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Rheumatoid arthritis (RA) is an autoimmune disease, in which the abnormal 
activation and proliferation of effector T cells play a pivotal role in its 
pathogenesis. Regulatory T cells (Tregs) are a unique subset of immune cells 
with immunosuppressive functions, which help to inhibit the differentiation and 
proliferation of effector T cells in RA and maintain immune tolerance. The 
interaction between gut microbiota and immune cells has long been a 
research hotspot in autoimmune diseases. Although gut microbiota 
metabolites are considered to regulate the host’s immune system as a bridge 
of the gut-joint axis, how gut microbiota acts on immunosuppressive Tregs 
remains unclear. This review summarizes that how the gut microbiota directly or 
indirectly (via metabolites) enhances the immunosuppressive capacity of Tregs. 
This enhancement is primarily achieved through pathways such as promoting the 
induction of Tregs, upregulating the expression of characteristic transcription 
factors of Tregs, and facilitating their secretion of anti-inflammatory cytokines, 
thereby ameliorating the inflammatory microenvironment and subsequently 
improving autoimmune conditions in RA. 
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1 Introduction 

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder characterized by 
inflammatory arthritis presenting with symmetrical polyarticular pain and swelling (1). RA 
predominantly affects small joints in the hands and feet, potentially progressing to joint 
deformity and functional impairment, significantly impairing the patient’s quality of life 
and imposing a substantial burden on healthcare resources. 

A growing body of research has demonstrated the crucial role of the gut microbiota in 
both the pathogenesis and therapeutic management of RA across clinical and animal 
models (2–4). Gut microbiota-derived metabolites serve as pivotal mediators of the gut-
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joint axis and play essential roles in maintaining intestinal barrier 
integrity, immune homeostasis, and modulating bone destruction 
in patients with RA (5). A recent Mendelian randomization study 
revealed that immune cells act as critical mediators of the intricate 
mechanisms linking gut microbiota to RA pathogenesis (6). 

Regulatory T cells (Tregs), a distinct subset of lymphocytes with 
immunosuppressive properties, have emerged as promising 
therapeutic targets (7). Therefore, we aimed to review the 
mechanistic interplay between gut microbiota-derived metabolites 
and Tregs and systematically elucidate how microbial regulation 
enhances Treg-mediated immunosuppression to ameliorate 
RA progression. 
 

2 Tregs 

While most immune system cells function to promote 
inflammation to fight pathogens, Treg is a class of immune cells 
that can control immunity to maintain homeostasis (8). The 
currently accepted definition of Treg primarily involves its 
specific nuclear expression of the transcription factor FOXP3, 
along with surface-specific expression of CD25 (IL-2 receptor) 
and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). The 
discovery of the transcription factor FOXP3 represents a significant 
milestone, enabling the identification of Tregs within the CD4+ T 
cell subset.FOXP3 drives the differentiation of naïve CD4+ T cells 
into Tregs and serves as a master transcriptional regulator essential 
for Treg development and functional maintenance (9, 10). The 
establishment and maintenance of Treg functionality are strictly 
dependent on the stable, coordinated expression of lineage-specific 
genes, particularly FOXP3. 
2.1 Treg classification 

Based on their cellular origin, Tregs can be classified into three 
subtypes: thymus-derived natural Tregs (nTregs), peripherally 
induced Tregs (pTregs) originating from lymphoid organs, and in 
vitro differentiated induced Tregs (iTregs) generated from naïve T 
cells (11). Compared to other T-cell subsets, Treg cells exhibit an 
enhanced recognition capacity for self-antigens. 

Tregs undergo antigen priming during thymic development 
(12). In the thymus, thymocytes with intermediate-affinity TCRs 
undergo differentiation upon receiving agonist signals from TCR/ 
co-stimulatory molecules. Transforming growth factor-b (TGF-b) 
can induce FOXP3 expression and promote Treg cell development 
by disrupting weaker agonist signals (13). Upon thymic egress, 
Tregs express T-cell receptors (TCR) with high affinity for self-
antigens (14). Tregs also demonstrate inhibitory functionality at 
peptide/MHC concentrations 100-fold lower than those required by 
conventional T-cell subsets (15). pTreg cells contribute to the 
maintenance of peripheral tolerance at inflammatory sites, 
particularly on mucosal surfaces such as the gut and lungs. Under 
inflammatory conditions, exogenous antigens derived from 
microbes can promote the generation of pTreg cells (16). 
Frontiers in Immunology 02 
However, studies have revealed that pTreg exhibits multiple 
significant characteristics independent of FOXP3 and can 
suppress the expansion of colonic effector T cells in a FOXP3
independent manner (17). This means FOXP3 is not the only gene 
required to maintain the development and function of Tregs. For 
instance, Helios can synergize with FOXP3 to enhance the function 
of Treg cells, augment the suppressive capacity of induced Treg 
cells, and upregulate the expression of various Treg cell-associated 
molecules (18, 19). 

Additionally, there are also Treg cells that mediate 
immunosuppression without expressing FOXP3, such as Type 1 
regulatory T cells (Tr1 cells), which are characterized by secreting 
IL-10 (20). Tr1 cells also possess immunosuppressive functions and 
can inhibit the expansion of pathogenic collagen-specific T cells in  the  
collagen-induced arthritis (CIA) mouse model (21). Studies suggest 
that FOXP3+ Treg cells are indispensable during the initial phase of 
tolerance induction in inflammatory target organs, whereas Tr1 cells 
contribute to the maintenance of long-term tolerance (22). In 
addition to CTLA-4, Tregs also express various surface markers 
such as glucocorticoid-induced TNFR-related protein (GITR), 
latency-associated peptide (LAP), and/or lymphocyte-activation 
gene 3 (Lag-3), among others (23). The specific subsets of Tregs 
are classified based on cell surface or intracellular markers and their 
secreted cytokines, as shown in Table 1. Different subsets of Treg cells 
exhibit variations in the expression of chemokine receptors and 
transcription factors. There is no specific marker that  can  be  used
to distinguish all Tregs. However, the fact that some subgroups are 
similar, overcategorization may hinder the study of Treg. A 
comprehensive definition of human Tregs requires the integration 
of both phenotype and suppressive function (33). Although some 
Treg cell signature genes are indirectly regulated, most genes 
responsible for Treg cell stability and lineage determination are 
dependent on FOXP3 (34). 
2.2 Epigenetic modification 

Epigenetic modifications are critical for Treg functionality, as 
they regulate the transcriptional control of Treg lineage-specific 
genes (24). The FOXP3 locus harbors three evolutionarily 
conserved non-coding sequences (CNS1-CNS3), and subsequent 
studies have identified an additional regulatory element (CNS0) 
positioned upstream of the transcriptional start site. These 
conserved regions contain dense clusters of hypomethylated CpG 
motifs that epigenetically regulate FOXP3 expression via DNA 
methylation-sensitive transcriptional modulation. CNS0 is 
epigenetically activated by the chromatin organizer SATB1 to 
initiate FOXP3 expression (35); CNS1 serves as a critical 
enhance r  r eg ion  media t ing  TGF-b - induced  FOXP3  
transcriptional activation (36); CNS3 is an indispensable 
regulatory element involved in FOXP3 induction; and CNS2 plays 
a non-redundant role in maintaining Treg lineage stability via 
sustained FOXP3 expression (37). IL-2 signaling induces STAT5 
recruitment to the CNS2, driving Treg differentiation through 
chromatin remodeling (38). 
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The acetylation of FOXP3 is crucial for its functionality as it 
promotes the formation of FOXP3 dimers, enhances DNA-binding 
capacity, increases chromatin accessibility, and facilitates the 
interaction with transcription factors like FOXP3 (39). These 
processes regulate the immunosuppressive role of Treg cells.

