It is important

to note that cytokines and chemical signals finely regulate

neutrophil function following muscle injury. IL-8 facilitates

neutrophil recruitment and function, while TNF-a is crucial in

initiating early inflammatory responses (119, 132). During muscle

repair, these cytokines not only influence neutrophil migration and

function but exert downstream effects on other immune cells,

including macrophages and lymphocytes, during muscle repair.

In summary, neutrophils show dual functions in TMI repair.

They facilitate initial repair by eliminating necrotic tissue and

pathogens, while promoting muscle regeneration through the

release of pro-inflammatory factors and participation in the

inflammatory response (104, 115, 133). However, their over-

activation can exacerbate tissue damage, necessitating precise

regulation of their function for optimal repair (115).

Studies in murine and human models underscore neutrophils’

pivotal yet complex role of neutrophils in muscle regeneration (41,

134). In studies on physical therapy for damaged muscles using

mouse models, David J. Mooney’s team conducted a series of

experiments demonstrating that massage therapy can facilitate the

removal of neutrophils from injured muscles. This reduction

minimizes the negative impact of neutrophil-associated secretions

on muscle progenitor cell differentiation, promoting myogenesis by

influencing muscle fiber maturation and supporting muscle

regeneration (135). Furthermore, studies in CCR2-deficient mice

have shown that the peak number of neutrophils coincides with the

activation of muscle satellite cells, suggesting that neutrophils may

play a role in satellite cell activation (136). This is critical because

satellite cells are necessary for maintaining uninjured muscle and

rapidly responding to growth or regeneration signals to re-enter the

cell cycle (137, 138). Neutrophils influence the dynamics of satellite

cells by releasing paracrine factors, further supporting their

involvement in muscle regeneration (139). The heterogeneity and

plasticity of neutrophils contribute to tissue repair. They clear

damaged tissue, and form NETs, which aid in regulating cell

proliferation (140, 141). Finally, neutrophil depletion studies, such

as those involving mice injected with snake venom toxin, have

demonstrated that the absence of neutrophils leads to significant

tissue necrosis and impaired regenerative responses (1, 142).

Other studies have suggested that neutrophils may not

significantly impact muscle recovery. In one study, mice

underwent a 10-day offloading of their hind limbs, followed by

reloading after neutrophil depletion. The results indicated that

neutrophil depletion did not affect strength loss or the recovery of

atrophied muscle fibers (143). The potential for neutrophils to

exacerbate muscle injury has been extensively explored, as

summarized in Table 3. Besides the previously reported reduction

of neutrophils through massage therapy to promote muscle repair

(135), and hyperactive neutrophils contribute to severe

inflammation. Neutrophil-derived mediators such as superoxide

dismutase 2 (SOD-2), glutathione peroxidase (GPX), catalase

(CAT), and thioredoxin (TRX) induce muscle fiber damage,
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membrane disruption, and oxidative lipid degradation (146–148).

For instance, myeloperoxidase (MPO), a key enzyme in neutrophils,

generates ROS such as hypochlorous acid, which plays a crucial role

in microbial killing but can also contribute to tissue damage (145).

The presence and activity of neutrophils may be associated with

the pathogenesis of TMI. Animal studies have shown that

neutrophil depletion can enhance muscle regeneration,

supporting the hypothesis that neutrophils contribute to muscle

damage. Researchers found the depletion of neutrophils in young

mdx mice reduced muscle degradation (149). Furthermore, in the

mdx animal models of muscular dystrophy, elevated levels of

neutrophil elastase and ROS have been shown to impair myoblast

survival and differentiation (150). Overstimulation of neutrophils in

these contexts leads to excessive NETs formation, which is cytotoxic

and can hinder muscle tissue regeneration; studies have shown that

the components of NETs, namely purified histone type-IIA, can

inhibit cell growth in a concentration-dependent manner and

induce cytotoxicity. This thereby hinders the repair of various

tissues (151).

Neutrophils play diverse roles in TMI repair, including initiating

the inflammatory response, facilitating muscle regeneration,

modulation of the inflammatory environment, and contributing to

dual functions. In the pathophysiological process of TMI, neutrophils

play a complex and bidirectional regulatory role (115). Their

functions exhibit significant duality - they not only provide

necessary support for early inflammation initiation and tissue

regeneration, but also may exacerbate secondary damage due to

excessive activation (104). From a positive perspective, after injury

occurs, neutrophils rapidly migrate through the vascular endothelium

to the damaged muscle tissue, using phagocytosis to clear local

necrotic muscle fiber fragments and invading pathogens, creating a

microenvironment for subsequent repair (109, 116). At the same

time, the proteins and ROS secreted by them can activate satellite cells

through signal transduction pathways, promoting the proliferation

and differentiation of myogenic precursor cells; the released

chemokines (such as CXCL8) can recruit monocytes and

macrophages to infiltrate the injury site, initiating the regeneration

cascade reaction. Moreover, NETs play a key role in limiting the
TABLE 3 Overview of the role of neutrophils in TMI repair.

Reference
Research
model/
platform

Research
mechanism

Conclusions
related to
immune
cells

(136)

Dual laser
Multimode
nonlinear optical
microscope
platform

The peak number
of neutrophils
coincided with the
activation of
muscle satellite
cells.

Neutrophils may
be involved in the
activation of
satellite cells in
favor of muscle
repair.

