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The integration of computational advances in microscopy has enhanced our

ability to visualise immunological events at scales. However, data generated with

these techniques is often complex, multi-dimensional, and multi-modal. Data

science and artificial intelligence (AI) play a key role in untangling the wealth of

information hidden in microscopy data by enhancing image processing,

automating image analysis, and assisting in interpreting the results. With this

Review, we aim to inform the reader about the advances in the fields of

fluorescence and electron microscopy with a focus on their applications to

immunology and virology, and the AI approaches to aid image acquisition,

analysis, and data interpretation. We also outline the open-source tools for

image acquisition and analysis and how these tools can be programmed for an

image-informed, AI-assisted acquisition.
KEYWORDS
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1 Introduction

Since the first observations of microorganisms using a high-quality single-lens

microscope by Antonie van Leeuwenhoek in the 17th century (1), microscopy has been

instrumental in understanding diseases and alterations of the immune system. In the late

19th century, Robert Koch isolated the anthrax and tuberculosis bacteria, establishing

microscopy as one of the key techniques for investigating the immune system (2). Today,

microscopy offers unparalleled insights into molecular mechanisms, cellular dynamics, and

tissue interactions.

Before the 20th century, observations were performed using brightfield light

microscopy (3). Afterwards, several innovations have led to progress in the imaging of

immune cells and molecules. Among them, we mention the optimisation of fluorescent

probes in conjunction with the advancement of fluorescence optical methods (4), the
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development of techniques for antibody isolation (5), the discovery

of natural fluorescent proteins (6), and the development of genetic

manipulation techniques (7). These innovations allow today the

precise imaging of cells and molecules, enabling real-time tracking

of dynamics, localisation, and interactions that characterise the

immune system both in vitro and in vivo. On the other hand, the use

of electron microscopy (EM) to visualise structures that are relevant

for immunology and virology dates back to the first images of viral

particles by Ernst Ruska in 1939 (8, 9). Since then, improvements in

both protocols and microscope techniques have led to significant

increase in resolution, maximum sample size, and tagging

specificity. Among these, we should cite progresses in sample

preparation, such as ultramicrotomy (10) and cryogenic

techniques (11, 12), advancements in microscope hardware, such

as the use of digital cameras and direct detectors (13) and scanning

electron microscopy (10), or finally advancements in software, for

microscope automation (14–17), image reconstruction (18),

tomographic reconstructions (19), and alignment between

different modalities (20–24). Today, microscopy encompasses a

wide range of techniques, ranging spatial scales from the

molecular detail to the whole tissue and organ, and time scales

from the millisecond to days (25, 26). The wealth of visible and

hidden information in the images can deeply enhance our

understanding of immune events, if unlocked.

Artificial Intelligence (AI) technologies are pervasive in today’s

world and are affecting all fields of knowledge, including science

(27). AI enables machines to mimic human intelligence and

perform tasks that typically require human cognition, such as

learning, problem solving and perception. In microscopy, AI can

significantly enhance our understanding by extracting information

from images, bridging the gap between scales (28), finding hidden

connections within images or between images and other types of

data (e.g. genomics or proteomics, 29), and guiding the acquisition

in challenging experiments and across modalities (30, 31).

In the first part of this Review, we will survey main microscopy

and image analysis techniques, with a focus on their use in

immunology and virology. The second part introduces the reader

to the concepts of AI and its main applications in microscopy, in

particular for immunology and virology research. We finish with a

discussion on the current challenges in AI and how its integration

with microscopy can drive a new generation of tools to unlock novel

insights into the immune system.
2 Microscopy and image analysis for
immunology and virology

2.1 Electron microscopy

2.1.1 Room temperature EM
Classic, Room-Temperature Transmission Electron Microscopy

(RT-TEM) relies on chemical fixation, lipid staining with contrast

agents based on heavy metals, resin embedding, and cutting in

ultrathin sections. This methodology, mainly established in the

1960s (32), is an excellent way to investigate subcellular
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morphology and ultrastructure (33). A certain degree of three-

dimensional information can be acquired by capturing EM images

at varying sample tilt angles and performing tomographic

reconstructions (electron tomography, ET in short, 34). RT-TEM

has been applied to visualise organelle changes in immune cells,

such as in the investigation of the role of autophagy of the

endoplasmic reticulum during plasma cell differentiation (35), the

disposal of damaged mitochondria in migrating neutrophils

through mitocytosis (a novel mitochondrial quality control

process, 36), or the mechanisms of antigen presentation by major

histocompatibility complex (MHC) in antigen-presenting cells (37–

40). Another classical visualisation approach relies on the negative

staining of small particles, such as protein aggregates, viral particles,

or extracellular vesicles, and it is used in clinical diagnostics for

virus identification (41).