Histone acetyltransferases (HATs) and Histone deacetylase 
(HDACs) collectively maintain the dynamic equilibrium of 
acetylation in Treg cells. More than 10 HDAC enzymes are 
expressed in Treg cells. Histone deacetylase (HDAC) inhibition 
elevates histone acetylation at both the FOXP3 promoter and its cis
regulatory elements, potentiating Treg suppressive in vitro and in 
vivo functions (40). 
3 Treg-mediated suppression of 
effector T-cell activation ameliorates 
RA 

3.1 Central role of effector T cells in RA 
pathogenesis 

Synovitis, a hallmark of RA, is histologically characterized by 
synovial hyperplasia, neovascularization, and heterogeneous 
inflammatory infiltrates, including lymphoid aggregates and 
germinal center-like structures (41). Infiltrating cells include T 
and B cells, macrophages, and dendritic cells. The pathogenesis of 
RA is not fully understood, but is primarily associated with immune 
dysregulation. The production of autoantibodies, including anti
citrullinated protein antibodies (ACPAs), and the presence of 
rheumatoid factor in both blood and synovial structures are 
considered prominent features of RA (42). 
Frontiers in Immunology 03 
Autoimmune processes related to RA precede the onset of 
clinical disease by several years (43). Genetics is the most 
significant risk factor for the development of RA, with the HLA

DR locus facilitating the involvement of citrullinated antigens in 
CD4+ T-cell antigen presentation through shared epitopes. Binding 
to citrulline-modified peptides leads to the production of ACPAs, 
which further induces T-cell activation and cytokine production 
(34). Additionally, epigenetic factors, such as DNA methylation and 
histone acetylation, contribute to the pathogenesis of RA (44). 

Cellular interactions within the synovium constitute a critical 
component of RA pathogenesis, with T cells playing a central role in 
the immune pathogenesis of rheumatoid arthritis (34) (Figure 1). 
Evaluation of a large array of cell lineages in synovial specimens 
from patients with RA have identified over 20 transcriptionally 
defined T-cell subtypes (45). Pathologically expanded peripheral T-
helper cell subsets can induce plasma cell differentiation through IL
21 secretion and SLAMF5 interactions (46), subsequently leading to 
the production of ACPAs and other autoantibodies. These 
autoantibodies are then presented to T cells by antigen-presenting 
cells, including dendritic cells and macrophages, which activate and 
induce T-cell differentiation, along with the production of cytokines 
(47). In particular, helper T cells (Th cells), such as Th1 cells, 
promote inflammatory responses by secreting interferon-g (IFN-g), 
while Th17 cells exacerbate inflammation and tissue damage by 
producing cytokines like IL-17 and IL-22 (48). These cytokines, in 
turn, activate neighboring cells, including monocytes, macrophages, 
and synovial fibroblasts, to produce additional pro-inflammatory 
factors. These cytokines can stimulate the expression of RANKL, 
and the upregulation of RANKL further activates the NF-kB 
pathway, leading to the proliferation and activation of 
inflammatory cells, as well as the activation of osteoclasts. This 
leads to bone erosion and joint damage (49). In contrast, Tregs 
TABLE 1 Treg subgroup. 

Subgroup name Markers Factors References 

FOXP3+Treg 
CD25+ 

FOXP3+,Helios+ 
CTLA4+,Nrp1+,GITR 

TGF-b,IL-10,IL-35 (24) 

Tr1 
FOXP3

CD49b+,LAG3+,CD226+,PD-1+,CTLA-4+ 
IL-10,TGF-b,IFN-r (20) 

Th3/Tr2 
CD25+ 

CD69+,FOXP3
LAP+ 

TGF-b,IL-10 (25) 

iTr35 FOXP3+,p35+ IL-35 (26) 

B cell-derived Treg 
CD25+ 

,LAG3+,PD1v,ICOS+,CTLA4+,GITR+,CD49b+、FOXP3-、OX40+ 
IL-10,PD-1, 

CTLA4,LAG3, 
(27) 

T follicular regulatory (Tfr) cells FOXP3+,CXCR5+,PD-1+,ICOS+ IL-10, TGF-b, and granzyme B (28) 

ExTreg (cytotoxic Treg) 
CD16+,CD56+ 
CD25+,FOXP3+; 

IL-17,IFN-y (29) 

Th1-like Treg CD25+,FOXP3+,T-bet+,CXCR3+ IFN-g (30) 

Th2-like Treg CD25+, FOXP3+, CTLA-4+, GATA3+ CD44+, ICOS+, GITR+, IL-4, IL-10;IL-5, IL-13 (31) 

Th17-like Treg CD25+,FOXP3+,RORgt+,CCR6+,CCR4,CD103+,ICOS+,Helios+ IL-10, TGF-b,IL-17A (32) 
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inhibit T-cell proliferation, activation, and effector function through 
multiple pathways. 
3.2 Immunosuppressive mechanisms of 
Tregs in RA pathogenesis 

Treg-mediated immunosuppression is primarily executed through 
three mechanistically distinct pathways: (1) regulatory cytokine 
secretion, (2) direct cell–cell contact-dependent suppression, and (3) 
metabolic modulation of target cells (50) (Figure 1). Treg cells 
elaborate upon an array of immunomodulatory cytokines critical for 
their suppressive functions, including interleukin-10 (IL-10), 
transforming growth factor-beta (TGF-b), and IL-35. IL-10 
downregulates MHC-II and CD86 surface expression on dendritic 
cells and macrophages, impairing their antigen-presenting capacity to 
CD4+ T cells, thereby attenuating inflammatory responses in RA (51). 
TGF-b can inhibit T-cell proliferation, activation, and effector 
functions through dual mechanisms: downregulating dendritic cell 
function, interfering with antigen presentation, and concurrently 
inhibiting IL-2 production (52). IL-35 can inhibit Th17 
differentiation and reduce the production of pro-inflammatory 
factors, thereby improving the inflammatory response in RA (53). 