(142)

Male Swiss mice
were pretreated
with anti-mouse
granulocyte
immunoglobulin
G (IgG) or
control antibody.

Likely through
phagocytosis of
necrotic debris and
the recruitment of
other inflammatory
cells, both of which
are critical for
effective muscle
repair.

Neutrophils play a
key role in skeletal
muscle
regeneration
following
Bothrops asper.

(144)

A peptidyl
arginine
deiminase 4
(PAD4) deficient
mouse model

Neutrophils induce
secondary immune
thrombosis through
PAD-dependent
mechanisms,
thereby promoting
the healing of
injured tissues.

Insufficient
immune
thrombosis caused
by neutrophils
may cause
damaged tissue to
bleed and be
difficult to heal.

(143)

Mice underwent
10 days of
hindlimb
unloading and
neutrophil
depletion before
reloading.

LPS alters the
activation state of
neutrophils,
otherwise,
neutrophilic
infiltration is highly
regulated and
effectively
eliminated during
regulated
mechanical loading
without significant
muscle fiber
damage

Neutrophil
consumption does
not affect loss of
strength or
restoration of
atrophied fibers.

(135)

Real-time force
control
compatible with
ultrasound for
tissue strain
analysis.

In addition to
neutrophils in the
injured muscle, the
inhibitory effect of
neutrophil-related
secretion factors on
the differentiation
of muscle
progenitor cells was
reduced.

Massage to clarify
that neutrophils
promote
myogenesis by
changing the type
of muscle fiber
maturation, thus
promoting muscle
regeneration.

(145)

Humans
normally heal
open damage
and pressure
ulcers.

MPO deficiency
leads to an
intensification of
the inflammatory
response and affects
neutrophil
function, including
cytokine
production.

MPO, as a key
enzyme in
neutrophils,
produces reactive
oxygen
intermediates such
as hypochlorous
acid that help kill
microorganisms,
but may also cause
tissue damage.

(Continued)
TABLE 3 Continued

Reference
Research
model/
platform

Research
mechanism

Conclusions
related to
immune
cells

(146)

Nanoparticles
were used to
label bone
marrow-derived
mesenchymal
stem cells (BM-
MSCs)

Neutrophil-derived
mediators are made
by SOD. When
hydrogen peroxide
accumulates, it is
toxic to cells,
causing membrane
lipid peroxidation
and membrane
fission, leading to
cell damage and
death.

When the medium
produced by
neutrophils is less
superoxide, the
cytotoxicity and
the influence on
cell proliferation
activity are less,
which is
conducive to
tissue repair.
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expansion of the injury range by capturing pathogens and degrading

cell debris, thereby restricting oxidative stress damage to healthy

muscle fibers and degradation of extracellular matrix. However,

excessive activation and continuous infiltration of neutrophils may

lead to amplification of the injury effect (117). Excessive ROS and

proteins can exceed the physiological regulatory threshold, directly

causing oxidative damage to healthy muscle fibers and degradation of

the extracellular matrix. This inhibits the regenerative potential of

muscle satellite cells; moreover, the pro-inflammatory mediators

these cells secrete delay the phenotypic transformation of

macrophages from M1 to M2, hinder the establishment of an anti-

inflammatory microenvironment, and thereby promote fibrosis and

ectopic ossification (116). In the future, through precise regulation of

their temporal and spatial dynamics, while retaining their early

clearance function, and avoiding excessive damage, it will be

possible to maximize their promoting effect on muscle repair (152).
Monocytes/macrophages

Macrophages are critical to TMI, which is pivotal in initiating

and resolving inflammatory responses (153, 154). Their functions

are regulated through distinct phenotypic polarization—M1 and

M2—which either promote or inhibit muscle regeneration (155,

156). Herein, there are three main approaches to macrophage

differentiation: 1) each monocyte subpopulation differentiates into

a specific macrophage phenotype; 2) the macrophage phenotype is

determined by microenvironmental signals and cytokines,

primarily in the context of inflammation; 3) mature macrophages

can shift between pro-inflammatory (M1) and anti-inflammatory

(M2) phenotypes in response to changes in their tissue environment

(157, 158).

M1 macrophages, primarily pro-inflammatory, contribute to

clearing damaged tissue by engulfing apoptotic or necrotic muscle

fibers, releasing inflammatory mediators such as TNF-a and IL-1b
(159, 160), and activating other immune system components. These

pro-inflammatory actions facilitate tissue cleaning and fibrous

debris (139). However, as clearly illustrated in Figure 2, M1

macrophages may also intensify muscle damage by generating

ROS and nitric oxide (NO) (161). NO concentration critically

determines its effect: high levels induce apoptosis, while low levels

protect against oxidative stress and even promote muscle cell

proliferation/growth in early repair (162, 163), suggesting NO

modulates the regeneration-fibrosis balance. Furthermore,

prolonged M1 activation promotes excessive fibrosis (164, 165)

and can inhibit axon (166, 167) and potentially muscle fiber

regeneration (168) impairing long-term recovery. In summary,

while M1 macrophages are essential for initial inflammation and

clearance, their overactivation or persistence negatively impacts

repair through fibrosis and inhibition of regeneration (169, 170).

Meanwhile, studies have shown that by synthesizing PLGA (poly

(lactic-co-glycolic acid)) nanoparticles that encapsulate magnesium

and delivering them to macrophages to reduce the M1 phenotype,

the macrophage phenotype can be resolved in the context of muscle

repair to alleviate inflammation and improve tissue regeneration
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(171). In summary, M1 macrophages release pro-inflammatory

factors that serve a dual function in muscle repair.