Immuno-Electron Microscopy (IEM) highlights specific

markers on the structure of interest by immunostaining with

target-specific antibodies conjugated to colloidal gold particles

(42). Another way to achieve specific staining is by expressing a

genetically encodable tag that triggers the deposition of a

contrasting agent (43, 44), which was used for example for the

visualisation of the role of ectocytosis in terminating TCR signalling

in cytotoxic T cells (CTLs, 45).

Scanning ElectronMicroscopy (SEM) employs a focused electron

beam that scans the surface of a sample, generating an array of

secondary electrons that are detected and converted into an image

(46). This results in a high-resolution image of the sample’s surface.

To improve contrast, the sample is frequently coated with metals.

SEM has been employed with immunogold staining to map the

SARS-CoV-2 receptor ACE2 distribution along the motile cilia in

respiratory multiciliated cells (47). Also, SEM showed how the

porosity of liver sinusoids reduces antigen recognition by effector

CD8+ T cells (48) or how intercellular nanotubes enable

mitochondrial trafficking from bone marrow stromal cells to CD8+

T cells, to enhance their fitness and antitumor efficacy (49).

Finally, volume Electron Microscopy (vEM) is an emerging

group of techniques that offers unprecedented insights into the

three-dimensional organisation and dynamics of immune cells,

tissues, and molecular complexes. vEM is based on TEM or SEM.

TEM-based techniques, like serial section TEM (ssTEM) and serial

section ET (ssET), reconstruct volumes by acquiring sequentially

ultra-thin sample slices. On the other hand, SEM-based techniques,

including array tomography, serial block-face SEM (SBF-SEM) and

focused ion beam SEM (FIB-SEM), scan sample surfaces to produce

image stacks for 3D reconstruction (26, 50, 51). In immunology,

SBF-SEM has been applied to reconstruct T cells (52) and to

elucidate how Candida albicans exploits transcellular tunnels to

invade epithelial cells while evading host immunity (53). FIB-SEM

helped in clarifying how G protein subunit Gb4 negatively regulates
phagocytosis by controlling plasma membrane abundance in

myeloid cells (54), or was employed to create a 3D reconstruction

of CTLs with target cells (45). FIB-SEM was instrumental in

reconstructing, with a near-isotropic resolution of 4 nm, whole-

ce l l organe l le segmentat ions , which resul ted in the

“OpenOrganelle” web repository (55–57). Among others, a
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notable example is the reconstruction of a CTL interacting with an

ovarian cancer cell (56). Moreover, vEM can be combined with

advanced labelling techniques like immuno-gold (58) or fluorescent

nanoparticles to visualise specific cellular structures or molecular

interactions within complex biological samples (59), providing an

invaluable information for understanding the spatiotemporal

organisation of immune responses at the ultrastructural level.
2.1.2 Cryo-EM and freeze substitution
Cryo-Electron Microscopy (cryo-EM) techniques can currently

achieve the sub-nanometre range (60–62). The sample (proteins,

cells, or tissues) is first flash-frozen at cryogenic temperature,

allowing the creation of a layer of vitreous ice, which fixes the

sample while preserving its ultrastructure (11). The vitrified sample

can be visualised by different techniques. Microcrystal Electron

Diffraction (MicroED) provides structural information from 3D

nanocrystals (63). Single Particle Analysis (SPA) reconstructs

protein structures without the need for crystallization (61, 62).

Cryo-Electron Tomography (cryo-ET) enables the 3D

reconstruction by capturing images at varying tilt angles and

performing tomographic reconstructions (34) and together with

subtomogram averaging can resolve macromolecules (64). Lastly,

cryo-Scanning Transmission EM (cryo-STEM) provides a

tomographic reconstruction of thick lamellae with quantifiable

chemical characterization (65). Cryo-EM techniques have

revolutionised structural immunology, enabling the visualisation,

in high-resolution, of viral particles (66, 67) or SARS-CoV-2

assembly and egress (68), the TCR complex assembly (69–72), the

structural components of antigen processing and presentation (73),

the chemokine recognition and the activation of chemokine

receptors CCR5, CCR6, CCR2, CCR3 (74), and helped guiding

the design of nanoparticles inducing potent neutralising antibody

responses (75).