Cell–cell contact mediates immunosuppression. Dendritic cells 
(DCs) are the most effective antigen-presenting cells (APCs) in the 
immune system and possess bidirectional immune functions. While 
mature DCs activate effector T cells to drive inflammation, 
tolerogenic DCs upregulate anti-inflammatory cytokines (IL-10/ 
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TGF-b) with reduced co-stimulatory molecule expression, thereby 
promoting Treg differentiation and immunosuppression (54, 55). 
Treg surface-expressed CTLA-4 competitively antagonizes CD28 
costimulation by binding to CD80/CD86 on DCs and transmitting 
inhibitory signals that suppress effector T-cell activation and clonal 
expansion (56). The transmembrane protein lymphocyte activation 
gene-3 (LAG-3) binds to MHC-II on APCs and inhibits DC 
activation through an ITAM-mediated inhibitory signaling pathway 
(57) and is currently emerging as an immunomodulatory target for 
various therapeutic approaches in RA (58). Furthermore, 
programmed cell death protein 1 (PD-1), a member of the CD28 
superfamily, binds to its ligands, thereby inhibiting T-cell 
proliferation and IFN-g production. PD-1 also plays a role in the 
regulation of osteoclast development in RA (59, 60). 

Another mechanism of Treg cell-mediated suppression is 
disruption of target cell metabolism. CD39 and CD73 on the 
surface of Tregs act synergistically to produce adenosine, which 
binds to the adenosine receptor A2A on activated T cells, driving 
the inhibition of T-cell proliferation (61, 62). Studies have 
demonstrated the anti-inflammatory effects of adenosine on 
synovial cells in RA (63). Furthermore, the high expression levels 
of the IL-2 receptor (CD25) on the surface of Treg cells can bind to 
IL-2, reducing the activation and proliferation of effector T 
cells (64). 

In RA pathogenesis, impairment of Treg migration and 
homeostasis may inhibit anti-inflammatory effects. IL-6-induced 
vasodilator-stimulated phosphoprotein phosphorylation inhibits 
Treg migration to inflammatory sites, thereby limiting their 
FIGURE 1 

Pathologically, APCs (DCs and macrophages) present antigens to CD4+ T cells, which abnormally activate their differentiation into Th1 and Th17 
subtypes. These two subtypes secrete pro-inflammatory factors such as IFN-g and IL-17, which in turn lead to the proliferation of fibroblast-like 
synoviocytes, and ultimately bone destruction. In contrast, Treg cells inhibit abnormal antigen presentation by competitively binding to CD80/CD86 
and MHC on the DCs surface; secreting anti-inflammatory factors and inhibiting Th proliferation through the CD39/CD73/A2a adenosine pathway. 
(DCs, Dendritic Cells;MHC, Major Histocompatibility Complex;TCR, T Cell Receptor; FOXP3, Foxhead Pox protein 3; HDAC, Histone deacetylase; 
CNS, conserved non-coding sequences; CTLA4, Cytotoxic T-Lymphocyte Associated protein 4;GITR, Glucocorticoid-induced TNFR-related protein; 
LAP, latency-associated peptide; Lag-3, lymphocyte-activation gene 3; PD-1, programmed cell death protein 1; NRP1, Neuropilin-1;RANK, receptor 
activator of NF- kB; RANKL, receptor activator of NF- kB ligand). 
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immunosuppressive functions (65). G protein signaling modulator 
2 (GPSM2) is almost completely absent in RA, leading to abnormal 
G protein-coupled receptor signaling, which further weakens Treg 
migration (56). Additionally, abnormal expression of chemokines 
and adhesion molecules, such as CCR4, CCR6, and LFA-1 also 
affects the homing of Tregs to synovial tissue. A review summarized 
the existing research and concluded that strategies aimed at 
increasing the number of Tregs or enhancing their suppressive 
functions are effective in treating RA (7). Glucocorticoid drugs can 
upregulate FOXP3 expression to promote Treg expansion and 
enhance Treg function by modulating the TCR signaling pathway 
and cytokine milieu (66). Traditional antirheumatic drugs such as 
methotrexate (MTX) and cyclophosphamide (CTX) in combination 
therapy can enhance the suppressive function of Tregs (67). In 
addition to conventional drug therapies, low-dose IL-2 therapy has 
been demonstrated to alleviate symptoms by restoring Treg levels in 
RA patients (68). The underlying mechanism may involve selective 
expansion of Tregs through activation of the STAT5 signaling 
pathway (69). 
4 The gut microbiota and RA 

Abnormal immune responses at mucosal sites in vivo may be 
associated with the onset and progression of RA. The intestinal 
mucosa accounts for a significant portion of the mucosal content of 
the body, and microbial dysbiosis may interact with immune 
dysregulation, leading to more severe systemic immune disorders. 
The intestine is the largest immune organ in the human body and 
plays a crucial role in autoimmune diseases (70). The gut 
microbiota is a complex microbial ecosystem vital for maintaining 
host health and forming a mutually beneficial relationship. In the 
human body, the host provides a living environment for 
microorganisms that can supply nutrients and, more importantly, 
mount immune responses against pathogens to protect the 
body (71). 

Researchers believe that the microbiota is crucial for various 
aspects of host immunity, including immune maturation, 
prevention of pathogen overgrowth, host cell proliferation and 
angiogenesis, regulation of intestinal physiological functions, and 
energy synthesis (72). Healthy gut microbiota is primarily 
characterized by diverse colonization, high microbial gene 
abundance, and stable core functions (73). Although its specific 
composition varies among individuals owing to factors such as 
genetics, age, diet, and environment, the functions of the adult gut 
microbiota remain relatively consistent in healthy individuals (74). 
In the gut, bacterial populations are predominantly anaerobic and 
include phyla such as Firmicutes and Bacteroidetes. 

A dysbiotic gut microbiota is pathologically characterized by 
reduced microbial diversity, overrepresentation of specific taxa, 
compromised intestinal barrier integrity, and concomitant metabolic 
dysregulation (75). In clinical studies, significant changes in the gut 
microbiota composition have been observed in patients with RA. Xing 
et al. (76) found that both the Shannon diversity and Simpson index of 
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gut bacteria were significantly lower in patients with RA than in 
healthy controls, indicating a reduction in prokaryotic diversity within 
samples under disease conditions and the presence of pronounced gut 
bacterial dysbiosis. At the phylum level, patients with RA exhibit a 
higher abundance of Actinobacteria and lower levels of Bacteroidetes 
and Proteobacteria. At the  genus  level,  Ruminococcus, Collinsella, 
Gemmiger, and  Dorea are significantly enriched, whereas Bacteroides, 
Prevotella, Roseburia, Clostridium, Lactobacillus, Parabacteroides, and  
Megamonas are markedly reduced. Similar alterations in the gut 
microbiota have been observed in animal studies. Compared to 
normal mice, a model group showed an increased relative 
abundance of Lactobacillus, Candidatus_Arthromitus, UCG-005, and
Anaerofustis, whereas the relative abundance of Bacteroides, Alistipes, 
Mucispirillum, unclassified_o_Bacteroidales, and  norank_f:norank_o: 
Rhodospirillales decreased (77).  Due to the  variety and  large number of  
intestinal flora, and significant individual differences, coupled with the 
limitations of existing experimental methods, the results obtained from 
various experiments on flora changes are not completely consistent. 
More advanced technical means may need to be introduced to clarify 
the changes of flora. A Mendelian randomization study demonstrated 
that eight bacterial taxa were positively correlated with the risk of 
developing RA, whereas six taxa were negatively correlated with RA 
risk (78). Alterations in gut microbiota are highly evident in the 
pathogenesis of RA. 