In contrast, M2 macrophages transition from an initial anti-

inflammatory role to become central mediators of tissue

regeneration. This functional adaptation is facilitated by distinct

M2 subtypes (M2a, M2b, M2c, M2d), classified based on activating

stimuli and transcriptional profiles, each with specific functions

(172). M2a is activated by IL-4 or IL-13 and is primarily involved in

immune regulation and tissue repair. M2b is activated by LPS or IL-

1b and has immune regulatory and inhibitory functions. M2c is

activated by IL-10, TGF-b, or glucocorticoids and exhibits anti-

inflammatory and immunosuppressive properties. M2d is activated

by stimuli such as IL-10, IL-12, TNF-a, TGF-b, Vascular

endothelial growth factor (VEGF), and MMPs, and its main

functions are immunosuppression and angiogenesis.

As regeneration progresses into later stages, M2a macrophages,

also referred to as alternatively activated macrophages,

predominantly function during the early stages of immune

responses. They suppress inflammatory reactions and stimulate

the proliferation of non-myeloid cells through the secretion of

regulatory cytokines such as IL-4 and IL-13. Additionally, M2a

macrophages play a role in fibrosis by regulating fibroblast activities

via the secretion of factors like TGF-b (173). M2b macrophages

show increased activity during the later stages of muscle

regeneration. They facilitate the proliferation and differentiation

of muscle cells while simultaneously reducing apoptosis, and

improving enhancing muscle repair capacity. Evidence suggests

that M2b macrophages promote muscle cell differentiation and

muscle fiber formation through the secretion of anti-inflammatory

factors such as TGF-b1 (91). Furthermore, M2b macrophages

suppress the activity of M1 macrophages and mitigate

inflammatory responses, thus fostering an environment conducive

to muscle regeneration. M2c macrophages inhibit the pro-

inflammatory function of M1 macrophages by secreting anti-

inflammatory factors such as IL-10 and TGF-b, facilitating tissue

repair and fibrosis processes. They can inhibit the phenotype of M1

macrophages and promote the proliferation of non-myeloid cells.

M2c macrophages are likewise involved in the fibrosis process and

promote tissue remodeling by regulating the differentiation of

fibroblast precursors (11).

Following skeletal muscle injury, macrophage subsets. Spatially

and Temporally form multi-layered regenerative inflammatory

zones (RIZs). Spatially resolved transcriptomic analyses reveal

that the dynamic changes in macrophage subtypes and the

ordered structure of RIZs are fundamental to efficient skeletal

muscle regeneration (174). Within these zones, subsets such as

Growth Factor expressing macrophages (GFEMs) promote

regeneration by secreting factors like growth differentiation factor

(GDF-15), a process transcriptionally controlled by the PPARy/

RXR.axis GDF-15 deficiency. results in delayed muscle

regeneration,. highlighting. GFEMs and GDF-15 as key regulatory

factors in regenerative repair (175).

Exploring the specific mechanism of macrophages in TMI, we

know macrophages are modulated by multiple signaling pathways

during their polarization and functional transformation. Following
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tissue injury, the nuclear factor-kB (NF-kB) pathway is activated by
Toll-like receptors (TLRs) (176), ROS, or damage-associated

molecular patterns (DAMPs) (177). This activation dominates the

pro-inflammatory response and regulates the release of

inflammatory cytokines such as TNF-a. While this process

facilitates the clearance of necrotic tissues during the acute phase,

persistent activation may lead to chronic inflammation. The p38

branch of the mitogen-activated protein kinase (MAPK) pathway

enhances the secretion of pro-inflammatory factors, including TNF-

a, and augments phagocytic activity (178). In comparison, the

extracellular signal-regulated kinase (ERK) branch is associated

with the production of the anti-inflammatory cytokine IL-10 and

may play a role in the repair phase. The c-Jun N-terminal kinase

(JNK) branch mediates apoptotic signals and amplifies

inflammatory responses (179). Within the signal transducer and

activator of the transcription (STAT) family, STAT1 promotes the

expression of pro-inflammatory genes upon activation by IFN-g,
whereas STAT3 attenuates inflammation by inhibiting NF-kB
under the influence of IL-10 signaling. Additionally, STAT6

induces the expression of anti-inflammatory and repair-related

genes in response to IL-4/IL-13 stimulation (180). The TGF-b/
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Smad pathway regulates collagen synthesis and myofibroblast

differentiation by suppressing inflammation and promoting

fibrosis (181). In the phosphoinositide 3-kinase/protein kinase B/

mammalian target of rapamycin (PI3K/Akt/mTOR) pathway,

protein kinase B activation inhibits NF-kB activity and stimulates

the secretion of anti-inflammatory factors, while target of

rapamycin complex 1 (mTORC1) influences macrophage

function through metabolic reprogramming, thereby maintaining

a balance between inflammation and repair (179).