Cryo-Immuno-EM of ultrathin cryo-sections prepared from

chemically fixed samples (76) allows the best preservation of protein

antigenicity, as it requires chemicals only for fixation (77). When

imaging surface proteins, cells can also be labelled with immuno-

gold before cryo-fixation and imaged by cryo-ET (78). This

approach opens a range of applications for the study of

ultrastructural localisation of surface markers, with potential

relevance for the field of immunology.

Volume EM at cryogenic conditions can capture 3D

morphology in cells at near native state. It can be approached

with cryo-ssET (cryo-serial section Electron Tomography) or with

cryo-FIB-SEM. For example, cryo-FIB-SEM showed how growth

hormone remodels 3D mitochondrial structure in macrophages

(79) or the 3D ultrastructure of HIV virological synapses (80).

Finally, in the case of cells and tissues, samples can be plunge-

frozen (81, if less than 10-15 mm in thickness) or fixed by high-

pressure freezing (82, 83, if between 20-200µm in thickness). After

flash-freezing, the sample can be imaged at cryogenic temperature

or slowly brought back to room temperature in a chemical fixation

buffer, using a so-called freeze-substitution protocols (84). This

approach reduces artefacts that could potentially be introduced by

toxic chemical agents used as fixatives. Freeze substitution
Frontiers in Immunology 03
techniques are also employed in light microscopy to reduce

fixation artefacts when performing subcellular diffraction-limited

or super-resolved imaging (85–89).

2.1.3 Room-temperature CLEM
Correlative Light-Electron Microscopy (CLEM) integrates the

complementary approaches of light and electron microscopy on the

same portion of cell or tissue to overcome the limitations of both

techniques, combining the multichannel protein localisation of light

microscopy with nanometre resolution of EM (Figure 1A). The

sample is usually imaged separately with the two modalities and

then images are aligned with respect to each other. This poses

several challenges to both acquisition and image registration. Some

approaches that directly combine both modalities in the same

microscope are starting to appear (93). One interesting

application of CLEM is the visualisation, in the study by Baldwin

et al. (49), of mitochondrial transport from bone marrow stromal

cells to CD8+ T cells, by fluorescently labelling mitochondria in

stromal cells and then imaging CD8+ T cells with both modalities.

Also, FIB-SEM has been combined with light microscopy to

visualise the virological synapse and virus-containing

compartments in HIV-infected T cells (94). The combination of

intravital microscopy and electron microscopy merges the dynamic

information of immune cells in vivo with a more comprehensive

characterisation of the same in fixed tissue. This multiscale deep

phenotyping approach is reviewed in (95).

2.1.4 Cryo-CLEM
CLEM combined with cryogenic conditions also has great

potential, due to its preservation of the native state, very high

resolution and capacity to retain fluorescent signals (96). For

example, this approach has been applied to investigate the

intracellular trafficking of Salmonella bacteria (97). In the case of

genetically engineered cells (such as when expressing GFP or other

fluorescent proteins), cryo-fixation can then be followed by cryo-

sectioning with FIB (98) or cryo-ultramicrotomy (99). Cryo-

fluorescence light microscopy (cryo-FLM) can guide the lamella

milling process (100), also with super-resolution LM (89). Finally,

current protocols are extending cryo-CLEM to post-milling

visualisation (101), and to 3D samples, such as organoids (102),

thus providing a step towards sub-nanometre visualisation in larger

3D context, with relevant applications in immunology.

2.1.5 Conclusions on the use of electron
microscopy in immunology and virology

All in all, electron microscopy offers insights into the

ultrastructure and three-dimensional organisation of viruses,

immune complexes, cells, and tissues that are unattainable with

light microscopy techniques (Figures 1E, 1J). Coupled with

immunostaining in a correlative approach, EM also informs on

the localisation of selected proteins, thus giving context to the

ultrastructural detail. EM poses several challenges in terms of image

analysis. High-resolution cryo-EM of viral and protein structures

employs state-of-the-art algorithms to reconstruct information

from low-signal images. Images of thin slices and tomographic
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FIGURE 1