Ecological disturbances in the gut and autoimmune 
mechanisms may be involved in the development of RA (79). The 
interactions between mucosal sites and probiotic bacteria may play 
a role in the pathogenesis of RA (80). For instance, in the intestines 
of patients with RA, there is a reduction in certain beneficial 
bacteria, such as those from the Bacteroidetes phylum, and an 
increase in potentially pathogenic bacteria, such as Prevotella spp.; 
this imbalance in the microbiota may promote the development of 
RA by activating immune cells, fostering inflammatory responses, 
and affecting gut barrier function. An increase in Lactobacillus may 
drive joint inflammation by activating Th17 cells to secrete IL-17 
(67), whereas a decrease in Bacteroides and Alistipes leads to 
insufficient differentiation of CD4+ T cells into Tregs (81). In 
addition, gut microbial dysbiosis can stimulate autoreactive cells 
to relocate to the joints, leading to inflammation (82). 

Therefore, restoration of dysbiosis can alleviate inflammation 
levels. Bacteria in the gut can traverse the mucus layer and stimulate 
epithelial cells, thereby modulating immune function and 
enhancing the gut barrier (83). Zhao et al. found that Escherichia 
coli and Streptococcus bovis significantly influence levels of TNF-a 
and IL-6, with increased abundance of these bacteria enhancing 
ascorbic acid degradation, thereby mitigating the progression of RA 
(84). Gut microbiota can also interact directly with the host through 
microbial metabolites such as short-chain fatty acids (SCFAs) to 
regulate the immune system (85, 86). Through polysaccharide 
therapy, the gut microbiota breaks down polysaccharides into 
SCFAs (such as butyrate), which, by activating G-protein-coupled 
receptors (like GPR43), inhibit the NF-kB pathway and reduce the 
release of pro-inflammatory cytokines, thereby alleviating 
arthritis (77). 
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5 Gut microbiota and regulatory 
T cells 

The intestine harbors a vast array of immune cells, including 
Tregs, which are abundant in the large intestine and are primarily 
represented as FOXP3+ Tregs (87). In the small intestine Tr1 cells 
are in relative abundance (88). Tregs are typically thought to be 
primed in the mesenteric lymph nodes before migrating to the gut. 
Additionally, FOXP3+ Tregs acquire secondary activation signals 
and expand in the small intestine to produce IL-10 (89). Intestinal 
epithelial cells are in close contact with immune cell populations, 
and secrete high levels of cytokines. For instance, IL-33 promotes 
the stability and function of Tregs (90) and modulates IL-18 
secretion to help regulate CD4+ T cells in the colon, limiting 
their differentiation into Th17 cells, and enhancing the role of 
FOXP3+ Tregs in inflammation (91). The mucus layer above the 
intestinal epithelium is rich in large molecules called mucins. Upon 
inflammation, this layer can promote the production of IL-10 and 
TGF-b while reducing the production of pro-inflammatory 
cytokines, thereby facilitating Treg development (92). Intestinal 
mucosal dendritic cells can synergistically induce FOXP3+ Treg 
cells through the production of TGF-b and retinoic acid (93). Mice 
with specific knockout of TGF-b receptors exhibit reduced 
generation of FOXP3+ Tregs (94). Furthermore, microbial 
metabolites such as SCFAs can promote the development of 
peripheral Tregs (95). Intestinal microbiota can directly influence 
immune cells, and their metabolites affect immune cells. This 
complex interplay underscores the significance of the gut 
microbiota in shaping immune responses and maintaining 
immune homeostasis. 
5.1 Bifidobacterium 

Bifidobacterium is one of the most predominant physiological 
bacteria in the gastrointestinal tract of humans and animals and 
exerts its effects by reducing intestinal pH, inhibiting the growth of 
pathogens, maintaining the balance of intestinal flora, and 
preserving  the  integrity  of  the  intestinal  barrier  (96).  
Bifidobacteria can alleviate RA by suppressing the production of 
IL-17 and other pro-inflammatory mediators (97). Furthermore, 
early administration of bifidobacteria can restore the healthy state of 
the intestinal flora in RA rat through histidine metabolism, thereby 
delaying the onset and progression of RA (98). 

Treg cells serve as crucial mediators through which 
Bifidobacterium regulates the structure of intestinal flora. 
Bifidobacterium breve increases the expression of interleukin-10 
receptor alpha (IL-10Ra) and the secretion of IL-10 in mouse Treg 
cells, forming an IL-10/IL-10Ra auto-stimulatory loop, thereby 
enhancing their immunosuppressive function (99). This process is 
associated with the enhanced mitochondrial activity of Tregs. Ravi 
Verma et al. (100) proposed that Bifidobacterium >bifidum is an 
effective inducer of FOXP3+ Tregs, with its cell surface glucan/ 
galactan (CSGG) polysaccharide as a key component for Treg 
induction. CSGG activates intestinal dendritic cells (particularly 
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CD103+CD11b+ DCs) through the TLR2 receptor, inducing their 
phenotypic transformation into regulatory dendritic cells (rDCs), 
which secrete IL-10 and TGF-b1, promoting the differentiation of 
naïve CD4+ T cells into Treg cells. This process is likely dependent 
on the MyD88 signaling pathway, a joint adapter protein within 
dendritic cells. A team from Jiangnan University discovered that B. 
breve CCFM1078 could alleviate joint inflammation in rat by 
modulating the intestinal flora and strengthening the intestinal 
barrier (101). Experimental results demonstrated that CCFM1078 
increased the abundance of beneficial bacteria (such as 
Bifidobacterium spp. and Faecalibaculum), promoted the 
production of SCFAs, and enhanced the expression of FOXP3. 
Additionally, the genomic DNA of B. longum subsp. infantis 
significantly induces Tregs through unique methylated CpG 
motifs oligodeoxynucleotide (ODN) (102). CpG methylation is a 
crucial epigenetic mechanism that regulates Treg stability and 
function,  promotes  FOXP3  expression,  enhances  Treg  
differentiation, and bolsters their immunosuppressive capabilities. 
However, the latest research results show that ODN induces Treg 
most obviously at a certain dose, and excessive ODN will reduce the 
induction of Treg (103). It is therefore hypothesized that the effect 
of different levels of flora on Treg may also be different, which 
requires more research to verify. 