Recent studies have shown the effect of macrophages on the

behavior of myoblasts and muscle stem cells by releasing paracrine

factors. For example, real-time imaging with genetically modified

zebrafish has allowed scientists to observe interactions between

muscle stem cells and the innate immune system, underscoring the

critical role of macrophages in muscle regeneration (136). Studies

have further demonstrated that macrophages are rapidly activated

by the complement system during muscle injury, particularly

through the complement activation molecule complement

component 3a (C3a). This molecule recruits macrophages via its

receptor, C3a receptor, and plays a pivotal role in regeneration

following skeletal muscle damage (182). The metabolic state of
FIGURE 2

Macrophages shift from a pro-inflammatory (M1) phenotype (peaking at 0.5–2 days post-injury) to an anti-inflammatory (M2) phenotype (maximal at
3.5–10 days), dynamically coordinating tissue debridement, stem cell activation, and regenerative remodeling (2). The figure was drawn by Figdraw.
ROS, reactive oxygen species; TAM, tamoxifen; MMP, matrix metalloproteinase; NO, nitric oxide; NAMPT, nicotinamide phosphoribosyl transferase.
TGF-b1, transforming growth factor-b1; LPS, lipopolysaccharide; TNF-a, tumor necrosis factor-a; IFN-g, interferon-g; M1, pro-inflammatory
macrophage; M2, anti-inflammatory macrophage.
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macrophages is another key factor influencing muscle regeneration.

Sterol regulatory element binding protein 1 has been identified as a

regulator of macrophage lipid metabolism, which affects their

ability to facilitate tissue repair. Macrophages aid in the activation

and proliferation of muscle stem cells by secreting specific factors

that promote differentiation and fusion of these cells, improving

muscle regeneration (183). Research has also identified that muscle

stem cell subpopulations labeled with glioma-associated oncogene 1

positive (Gli1+) remain in an “alert” state in uninjured muscle,

allowing for a rapid and efficient response to injury, thus

accelerating muscle repair.

Macrophage activation and function are highly versatile, with

distinct roles at different muscle injury and repair stages. In both

stable and injured skeletal muscle, their functional diversity

encompasses phagocytosis, regulation of inflammation, and tissue

remodeling (184).
Eosinophils and basophils

Both eosinophils and basophils play vital roles in TMI repair.

Eosinophils contribute significantly to muscle tissue repair and

epithelial remodeling by interacting with the clotting system to

promote hemostasis and tissue repair. Moreover, eosinophils are

recruited to damaged organs such as the liver and muscles, where

they secrete IL-4 and IL-13. These cytokines activate IL-4 receptor a
Chain-expressing hepatocytes and progenitors in both liver and

muscle tissues, supporting tissue regeneration. IL-4 activates the IL-

4Ra/STAT6 signaling pathway on (Fibro adipogenic progenitors)

FAPs, thereby promoting the proliferation of FAPs (185–189).

Although initially implicated in muscle fat degeneration,

heterotopic ossification, and fibrosis, FAPs are now recognized as

essential for skeletal muscle homeostasisc (190). Takahashi et al.

demonstrated that autocrine IL-33-suppression of tumorigenicity 2

(ST2) signaling in FAPs protects against immobilization-induced

atrophy (190). Furthermore, recombinant IL-33 administration

counteracted this atrophy in aging murine models (190). Notably,

creatine supplementation elevates macrophage ATP levels, which

promotes eosinophil recruitment and consequently enhances their

antigen presentation, inflammatory responses, and critically, their

muscle repair capacity (191).

On the other hand, basophils also play a significant role in

immune surveillance and damages repair. Although they constitute

only a small fraction of circulating white blood cells, basophils

release histamine and other mediators necessary for initiating

allergic reactions (192). While the exact mechanisms of basophil

action remain incompletely understood, they are believed to be

important for maintaining normal physiological functions and

responding to trauma. Recent studies suggest that basophils

contribute to traumatic muscle repair by releasing multiple

mediators. These mediators include some anti-inflammatory

substances, such as IL-4 and IL-13; as well as pro-inflammatory

substances, such as IL-6, IL-9, CCL8 and granulocyte-macrophage

colony-stimulating factor (GM-CSF), all of which play roles in

inflammatory responses and tissue repair (193). IL-4, a key
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mediator released by basophils, can promote the polarization of

macrophages toward the M2 phenotype (194). Additionally, IL-4

can indirectly influence the muscle repair process by activating mast

cells and eosinophils (194). IL-6 plays a significant role in the

inflammatory response; it not only participates in the early

inflammatory reaction but also promotes muscle repair by

regulating the proliferation and differentiation of satellite cells.

Meanwhile, IL-6 may bind to receptors on the surface of muscle

cells to enhance their repair and regeneration (165). Similar to IL-4,

IL-13 has anti-inflammatory and reparative effects, which can

promote the polarization of macrophages toward the M2

phenotype and enhance their phagocytic capacity, thereby

clearing damaged tissue debris and creating conditions for muscle

repair (195). CCL8, as a chemokine, can attract neutrophils and

macrophages to migrate to the injury site, thus accelerating the

inflammatory response and tissue repair (196). Granulocyte-

macrophage colony-stimulating factor (GM-CSF) can promote

the activation and proliferation of macrophages, enhance their

phagocytic function, and at the same time stimulate the activity

of fibroblasts and promote the synthesis of collagen, thereby

supporting the repair of muscle tissue (165). Overall, these

mediators promote inflammation by recruiting more immune

cells to the injury site, thereby accelerating muscle regeneration.