Imaging at scales and performances of different microscopy techniques for immunology. (A) Correlative Light-Electron Microscopy of mouse T cell
(transmission electron microscopy image in grey, DAPI in blue, and mitochondria in red), reproduced from (49, CC-BY 4.0). (B) Fluorescence
multichannel image of BPAE cells, reproduced from (90, CC-BY 4.0). (C) Whole tissue section of mouse spleen acquired on a confocal microscope,
reproduced from (91, CC-BY 4.0). (D) Gut bacterial infection with whole crypts imaged in 3D, reproduced from (92, CC-BY 4.0). (E) Comparison
between Electron Microscopy and Super-Resolution techniques. (F) Comparison between TIRF and Super-Resolution techniques. (G) Comparison
between Laser Scanning confocal and Spinning Disk confocal. (H) Comparison between Intravital and Light Sheet. (I) The spatial scale covered by
different microscopy techniques. (J) Radar plots visualising the performances of individual microscopy techniques.
Frontiers in Immunology frontiersin.org04
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reconstructions are frequently analysed by manual segmentation

due to the complexity of the ultrastructural contrast. Volume EM

reconstructions pose many challenges in terms of image

reconstruction, alignment, contrast, and segmentation, due to the

size and the complexity of the structures visualised. All these

techniques are already or might soon take advantage of the latest

AI and image analysis developments (Table 1).
2.2 Light microscopy

2.2.1 Super-resolution
By selectively tagging molecules of interest, fluorescence

microscopy allows the characterisation of functional and

structural features of biological samples, with the intrinsic

limitation of the optical resolution limit (136, 137). In

fluorescence microscopy, the diffraction-limited resolution is in

the order of 200–220 nm, a scale compatible with most cell and

tissue imaging applications. However, the scale of many biological

structures, such as organelles and molecular clusters, is at least one

order of magnitude smaller (tens of nm). Super-resolution

microscopy of fluorescent samples bridges the scale of light and

electron microscopy, preserving sample integrity and the possibility

of performing functional imaging on live samples (Figures 1E, 1J).

Most super-resolution methods are based on the manipulation or

the analysis of the on/off state of emitters (fluorophores), which are

changed either spatially or temporally (138), or on the concept of

light reassignment by optical rescanning (139) or pixel

reassignment (140).

Localisation microscopy is based on experimental minimisation

of the number of active emitters in the field of view, either by

activating only a few fluorophores at the time or by limiting the

population in the ground energetic state. This allows the

determination of the emitter position with the highest probability

(141). Localisation microscopy, including techniques such as PALM

and STORM, requires the acquisition of a high number of frames to

accumulate information about biological structures, and the use of

blinking fluorophores to obtain a sparse presence of emitters in the

field of view. In general, the definition of biological structures in the

final image improves with the number of accumulated frames (in

the order of thousands). However, there are methods to optimise

the acquisition parameters, such as excitation power and number of

frames needed, depending on the structure dimensionality (142), or

to identify artefacts in the super-resolved image based on a local

error map (143). In immunology, localisation microscopy provided

information on SARS-Cov-2 entry in liver spheroids (144), showed

how the TCR is randomly distributed on the surface of resting

antigen-experienced T cells (145), and informed on the structure of

cluster in the NK cell’s immune synapse (146).

One of the methods to achieve super-resolution using specific

illumination patterns is the STimulated Emission Depletion (STED)

microscopy, in which the illumination laser, hitting the sample as a

diffraction-limited laser spot, is used together with a depletion laser

illumination, shaped as a toroidal pattern that switches off

fluorescence, leaving a smaller emission spot and therefore
Frontiers in Immunology 05
increasing the resolution as a function of the power of the

depletion laser (147). In immunology, STED microscopy has been

used to show the role of SWAP70 in organising actin cytoskeleton

during phagocytosis (148) and how TIGIT receptor can inhibit T

cell activation by forming nanoclusters (149).

Other optical super-resolution methods implemented on laser-

scanning systems, such as Zeiss Airyscan (150) and Nikon NSPARC

(151), rely on light reassignment, assuming that higher order rings

of Airy pattern can be detected with arrayed detectors and light be

reassigned to the centre of the pattern where single emitters should

be located (140). Finally, other methods such as iSIM and SoRa, are

based on optically rescanning the point spread function to reduce its

size and obtain instant super-resolution imaging on camera-based

systems (152).

Instead, super-resolution methods based on the temporal

analysis of fluorescence intensity fluctuations do not require

blinking fluorophores and can be employed on data sets acquired

on conventional microscopes (e.g. wide-field, TIRF, laser scanning

confocal). They are referred to as Fluorescence-Fluctuation based

Super Resolution Methods (FF-SRM), and each relies on a different

statistical analysis of the temporal fluorescence fluctuations (e.g.