Bifidobacterium can produce a variety of metabolites that are 
beneficial to the host, including vitamins, polyphenols, conjugated 
linoleic acids, and SCFAs. These metabolites, such as organic acids, 
bacteriocins, and biosurfactants, also exert detrimental effects on 
pathogenic microorganisms, thereby hindering the proliferation of 
harmful microbes (104). Yang et al. confirmed that Bifidobacterium 
can mitigate RA by suppressing inflammatory responses in CIA rat, 
regulating intestinal barrier function, and downregulating specific 
metabolites via the histidine metabolism pathway (98). Zhao et al. 
discovered that Bifidobacterium can mediate bile acid metabolism, 
wherein unconjugated bile acids can activate the TGR-5 receptor(, 
triggering the cAMP-PKA signaling pathway, which subsequently 
induces CREB to secrete IL-10 and promotes the Treg cell 
population in mouse (105). 
5.2 Lactobacillus 

Lactobacillus and other genera are widely used as probiotics, 
with intestinal glucose aiding their survival in acidic gastrointestinal 
environments (106). These probiotics alleviate RA through 
mechanisms such as immunomodulation, metabolite production, 
and improvement of intestinal barrier function (107, 108). 
Lactobacillus treatment can prevent the onset of arthritis in 
preclinical models, reduce arthritis scores in CIA rat and pro-
inflammatory cytokines (such as IL-17, IL-1b, IL-6, and TNF-a), 
and increase the release of anti-inflammatory cytokines like IL-4 
and IL-10 in bodily fluids (109). Fan et al. (110) clarified that 
Lactobacillus casei (particularly CCFM 1074) can alleviate 
symptoms in arthritic mice by modulating the Th17/Treg balance 
and enhancing the proportion of Treg cells in mesenteric lymph 
nodes. The process is primarily through local and systemic immune 
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responses triggered by the production of SCFAs, which can induce 
the differentiation and proliferation of Treg cells. In rats with RA, 
following Lactobacillus casei intervention, symptoms were 
significantly alleviated, with restoration of intestinal flora 
homeostasis and regulation of oxidative stress balance. Further 
research revealed that Lactobacillus casei promotes the 
differentiation of CD4+ T cells into Treg cells by metabolizing 
tryptophan to produce indole derivatives that activate the aryl 
hydrocarbon receptor (AHR) on CD4+ T cells. Lactobacillus also 
maintains Tregs homeostasis through metabolites such as 
SCFAs (111). 

Lactobacillus rhamnosus (LPR), another strain of Lactobacillus, 
promotes Treg differentiation of Tregs by forming a complex with 
secretory immunoglobulin A (SIgA) (112). This complex is taken 
up by DCs in Peyer’s patches (PPs), upregulating negative 
regulatory proteins of the Toll-like receptor (TLR) pathway (such 
as SIGIRR, Tollip, and SOCS1), thereby inhibiting the TLR 
signaling pathway and reducing inflammatory responses (113). 
Concurrently, the expression of retinaldehyde dehydrogenase 2 
(RALDH2) is significantly enhanced, promoting the production 
of retinoic acid. Conversely, DCs in PP and mesenteric lymph nodes 
(MLN) secrete substantial amounts of IL-10 and TGF-b upon 
interaction with the LPR-SIgA complex. These DCs present 
antigens to naïve CD4+ T cells, and under the combined effects 
of IL-10, TGF-b, and retinoic acid, promote the differentiation of T 
cells into FOXP3+ Tregs (114). This entire process occurs within 
the PPs and MLN. 

Lactobacillus salivarius is classified as a member of the genus 
Ligilactobacillus and is particularly notable for its immunomodulatory 
functions. L. salivarius has been isolated from patients with RA and 
has been found to elevate serum levels of IL-10 in arthritic mice, 
thereby increasing the proportion of Tregs (115). Additionally, 
Lactobacillus salivarius (especially strain FXJCJ7-2) can increase the 
proportion of FOXP3+ Tregs in the spleen, and its specific genes

(such as LS_0679 and LS_0681) can boost the production of SCFAs 
(116). SCFAs (such as acetate and butyrate) directly promote Treg 
differentiation and mitigate inflammation by inhibiting the NF
kB pathway. 
5.3 Bacteroides fragilis 

Bacteroides fragilis can improve the symptoms of RA and 
enhance the efficacy of methotrexate (MTX) against arthritis in 
CIA rats by regulating butyrate metabolism (117). Moreover, 
Bacteroides fragilis produces a symbiotic factor known as 
polysaccharide A (PSA), which promotes mammalian immune 
system development. PSA facilitates the conversion of CD4+ T 
cells to FOXP3+ Tregs in germ-free mice, induces the expression of 
anti-inflammatory cytokines (such as IL-10 and TGF-b2), and 
enhances the suppressive function of Treg cells by directly 
activating the TLR2 signaling pathway on Treg cells (118). 
Subsequently, Telesford et al. demonstrated that PSA, mediated 
by DCs, induces the differentiation of naïve human CD4+ T cells 
into FOXP3+ Treg cells and significantly enhances the expression of 
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CD39 on Treg cell surfaces (119). Upon activation by PSA, DCs 
upregulate molecules such as HLA-DR, CD86, CD40, and PD-L1, 
which promote the expression of FOXP3 and CD39 through direct 
contact with T cells. 
5.4 Faecalibacterium prausnitzii 

The abundance of Faecalibacterium prausnitzii is lower in 
patients with RA (120), whereas in healthy adults, F. prausnitzii 
constitutes 5–15% of intestinal bacteria (121). In a mouse model of 
RA, F. prausnitzii intervention reduced the levels of the pro-
inflammatory cytokine IL-17, generated the metabolite butyrate, 
and improved the composition of the gut microbiota (122). 
Researchers identified a FOXP3-expressing, IL-10-secreting Treg 
subset in human colonic mucosa and blood, designated as DP8a 
based on its co-expression of CD4 and CD8a (123). This subset 
shares similarities with RORgt+ Treg, exhibiting a distinct hybrid 
profile of Tr1-like/cytotoxic CD4+ T cells. Besides demonstrating 
robust cytotoxicity, chemotaxis, and IgA-promoting capacity, the 
subset inhibits effector T-cell proliferation through CD39- and 
CD73-mediated purinergic metabolic pathways, thereby 
suppressing effector T-cell activity (124). The TCR on the surface 
of Tregs is more readily induced by Faecalibacterium prausnitzii 
within Clostridium cluster IV to trigger immunoregulatory 
responses (125). Additionally, this bacterium can induce dendritic 
cells to secrete anti-inflammatory cytokines IL-10 and IL-27 via the 
TLR2/TLR6 signaling pathway, differentiating into a “tolerogenic” 
phenotype that drives Tr1 cells differentiation and exerts 
immunosuppressive effects (126). 
5.5 Prevotella 