Basophil activation is triggered through type I hypersensitivity

reactions and immunoglobulin E (IgE)-mediated type 2

inflammation. When allergens bind to IgE-sensitized mast cells

and basophils, these cells degranulate, releasing histamine and

further amplifying the inflammatory response. Furthermore,

basophils facilitate macrophage activation and migration, and

recruit other immune cells by secreting additional pro-

inflammatory mediators such as IL-6 and IL-9. This activity aids

in clearing damaged tissue and promoting new tissue formation

(193). Eosinophilic and basophilic granulocytes repair traumatic

muscle through diverse mechanisms, including promoting

hemostasis, tissue regeneration, and inflammation regulation.
T lymphocytes

T lymphocytes, or T cells, are crucial components of the

immune system, maturing primarily in the thymus before

migrating to various immune organs and tissues to carry out their

immune functions. They are derived from pluripotent stem cells in

the bone marrow and, during embryonic development, from the

yolk sac and liver (197, 198). Studies have shown that T

lymphocytes are essential in repairing and regenerating severely

injured muscle tissue in mice (100). T lymphocytes accumulate in

human muscle tissue following injury and contribute to the

“repetitive practice effect”, enhancing muscle resilience against

recurrent damage (199). They play a vital regulatory role post-

injury. For instance, increased ab T cells may help suppress

inflammation, and activated gd T cells (expressing CD4/CD69)

modulate the inflammatory response (200).

Investigations into T lymphocytes have highlighted the

significant role of Tregs in muscle recovery. Numerous studies
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have demonstrated that Tregs are essential for maintaining muscle

tissue’s homeostasis, integrity, and functionality. They regulate

skeletal muscle function and regeneration through IL6 receptor a
signaling (201). One study revealed that exercise enhances Treg

stability, improving muscle retention and increasing the expression

of molecules such as calmodulin, epidermal growth factor receptor

(EGFR), and ST2. The functional capabilities of Tregs were shown

to restore muscle repair in IL6 receptor a triple knockout (TKO)

mice (201). Further research suggests that Tregs produced in the gut

can contribute to repairing injured muscles and damaged livers,

underscoring the significant influence of gut microbiota on Treg

function and their role in muscle healing. The beneficial effects of

Tregs on muscle repair can be categorized in several ways. In terms

of inflammation regulation, Tregs inhibit the IFN-g signaling

pathway (202), as illustrated in Figure 3. This inhibition reduces

the expression of associated genes on macrophage cell membranes

and promotes the transition from pro-inflammatory M1 to anti-

inflammatory M2 macrophages, thereby facilitating muscle repair

(203). The regulation of Tregs is crucial for the effective

transformation and repair of skeletal muscle inflammation,

directly influencing the reparative outcomes of damaged skeletal

muscle (204). Therefore, given that Tregs already have a repairing

effect in traumatic muscles, and the CAR-Tregs technology

enhances the specificity and function of Tregs, enabling them to

target specific antigens more precisely and further improving the

immune regulatory effect, it thus demonstrates significant clinical

application prospects in the treatment of traumatic muscle

injuries (42).

Other T cell subsets, such as CD8+ T cells, also influence muscle

repair processes. It is suggested that the releasing of pro-

inflammatory molecules from damaged muscle fibers may

exacerbate muscle damage induced by CD8+ T lymphocytes

(205). Studies have shown that in patients with active juvenile
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dermatomyositis, a reduction in peripheral circulating CD8+ T cells

may be linked to specific muscle injury phenotypes (206). Although

CD8+ T cells do not directly participate in muscle repair, they can

regulate the balance between T cell subsets, including Th1, Th2,

Th17, and Treg cells, through immune modulation. This regulation

affects the differentiation and function of CD4+ T cells, ultimately

influencing the repair process following TMI (207).
B lymphocytes

B lymphocytes are key components of the immune system,

playing essential roles in antibody production and the

establishment of immune memory (208, 209). Studies have

highlighted their direct involvement in diseases related to muscle

injury-related diseases, particularly inflammatory myositis, whereas

their role in traumatic muscle injuries appears more indirect (210).

Although B lymphocytes are primarily associated with the humoral

immune response, they may indirectly influence cellular immune

responses through cytokine secretion and immune regulation.

Following trauma, the immune system regulates a multifaceted

interplay of inflammatory and regulatory responses. Evidence

suggests that trauma can impair B lymphocyte function. For

instance, a study found that B cells from trauma patients

exhibited significantly reduced immunoglobulin synthesis and

secretion in vitro, a defect attributed to the trauma itself rather

than the surgical procedures. This suggested that trauma may

directly impact B lymphocyte activity, potentially modulating the

immune response (31).

The role of B lymphocytes in TMI has been less extensively

studied. However, their immune regulatory functions suggest they

may indirectly support repair processes by modulating macrophage

activity or secreting specific cytokines. B lymphocytes can influence
FIGURE 3

Treg cell modulation of IFN-g signaling to promote M1-to-M2 macrophage transition and resolve inflammation during muscle repair. The figure was
drawn by Figdraw. STAT1, signal transducer and activator of transcription 1; JAK1, janus kinase 1; PKC delta, protein kinase C delta, PI3K
phosphatidylinositol 3-kinase; M1, pro-inflammatory macrophage; M2, anti-inflammatory macrophage; IFN-g, interferon-g; P, phospholipid.
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macrophage phenotypes by releasing cytokines such as IL-10 (211,

212), which may impact the healing trajectory following muscle

injury. During the phases of skeletal muscle injury and repair,

inflammatory cytokines like IFN-g, IL-6 (213), and TNF-a (214)

facilitate phagocytosis and play crucial roles in muscle repair. These

cytokines, produced by various cell types, including B lymphocytes,

contribute to the cytokine network and may coordinate muscle

injury and repair processes.