Super-Resolution Optical Fluctuation Imaging (SOFI, 153), Super-

Resolution Radial Fluctuations (SRRF, 154) or Mean-Shift Super-

Resolution (MSSR, 155) to overcome specific limitations in the

acquisition or in the image, such as low signal-to-noise, low number

of frames, capability to reconstruct hollow structures or

susceptibility to the creation of image artefacts (156).

All in all, the landscape of super-resolution microscopy ranges

from methods based on light reassignment, providing moderate

optical resolution increase (e.g. Airyscan), to methods based on

localisation microscopy and fluorescence depletion, achieving a

resolution of the order of the nanometre (e.g. RESI (157),

MINFLUX (158–160) and MINSTED (161)). The use of

computational methods on top of super-resolved images can

further enhance super-resolution even with a limited number of

frames (155).

2.2.2 TIRF
Total Internal Reflection Fluorescence (TIRF) microscopy uses

the total internal reflection of a laser beam to create a thin

illumination layer. This allows the observation of fluorescent

molecules close to the coverslip surface (depth of about 100–200

nm, Figures 1F, 1J162, 163). Such method provides high-resolution

images of the basal cell layer with minimal background noise,

making it ideal for studying cellular processes such as migration,

adhesion, and signalling (164).

In immunology, TIRF microscopy is commonly used to study

the interactions between immune cells in antigen presentation. For

example, seminal studies employed this technique to investigate

TCR clusterization and activation pathways following antigen

recognition (165, 166). More recently, TIRF has been used to

highlight that clathrin is recruited in microclusters to mediate

internalisation and vesicular release of a triggered T cell receptor

at the immunological synapse (167). Another application of TIRF

microscopy in immunology is the study of receptor clustering, such
frontiersin.org
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TABLE 1 Resolution range, strengths, sample type and AI applications for different microscopy techniques.
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as to show the importance of CD4+ T cell’s CXCR4 nanoclusters in

supporting CXCL12-mediated responses (168). On macrophages,

TIRF has been employed to show the accumulation of dynamin-2 at

the site of phagosome closure (169).

A recent evolution of TIRF microscopy, called quantitative

dynamic footprint (qDF) and based on variable-angle TIRF, was

used to visualise leukocytes rolling, adhering, and spreading with

nanometre-scale z-resolution (170, 171). Finally, TIRF in

conjunction with SIM super-resolution microscopy showed the

engagement of two spatially distinct TCR microclusters with

ZAP70-bound TCR and LAT-associated signalling complex (172).
2.2.3 Confocal
Confocal microscopy is based on the use of an optical aperture,

called a pinhole, to obtain the optical sectioning of the sample and

localise the fluorescent signal in 3D (Figure 1B). It was invented by

Marvin Minsky (173) – a computer scientist who would later play a

significant role in the development of AI concepts and methods –

and has been improved with the use of lasers and scanning systems

(174, 175). It avoids the need to physically slice thick samples by

rejecting out-of-focus light proportionally to the reduction of the

pinhole aperture (176).

Thanks to its versatility, confocal microscopy can find

applications on a wide range of samples, from fast visualisation of

live subcellular events to reconstruction of large portions of thick

tissues. On the subcellular scale, confocal live-cell microscopy was

used to investigate how lymphocytes, in the absence of chemotactic

signalling, orient their migration against a fluid flow (177), to

characterise the force dynamics in phagocytic engulfment by

cytotoxic T cells (178), and to show how the Golgi complex

directs the positioning of lytic granules inside NK cells to guide

their cytotoxicity (179). At the cellular level, tracking of

macrophages in live-cell confocal imaging helped, together with

modelling, in clarifying how these cells use a collective quorum

licensing to initiate inflammation (180). In fixed tissue samples

(Figure 1C), confocal microscopy has been employed to visualise

macrophages in meningeal compartments of the central nervous

system (181), vascular endothelium of mouse lymph node (182),

virion transport to lymph nodes (183) and neutrophil accumulation

(91). Moreover, it helped in defining the role of scavenging

chemokines in marginal B cell zone formation (184) or the

contribution of innate lymphoid cells and conventional T cells on

shaping gut microbiota and lipid metabolism (185), and Treg

accumulation around self-activated T cells in lymph node

paracortex (186). Finally, it contributed to characterising

megakaryocytes in the bone marrow niche (187), periarteriolar

alignment and integrin-dependent network formation of tissue-

resident mast cells (188), platelets around metastatic niches in lungs

(189), and tissue-resident memory T cells on the ocular surface

(190). In a high-throughput manner, confocal microscopy was

instrumental in isolating CAR-T cell clones with a multi-killing

property against patient-derived cancer cell organoids and

associating this information with their transcriptomic profile (191).