RA is associated with a relative expansion of the Prevotellaceae 
family in feces. Prior to the onset of RA, Prevotella species increased 
in individuals during the preclinical phase of RA (127). Colonization 
with P. copri exacerbates arthritis in a CIA model (128). However, 
unlike P. copri, P. histicola exhibits immunomodulatory properties 
and suppresses the production of inflammatory cytokines. Treatment 
with P. histicola significantly increased the number of CD103+ DCs 
in the intestinal lamina propria and spleen (129). These DCs possess 
immunomodulatory characteristics and can induce the differentiation 
of naïve CD4+ T cells into FOXP3+ regulatory T cells (Tregs) by 
secreting anti-inflammatory factors (such as IL-10) and expressing 
co-stimulatory molecules (such as CD80/86). Additionally, 
glucocorticoid-induced TNF receptor-related protein, which is 
highly expressed on the surface of Tregs, may maintain immune 
tolerance by inhibiting the mTOR pathway or promoting IL-10 
secretion (130). A recent study found that P. histicola has a unique 
genetic sequence, and its unique outer membrane protein BtuB 
sequence may be the key to distinguishing it from pathogenic 
strains (131). The outer membrane protein is crucial in the 
interaction between bacteria and immune cells. The dual role of 
this flora reflects the complexity of intestinal microbial action. Due to 
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the limitation of experimental level, it is not possible to identify and 
classify all strains, so more research is needed to clarify the 
classification of flora and its mechanism of action. 
6 Gut microbial metabolites and Treg 
regulation 

Intestinal microbes generate various metabolites through 
complex metabolic interactions that significantly affect various 
physiological processes within the host (132). In RA, gut 
microbiota metabolites can mediate communication between the 
commensal microbiota and the immune system, influencing the 
balance between anti-inflammatory Tregs and pro-inflammatory 
Th17 cell differentiation (133, 134). 
 

6.1 Butyrate 

SCFAs are primarily produced by specific subgroups of 
anaerobic bacteria, notably the members of the genera 
Clostridium, Eubacterium, and  Butyrivibrio. Among these, 
Clostridium clusters IV and XIVa are efficient butyrate producers, 
with the dominant species Faecalibacterium prausnitzii and 
Roseburia spp., along with Anaerostipes and Eubacterium species, 
which play key roles (135). Additionally, dietary fiber serves as an 
appropriate substrate for the bacterial production of SCFAs (136). 

Butyrate, a SCFA with anti-inflammatory and gut-barrier
regulating properties, serves as the primary energy source for 
colonocytes and plays a crucial role in the maintenance of 
intestinal homeostasis (137). The immunomodulatory effects on 
immune cells have attracted considerable attention. Butyrate can 
modulate T-cell differentiation and function while inhibiting the 
activation of myeloid cells such as dendritic cells, macrophages, and 
mast cells (138). As a canonical histone deacetylase (HDAC) 
inhibitor, butyrate enters cells either via passive diffusion or 
transmembrane proteins, directly binding to intracellular HDACs 
to inhibit their activity, or, at lower concentrations, is metabolized 
into acetyl-CoA to enhance histone acetylation (139). Specifically, 
butyrate upregulates FOXP3 expression by promoting histone H3 
acetylation at the FOXP3 promoter and other conserved non-
coding sequence regions within the FOXP3 locus, thereby 
inducing the differentiation of intestinal Tregs (140). Studies have 
suggested that butyrate-mediated Treg differentiation is dependent 
on the FOXP3 CNS1 enhancer (141). Da Som Kim et al. found that 
butyrate induces Treg expansion and production of the key anti-
inflammatory factor IL-10 by inhibiting HDAC8 in T cells (142). 
Butyrate also induces differentiation of functional follicular 
regulatory T cells (TFR) directly in vitro, and also promotes 
histone hyperacetylation in the promoter region by inhibiting 
HDAC (143). On the other hand, butyrate enhances the 
differentiation and suppressive functions of FOXP3+ Tregs by 
activating GPR43 on Treg cells (144). Furthermore, butyrate, 
through a G protein-coupled receptor 43 (GPR43)-dependent 
mechanism, activates anti-inflammatory Treg cell responses in the 
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colonic lamina propria. When the GPR43 gene was knocked out, 
the alleviation of inflammation diminished (145). 

In addition to directly modulating Treg cell differentiation, butyrate 
also exhibits the capacity to regulate the expression of Treg cell-
inducing molecules in epithelial cells or dendritic cells (DCs). For 
instance, it can stimulate epithelial cells to produce retinoic acid, a 
metabolite of dietary vitamin A, which serves as an essential cofactor 
for the generation of gut-specific Tregs by intestinal DCs (146, 147). 
Retinoic acid can induce the generation of antigen-specific Tr1 cells to 
prevent the occurrence and development of autoimmune diseases, and 
when combined with IL-2 it can enhance the induction (148). 
Furthermore, butyrate acts on DCs in the gut through its receptors, 
such  as  GPR109A and  the butyrate transporter SLC5A8, to support 
DC-induced Treg cell differentiation (149). 

Propionate and acetate are also natural HDAC inhibitors that 
can enhance lymphocyte activity and promote IL-10 production 
(150). However, their roles in RA remain poorly investigated. 
Studies have demonstrated that propionate alleviates disease 
symptoms in CIA mice, and in vitro experiments indicate that 
propionate upregulates FOXP3 gene expression and IL-10 
production in T cells (151). Acetate has been found to facilitate 
the development and maturation of Treg cells in fetal mice (152), 
but its function in RA remains unexplored. 
6.2 Bile acids 

BA metabolism is mediated by bacteria with bile salt hydrolase 
activity, primarily Lactobacillus, Bifidobacterium, Clostridium, and

Bacteroides (153, 154). These secondary bile acids (SBAs), generated 
through gut microbial metabolism, are involved in intestinal 
inflammatory responses (155). Numerous studies have elucidated the 
immunomodulatory properties of BAs within the gut (156–158). In RA 
models, BAs inhibit NLRP3 inflammasome activation and reduce the 
release of pro-inflammatory cytokines (such as IL-1b and IL-6) by 
binding to and activating the TGR5 receptor, thereby triggering the 
downstream cAMP-PKA signaling pathway (159). 

BAs are signaling molecules that modulate immune 
homeostasis and exert control over host immune responses 
through a mechanism involving direct regulation of the balance 
between Th17 and Treg cells by BA metabolites. Primary BAs such 
as cholic acid and chenodeoxycholic acid (CDCA), are directly 
synthesized in the liver, whereas SBAs such as deoxycholic acid 
(DCA) and lithocholic acid (LCA), are generated via metabolic 
transformation by the gut microbiota. The positional arrangement 
of hydroxyl groups (a or b configuration) and the stereochemistry 
of the rings create structural variations in BAs, leading to the 
formation of diverse derivatives (160). Hang et al. screened over 
30 BA metabolites and identified an LCA derivative, isoallolca, 
which enhanced Treg cell differentiation (161). Their findings 
revealed that isoallocalcin promotes Treg differentiation by 
augmenting mitochondrial reactive oxygen species (mitoROS) 
production, thereby increasing H3K27 acetylation in the FOXP3 
promoter region. This process is regulated by the conserved non-
coding enhancer CNS3 and requires TGF-b-induced signaling. Li 
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et al. (156) further discovered that isoalloLCA increases the binding 
of the nuclear receptor NR4A1 to the FOXP3 locus, leading to 
enhanced FOXP3 gene transcription and subsequent Treg cell 
differentiation. Another DCA derivative, isoDCA, inhibits the 
immunostimulatory properties of dendritic cells (DCs) by 
antagonizing the activity of the farnesoid X receptor, shifting the 
balance toward immune tolerance and promoting the expansion of 
peripheral RORgt+ Treg cells in the colon. This process is 
dependent on CNS1 rather than on CNS3 (158). 
6.3 Tryptophan 