The functions of B lymphocytes in muscle injury and repair

may mirror their roles in other tissue injuries. In liver disease, B cell

activity not only aids in controlling infections but may also

exacerbate tissue damage and fibrosis by amplifying chronic

inflammation (215). This suggests that B cells play a multifaceted

role in tissue repair, promoting inflammatory responses and

potentially hindering recovery by exacerbating inflammation.

Moreover, disruptions in immune function following surgery or

trauma may impair cell-mediated immunity, increasing

susceptibility to infections. In the context of muscle injury, B

lymphocytes may influence the repair process by modulating the

immune response, regulating T cell activation and inhibition, and

affecting the intensity and duration of inflammation (216, 217).

B lymphocytes contribute to TMI repair by directly

participating in tissue repair through cytokine secretion and

regulating inflammatory responses. These insights provide a

valuable foundation for understanding the mechanisms by which

B lymphocytes influence TMI repair.
Therapeutic strategies targeting
immune cells for TMI repair

In addition to conventional surgical management for advanced

stages (Grade III and IV), current therapeutic strategies for TMI

include the use of biomaterials, pharmacological agents, cell-based

therapies, and physical rehabilitation approaches.
Biomaterials effectively regulate the
behavior of immune cells

As clearly illustrated in Table 4, biomaterial-based therapies for

TMI improve the inflammatory microenvironment and support

tissue regeneration by modulating immune cell activity. Cell

delivery and tissue engineering strategies use cell carriers, such as

stem cells, to establish biomimetic microenvironments, induce

macrophage polarization for immune microenvironment

optimization, and improve the healing in chronic injuries (220).

Natural polymers include collagen and gelatin. They possess an

inherent scaffold structure. This structure supports cell adhesion

and proliferation (221). Natural polymers promote macrophage

polarization. Specifically, they drive polarization from the pro-

inflammatory M1 phenotype to the anti-inflammatory and

reparative M2 phenotype. Additionally, they contribute to

enhanced mechanical strength during muscle regeneration. They

also aid in improving structural organization during muscle
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regeneration (218, 225). Immunomodulatory biomaterials, when

combined with immunomodulators, modulate immune responses,

attenuate inflammation, and immune rejection, and improve the

immune microenvironment following muscle injury through the

regulation of macrophage polarization (218). Bioprinted scaffolds

offer precise three-dimensional structural support, facilitating cell

d i s t r ibut ion and pro l i f e ra t ion , improv ing the loca l

microenvironment, and modulating immune responses to enable

in situ tissue regeneration and functional integration. Nanofiber

scaffolds, characterized by their high specific surface area and

porosity, provide attachment sites for cells, promote a favorable

immune microenvironment, and induce macrophage polarization,

improving the efficiency of tendon regeneration and enhancing

mechanical properties (223). These therapies collectively target

macrophages as central regulators, using the interplay between

biomaterials and immune cells to resolve inflammation, support

angiogenesis, and neurogenesis, and restore mechanical function

following muscle injury. This represents a multi-technology-

integrated immuno-regulatory biomaterial strategy for clinical

tissue repair (224).
Drug intervention balances immune
cells in the inflammatory response

Pharmacological interventions for TMI primarily aim to

modulate inflammatory responses to preserve immune

homeostasis and prevent excessive immune activation, which can

hinder muscle regeneration (226). NSAIDs, such as aspirin, inhibit

cyclooxygenase (COX) activity, reducing prostaglandin synthesis,

directly suppressing neutrophil function, and effectively controlling

acute inflammation, although concerns about their safety persist

(227). b-adrenergic receptor antagonists promote the shift from

Th1 to Th2 cell polarization, lowering the risk of post-traumatic

infection and indirectly fostering a pro-regenerative immune

microenvironment (228). Corticosteroids suppress the activity of

various immune cells, including T cells (229) and macrophages

(230), alleviating inflammation during the early injury phase and

increasing cellular responsiveness to growth factors. This facilitates

cell proliferation, migration, and differentiation, ultimately

promoting muscle tissue repair (231).
Cell therapy activates the regenerative
potential of immune cells

Cellular therapies promote muscle regeneration by

modulating specific immune cell populations. Tregs are key

mediators in this process, secreting anti-inflammatory cytokines

such as IL-10 and TGF-b to suppress pro-inflammatory signaling

and establish a microenvironment conducive to tissue repair

(232). Additionally, Tregs release IL-33, which directly

stimulates myocyte regeneration, and facilitates the polarization

of M1 macrophages toward the anti-inflammatory M2 phenotype,

therefore reestablishing immune homeostasis (233). Treg
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infiltration peaks within four days post-injury, rapidly shifting the

inflammatory landscape toward a reparative state (234). In

parallel, stem cell therapies contribute to immune regulation by

secreting immunomodulatory factors or replacing damaged

immune cells, acting synergistically with other cell populations

to support tissue regeneration (235).

Physical intervention non-invasively
regulates the function of immune
cells

Physical interventions provide non-pharmacological strategies for

immunomodulation in TMI. Massage therapy directly reduces

neutrophil infiltration, disrupting inflammatory barriers that hinder

muscle regeneration and exerting anti-inflammatory effects (136).

Extremely low-frequency electromagnetic fields (ELF-EMF) modulate

immune cell activity indirectly by regulating oxidative stress in muscle

cells and increasing the expression of genes associated withmyogenesis,
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establishing an immune microenvironment favorable for tissue repair

(236). Both approaches support TMI recovery through non-

invasive mechanisms.

In Summary, diverse immunotherapeutic strategies for TMI

show translational promise across varying clinical readiness stages.

Biomaterial-based therapies, such as decellularized scaffolds and

hydrogels, modulate immune cell behavior to improve

inflammatory microenvironments and support t i ssue

regeneration, with preclinical validation demonstrating

biocompatibility and efficacy, laying the groundwork for early-

phase trials (237, 238). Pharmacological interventions, including

NSAIDs and corticosteroids, are clinically used to regulate immune

responses, though safety concerns (e.g., gastrointestinal risks with

NSAIDs and delayed repair with long-term corticosteroid use)

necessitate cautious dosing (239). Cell therapy can promote

muscle regeneration by regulating the immune cell population.

Particularly, Tregs secrete anti-inflammatory cytokines to establish

a repair microenvironment, release IL-33 to stimulate muscle cell

regeneration and M2-type phenotypic polarization (234). Although
TABLE 4 Biomaterial-based therapies for TMI and immune cell involvement.

Classification
Application

Biomaterial
Technology

Specific Mechanism
Immune Cell

Effect
Specific Efficacy References

Acellular Scaffold
Technology

Natural polymers
(e.g., collagen and
gelatin)

Exhibits excellent biocompatibility,
biodegradability, and mechanical properties;
alleviates inflammatory response; promotes stem
cell proliferation and differentiation

Reduces
inflammatory
response; accelerates
tissue regeneration

Mitigates post-tendon-
injury inflammation and
enhances regenerative
capacity

(218)

Cell Delivery and
Tissue Engineering

Cellular Carriers
(e.g., Stem Cells)

Provides biomimetic microenvironment;
facilitates cell migration and proliferation

Promotes
macrophage
polarization;
improves immune
microenvironment

Enhances healing quality
and repair efficiency of
chronic injuries

(219)

Bioactive Polymers
and Electrical
Stimulation

Bioactive Polymers
(e.g., Hydrogels)

Modifies material surface properties; provides
mechanical support and growth factor release

Promotes
angiogenesis and
neural precursor cell
migration

Enhances tendon
regenerative apacity and
mechanical properties

(220)

Natural and
Synthetic Materials

Natural Polymers
(e.g., Collagen,
Gelatin)

Provides native scaffold architecture; supports
cell adhesion and proliferation

Promotes M1-to-M2
macrophage
polarization

Improves mechanical
properties and tissue
architecture of tendon
regeneration

(218, 221)

Mechanical
Stimulation and
Biomechanics

Dynamic
Mechanical
Stimulation Devices

Simulates biological environment; promotes
tenocyte differentiation

Enhances cell
adhesion and
proliferation capacity

Improves mechanical
properties and
regenerative outcomes of
tendon tissue

(222)

Immunomodulation
Biomaterials
Combined with
Immunomodulators

Regulates immune response; reduces
inflammation and rejection

Promotes muscle
tissue repair via
macrophage
polarization
modulation

Improves post-muscle-
injury immune
microenvironment and
accelerates tissue
regeneration

(218)

Bioprinting
Technology

Bioprinted Scaffolds
Provides precise three-dimensional structural
support; facilitates cell distribution and
proliferation

Improves local
microenvironment;
promotes
immunomodulation

Achieves in-situ tissue
regeneration and
functional integration

(223)

Nanomaterials
Nanofibrous
Scaffolds

Features high specific surface area and porosity;
provides cellular adhesion sites

Improves immune
microenvironment;
promotes
macrophage
polarization

Enhances tendon
regeneration efficiency
and mechanical properties

(224)
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Tregs have been subject to clinical research in various diseases, their

application in TMI is still in the stage of clinical research and early

application (101). Physical interventions like massage therapy and

ELF-EMF, which non-invasively regulate neutrophil infiltration and

immune cell activity, are clinically established with favorable safety

profiles (240). Emerging combined strategies (e.g., biomaterial-

loaded CAR-Tregs, macrophage-targeted nanoparticles) represent

promising preclinical approaches (241, 242). Ongoing trials aim to

enhance specificity and safety by optimizing biomaterial scalability,

refining cell delivery systems, and mitigating drug-related adverse

effects. These advances collectively highlight the immune system’s

fascinating yet complex role in TMI repair.
Conclusions and future perspectives

Immune cells infiltrate the site of muscle damage. Following this

infiltration, signaling molecules such as cytokines and growth

factors are released into the microenvironment. These molecules

regulate muscle repair and regeneration by directly interacting with

satellite cells, as illustrated in Figure 1. Although previous studies

have highlighted the crucial roles of neutrophils, macrophages, and

Treg in skeletal muscle inflammation and tissue repair, significant

gaps remain.

In recent years, the rapid development of single-cell (243) and

spatially-resolved multiomics technologies has profoundly

reshaping our understanding of the complexity of the immune

response after traumatic injury (244). These technologies have

revealed, with unprecedented resolution, the astonishing

heterogeneity of immune cells during the injury repair process

(245, 246). The trajectories of dynamic state transitions, and their

precise localization and interaction relationships within the tissue

space (247). For instance, single-cell transcriptomics has identified

unique functional programs of macrophages and T cell subsets.