Tryptophan can be metabolized through two major pathways: 
kynurenine (Kyn) and indole. An imbalance in the kynurenine 
pathway, characterized by an increase in pro-inflammatory 
metabolites (such as QUIN) and a decrease in anti-inflammatory 
metabolites (such as KYNA and XANA), promotes synovial 
inflammation, cell proliferation, and joint destruction (162). 
Kynurenine is recognized as an endogenous ligand of the AhR and 
can activate AhR (163). Upon activation, AhR can facilitate the 
induction and differentiation of peripheral Tregs through the 
modulation of TGF-b and IL-2 signaling pathways (164). 
Tryptophan deficiency (such as excessive tryptophan consumption 
by IDO1/TDO enzymes in the tumor microenvironment) can directly 
trigger an increase in the  transcription and  protein expression of the  
AhR (165). Simultaneously, tryptophan depletion activates GCN2 
kinase, which triggers the downstream transcription factor ATF4, 
subsequently upregulating amino acid transporter LAT1 (SLC7A5). 
This leads to a significant increase in kynurenine uptake, which further 
activates the AHR pathway. This dual sensitization enhances the 
induction of Tregs. 

Furthermore, the indole pathway is highly dependent on the gut 
microbiota (166). Jiang et al. found that sinomenine treatment can 
elevate the levels of metabolites such as indole-3-acrylic acid (IA), 
indole-3-propionic acid (IPA), and indole-3-acetic acid (IAA) 
through the gut microbiota, thereby modulating tryptophan 
metabolism and activating AhR to regulate the Treg/Th17 
balance, improving RA (167). In vitro experiments have also 
demonstrated that IAA can reduce the ubiquitination of FOXP3 
through the AhR-TAZ-Tip60 pathway, promote the differentiation 
of Treg cells (168). 
6.4 Other metabolites 

Polyamine metabolites are abundant in the gut and can 
contribute to gut immunity (169). Spermidine, an antioxidant, 
can protect chondrocytes from IL-1b-mediated ferroptosis in 
rheumatoid arthritis (170). An in vitro experiment showed that 
spermidine can promote the differentiation of naive T cells into 
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Tregs and upregulate the expression of FOXP3 (171). Furthermore, 
the gut microbiota produces hydrogen sulfide, a gaseous metabolite 
that enhances the expression of Tet1 and Tet2. This process 
catalyzes the conversion of 5-methylcytosine (5mC) to 5
hydroxymethylcytosine (5hmC) in FOXP3, establishing a Treg 
cell-specific hypomethylation pattern and stabilizing FOXP3 
expression (172). However, the impact of these metabolites on 
Tregs has not been confirmed in RA animal models or clinical 
studies. These metabolites could potentially offer a promising 
avenue for future RA treatment. 
7 Interactions among gut microbiota 

There are interactions among microorganisms in the gut, which 
are dynamic and environment-dependent. These interactions 
encompass multiple aspects, including positive effects, such as 
cooperation, commensalism, and cross-feeding; and negative 
effects, like interference competition (173). Multiple clinical 
studies have found that probiotic supplements containing a 
mixture of various strains have improved the clinical symptoms 
of RA patients (174–176). These mixed strains are mainly 
Lactobacillus species. Further research found that the mixed 
strains of Lactobacillus acidophilus could restore the abundances 
of Lactobacillus and Clostridium in CIA rats and increase the 
content of the metabolite butyric acid (177). Moreover, the mixed 
strains were more effective than single strains. Ho - Keun Kwon 
et al. used a probiotic mixture of five strains, including Lactobacillus 
acidophilus,  Lactobacil lus  casei ,  Lactobacil lus  reuteri ,  
Bifidobacterium bifidum, and Streptococcus thermophilus, to 
intervene in RA mice. This intervention increased the level of 
FOXP3 in T cells, thereby increasing the number of CD4+FOXP3 
+ Tregs and inducing the regulatory dendritic cells (rDCs) to 
express high levels of IL - 10 and TGF - b, thus promoting the 
differentiation of FOXP3+Tregs (178). Such probiotics are the main 
sources of short-chain fatty acids and bile acids. The intervention of 
multiple strains may enhance the promotion of Tregs to improve 
RA. Therefore, determining the types and dosages of strains for 
combined use that can have a better effect on Treg cells and thus 
improve the therapeutic efficacy may be a direction for further 
research in the future. 

Microbial metabolites also interact with each other in the gut. 
For example, bile acids and SCFAs may jointly participate in the 
regulation of cell proliferation through interrelated signaling 
pathways. They may have different effects at different 
concentrations. At high concentrations, SCFAs have anti 
inflammatory effects, while secondary bile acids have pro 
inflammatory effects (179). However, the interaction mechanism 
of multiple metabolites in the RA model has not been explored. 
More research designs are needed to investigate the network effects 
of co-existing metabolites. 
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8 Factors influencing the interaction 
between the gut microbiota and Tregs 
8.1 Diet 

Diet is considered the primary environmental factor influencing 
the gut microbiota. Therefore, diet-induced alterations in the 
microbiota can induce changes in host physiology (180). Fopei Ma 
et al. found that diet affects the inflammation of rheumatoid arthritis 
(RA) in mice through the circadian fluctuations of gut microbiota, and 
altering the diet timing reduces the anti - inflammatory effect (181). 
Teresina Laragione et al. found that a high-magnesium diet increased 
the number of Treg cells and alleviated the severity of arthritis in mice 
through an IL - 10-dependent manner mediated by gut microbiota 
(182). Among them, the level of Prevotella decreased, while the levels of 
bacteria such as Bacteroides increased. 

In addition, a high-fiber diet rich in resistant starch (RS) 
increases the abundance of Bacteroides and circulating 
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propionate, thereby promoting the increase of Treg cells and the 
production of IL-10 and improving arthritis in CIA mice (151). 
Ddietary fiber can also induce the biosynthesis of bile acids (183). 
The study summarizes that the Mediterranean diet rich in n-3 
PUFAs, polyphenols, dietary fiber, and probiotics can regulate the 
gut microbiota. In particular, it can increase the content of short-
chain fatty acids, reduce systemic inflammation, and improve the 
intestinal barrier function, thereby improving the prognosis of RA 
(184, 185). 

Diet may promote the differentiation and function of Treg by 
enhancing the healthy metabolism of gut microbiota. Therefore, 
regular and healthy diet can restore the disrupted gut microbiota, 
regulate metabolism, and further promote the immunosuppressive 
function of Treg. However, another study found that the combination 
of a high-fiber diet and Prevotella could exacerbate the arthritis 
symptoms in RA mice, possibly because Prevotella leads to the 
overproduction of pro-inflammatory metabolites such as succinate 
(128). It is necessary to further determine that different doses and 
individual differences may yield different outcomes for the disease. 
FIGURE 2 

The intestinal microbiota and their metabolites can enhance the homeostasis and functionality of Tregs through direct cellular contact-mediated 
mechanisms. Concurrently, they promote the differentiation of regulatory DCs, which subsequently stimulate CD4+ T cells to preferentially 
differentiate into Tregs. Distinct arrow colors are utilized to delineate the differential regulatory pathways mediated by specific microbial taxa or 
metabolites. (TLR, Toll-like receptor; CSGG, cell surface glucan/galactan; PSA, polysaccharide A; PD-1, programmed cell death protein 1; GPR, G-
protein-coupled receptors; TGR-5, Takeda G protein-coupled receptor 5; FXR, Farnesoid X Receptor). 
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8.2 Other lifestyle 

Exercise is considered to improve gut microbial health, and 
moderate aerobic exercise can increase the abundance of beneficial 
bacteria such as Bifidobacterium (186). Maintaining regular schedules 
and increasing sleep time may contribute to the stability of gut 
microbiota and gut health (187). Psychological stress can alter the 
composition of gut microbiota, reducing the abundance of some 
beneficial bacteria like Lactobacillus (188). Tobacco reduces the 
diversity of gut microbiota. Studies have shown that nicotine leads to 
an increase in Proteobacteria and Bacteroidetes and a decrease in 
Actinobacteria and Firmicutes in the mouse gut (189). Alcohol is also 
an important factor damaging the gut microbial environment. 
Research indicates that alcohol causes excessive growth of gut 
bacteria in mice, especially Enterobacteriaceae, thereby triggering gut 
inflammation (190). Therefore, a healthy lifestyle can enhance the 
abundance of beneficial bacteria, which are believed to promote the 
differentiation and function of Treg cells. However, further 
experimental studies are needed to clarify their correlation. 
8.3 Drugs 

Traditional anti - rheumatic drugs can regulate the gut 
microbiota to exert their effects (191). However, studies have 
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found that most traditional anti - rheumatic drugs fail to increase 
the abundance of relevant flora and metabolites. After MTX 
intervention, the abundance of Bacteroides fragilis in mice 
decreased (192). Nevertheless, the absence of Bacteroides fragilis 
can make MTX treatment ineffective in CIA mice (117). This may 
be due to beneficial bacteria metabolizing to help drugs work. 

Although antibiotics have been proven to reduce the abundance of 
RA-related pathogens (such as Prevotella copri) and short-term 
treatment can help alleviate inflammation (193), they may cause a 
decrease in gut microbiota diversity, changes in metabolic activities, 
and antibiotic resistance (194). Moreover, supplementing probiotics 
during antibiotic treatment cannot change the diversity index of the gut 
microbiome (195). 
8.4 Chinese medicine 

Traditional Chinese medicine can also regulate the immune system 
through the action of intestinal microorganisms to prevent RA (196). 
The herbal extract madecassoside promotes differentiation of Treg cells 
and expression of FOXP3 and IL-10 in mice by regulating intestinal 
flora and increasing butyric acid levels (197). Total Glucosides of 
Paeony up-regulated beneficial bacteria abundance and treg cell levels 
in CIA mice (198) [xx3]. Treatment with Fuzi increased bile acid 
content in CIA mice (199). In addition, the relative abundance of 
FIGURE 3 

Factors influencing the interaction between the gut microbiota and Tregs. 
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actinomycetes and lactobacillus in RA mice was significantly increased 
after acupuncture treatment, and such flora could increase the level of 
Treg cells (200). 
9 Prospects for microbial therapy in 
RA 

In the clinical treatment of RA, therapies targeting gut 
microbiota can help improve clinical symptoms in RA patients, 
including probiotic supplementation, prebiotics and fecal bacteria 
transplantation (134). But there are still a lot of challenges (1). Due 
to factors such as age, lifestyle, and eating habits, the intestinal flora 
changes dynamically and has significant individual differences 
(201), and the uncertainty about the differences between strains 
and doses makes it difficult to formulate standard personalized 
treatment plans (2). Probiotics are highly susceptible to 
environmental influences, and their stability in production, 
storage and transportation needs to be improved. However, the 
pharmaceutical development of butyrate faces challenges owing to 
its pungent odor, limited intestinal absorption, and rapid metabolic 
clearance as an energy substrate (202). To circumvent these 
limitations, serine-conjugated butyrate prodrugs have been 
developed via esterification. Experimental evidence demonstrated 
that this prodrug formulation enhances bioavailability while 
effectively modulating key immune cell populations in rat by 
reducing Th17 cell prevalence and promoting Treg differentiation 
(203) (3). The first-pass effect of liver and intestinal barrier limit the 
absorption and entry of metabolites into systemic circulation, and 
the chemical stability, hydrophilicity and lipophilicity of 
metabolites also affect systemic delivery efficiency. How to 
improve their bioavailability is the key issue to improve probiotic 
therapy (4). Due to the above reasons, the current clinical studies on 
intestinal microbial RA are of low quality. Most of them only 
observe their simple efficacy, which makes it difficult to deeply 
explore the true effect of intestinal microorganisms on Treg in 
human body. Therefore, there is insufficient evidence to prove its 
effectiveness and mechanism of action. 
 

10 Conclusions and perspectives 

Immunological imbalance is a critical mechanism underlying the 
pathogenesis of RA. Enhancing the induction of Tregs and maintaining 
their cellular function and  homeostasis can  ameliorate  the immune

imbalance in RA. The gut microbiota can enhance Treg induction and 
promote immunosuppressive functions. This process primarily occurs 
by promoting the differentiation of dendritic cells into tolerogenic DCs 
and inducing the differentiation of CD4+ T cells into Tregs. Increased 
secretion of anti-inflammatory factors during this process, especially 
IL-10, allows these beneficial bacteria to provide an anti-inflammatory 
environment for Treg differentiation and maturation. Additionally, the 
gut microbiota can directly or indirectly influence Treg surface proteins 
and intracellular transcription factors through metabolites, thereby 
strengthening the immunosuppressive pathways (Figure 2). In 
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summary, modulation of the gut microbiota can regulate the overall 
immune environment, increase the secretion of anti-inflammatory 
factors, and help mitigate the overall inflammatory milieu. Multiple 
pathways further enhance the anti-inflammatory effects of Tregs, 
thereby improving the immune imbalance in RA. A healthy diet and 
lifestyle can improve symptoms by promoting the action of beneficial 
bacteria on Treg (Figure 3). 

However, the gut microbiota comprises a wide variety of strains, 
and the microbiota composition varies significantly among individuals 
and exhibits dynamic changes. These factors limit in - depth exploration 
of the direct mechanism by which the microbiota acts on Treg. In the 
future, more in - vivo and in - vitro experiments are needed to explore 
more specific mechanisms of Treg, and these mechanisms should be 
verified in clinical research for translation into clinical practice. 
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