These programs go beyond the traditional binary or simple

classifications, such as M1/M2 for macrophages or Th1/Th2/

Th17/Treg for T cells. Spatial multi-omics has illustrated how

these immune subpopulations form specific spatial niches. These

niches involve interactions with muscle stem cells, fibroblast/

adipocyte progenitor cells, vascular cells, and other cell types

(247). Through paracrine signals or direct contact, these immune

subpopulations precisely regulate the regeneration process.

Integrating these high-dimensional data with live dynamic

imaging and computational biology is enabling systematic

depiction. This integration is constructing a complete “cell map”

and “interaction network” of the TMI immune microenvironment.

Ultimately, it provides a powerful engine for deciphering the

molecular logic underlying regeneration regulation (248).

Future research should focus on several critical aspects. The

specific contributions and functional heterogeneity of immune cells

in TMI repair remain unclear (249). By using single-cell

transcriptomics and proteomics analysis, the subpopulation

composition, activation status, and key secreted factors of these cells

at different stages of injury can be systematically identified, and their

unique roles in fibrosis regulation, angiogenesis, and extracellular
Frontiers in Immunology 14
matrix interactions can be clarified (250, 251). Targeted

immunotherapy strategies may include modulating neutrophil-

macrophage crosstalk to optimize inflammation-regeneration

balance. This approach precisely regulates interactions between

neutrophil subsets like N1/N2 and macrophage subpopulations

using transformation patterns identified through single-cell analysis

(252, 253). Another strategy involves genetic engineering of repair-

promoting Treg subpopulations to overexpress immunomodulatory

cytokines. Key Treg subsets or their signature molecules should be

selected based on single-cell profiling (254, 255). Additionally,

combining intelligent biomaterials with cell therapy can direct

immune cell recruitment. Such biomaterials leverage tuned stiffness,

topological features, and sustained-release capabilities to deliver

specific ligands. These engineered systems recruit functionally

validated pro-repair immune cells, including multiomics-identified

macrophages or Tregs, to injury sites for enhanced regeneration (256,

257). In clinical translation, several promising approaches include:

combined targeted therapy of immune cells and stem cells to treat

refractory muscle injuries, implementing short-term anti-

inflammatory intervention measures in sports medicine, and

applying gene editing technology to enhance repair capabilities

(257–259). Integrating systems biology with artificial intelligence to

construct an immune map for muscle injury repair may help predict

individualized treatment responses (256, 257).

Looking toward the future, the development of drug delivery

systems with spatiotemporal specificity for fine-tuning the

inflammation-regeneration balance, the investigation of immune

crosstalk between organs, and the design of biomimetic materials

that replicate the native extracellular matrix are imperative (13).

Meanwhile, given the established close interaction between immune

cells and traumatized muscles, the clinical translation of

immunotherapy, based on current research findings, will offer a

scientifically grounded approach to the management of injured

muscles. A deeper understanding of immune-mediated repair

mechanisms, combined with emerging technologies, will enable

muscle regenerative medicine to move beyond symptom relief and

achieve true functional recovery (260).
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Glossary

TMI traumatic muscle injury
Frontiers in Immunol
MRI magnetic resonance imaging
IL interleukin
TNF-a tumor necrosis factor-a
TGF-b transforming growth factor-b
CD8+ T cells cluster of differentiation 8 positive T cells
IFN-g interferon-g
MCP monocyte chemoattractant protein
Tregs regulatory T cells
M1 pro-inflammatory macrophage
M2 anti-inflammatory macrophage
CXCL C-X-C motif chemokine ligand
NETs neutrophil extracellular traps
ROS reactive oxygen species
NAF neutrophil-activating factor
HMGB1 high-mobility group box 1 protein
ADA adenosine deaminase
CK creatine kinase
MDA malondialdehyde
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
MAPK mitogen-activated protein kinase
STAT signal transducer and activator of transcription
VEGF vascular endothelial growth factor
NSAIDs non-steroidal anti-inflammatory drugs
CAR-Tregs chimeric antigen receptor-r T cells
EMBASE excerpta medica database
GFEMs glycoprotein 130-expressing macrophages
PPARg/RXR peroxisome proliferator-activated receptor gammag/retinoid

X receptor
ogy 21
TKO triple knockout
EGFR epidermal growth factor receptor
GDF-15 growth differentiation factor
FAPs fibro adipogenic progenitors
RIZs regenerative inflammatory regions
ST suppression of tumorigenicity
MMP-8 matrix metalloproteinase-8
SOD-2 superoxide dismutase 2
GPX glutathione peroxidase
CAT catalase
TRX thioredoxin
TLRs toll-like receptors
DAMPs damage-associated molecular patterns
ERK extracellular signal-regulated kinase
c-Jun N-terminal kinase JNK
MPO myeloperoxidase
PI3K phosphoinositide 3-kinase
Akt protein kinase B
mTOR mammalian target of rapamycin
STAT1 signal transducer and activator of transcription 1
JAK1 janus kinase 1
NO nitric oxide
PKC protein kinase C
NAMPT nicotinamide phosphoribosyl transferase
GM-CSF granulocyte-macrophage colony-stimulating factor
IgE immunoglobulin E
COX cyclooxygenase
ELF-EMF extremely low-frequency electromagnetic fields.
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