When coupled with pulsed lasers, confocal microscopy can

detect fluorescence lifetimes in so-called Fluorescence Lifetime
T
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Imaging (FLIM, 192). The determination of the lifetimes can be

done either with exponential fit of the decay histogram or with

phasor analysis (193). The measured lifetimes are concentration-

independent but microenvironment-dependent. Thus, local

microenvironment changes can be assessed, such as pH and ion

changes, FRET events (194) or cell membrane tension (195).

Confocal microscopy can also be used to visualise structures

below the diffraction limit by means of expansion microscopy,

which increases the sample size (e.g. by 10-fold), and standard

confocal imaging (196). Finally, confocal live acquisitions can offer

insights into molecular behaviour with techniques such as

Fluorescence Correlation Spectroscopy (FCS, 197), Image

Correlation Spectroscopy (ICS, 198), and Number and Brightness

(N&B, 199). For example, N&B has been applied to determine

GPCR oligomerisation states in live cells (200).

Recently, new technologies in confocal imaging are being

developed to increase its speed and multi-view capabilities, such

as techniques for fast, super-resolution, and multi-view imaging

(201) or virtual scanning light-field technologies (202, 203).

2.2.4 Confocal and multiphoton for intravital
imaging

Staying true to the microscopists’ motto, “Seeing is believing”

(204), intravital microscopy (IVM) addresses the need to observe

events in their context (205), which provides complementary

information to static 3D tissue phenotyping (206). Depending on

the degree of tissue transparency and the required depth of imaging,

IVM can be achieved with widefield, confocal, or multiphoton

microscopy. Due to the shallow imaging capabilities of widefield

microscopy, most studies are conducted using confocal or

multiphoton approaches.

In the case of confocal, IVM is sometimes based on the use of a

faster alternative microscope called Spinning Disk (SD, Figures 1G,

1J207). Here, multiple excitation points are obtained by splitting the

laser beam with microlenses on a rotating disk, while corresponding

pinholes on a second rotating disk perform optical sectioning.

Spinning disk microscopy has been applied to visualise Kupfer

cells sequestering E. coli to show how this mitigates neonatal sepsis

(208), liver-specific Treg and their re-programming of liver

neutrophils (209), peritoneal macrophages (210), patrolling by

alveolar macrophages (211), and mechanisms of control of

dendritic cells by nociceptors (212). A promising approach to

confocal IVM is the recent development of confocal light-field

microscopy (203, 213), which achieves real-time acquisition of

whole volumes (Z-stacks) with micrometre resolution.

Multiphoton microscopy (MPM) combines laser scanning with

a multiphoton near-infrared excitation. It is based on the

simultaneous absorption of multiple low-energy photons,

resulting in the same fluorescence emission as in conventional

one-photon excitation. Multiphoton excitation increases the

achievable imaging depth (Figure 1D) thanks to the use of near-

infrared wavelengths that are scattered less by the sample,

eliminates out-of-focus excitation and reduces phototoxicity and

photobleaching (214). MPM contributed to several major

discoveries in immunology (see reviews 205, 215). The most used
Frontiers in Immunology 08
type of multiphoton excitation is by means of two photons (also

called Two-Photon Microscopy, TPM). Examples of application of

TPM in immunology include the visualisation of inflammatory

dendritic cells (216–218) and neutrophil efferocytosis (219) in

trachea after influenza infection, innate immune responses in the

skin during wound repair (220, 221), macrophage aggregation in a

peritoneal sterile wound model (222). Moreover, it helped in

investigating chemotactic neutrophil migration bias at capillary

bifurcations (223), and complement activation in draining lymph

nodes following dermal infection (224). In adaptive immunity,

TPM contributed to the show that T cell activation occurs in

three stages (225), or to elucidate T cell regulation by innate

lymphoid cells in the liver (226), corneal tissue-resident T cells

localising at the surface of immune privileged eye (190), mechanism

of additive cytotoxicity by CTLs (227), dynamic interaction between

marginal zone B cells and red blood cells (228), and B cell control of

affinity by restraining somatic hypermutation through controlled

cell proliferation (229). TPM also aided ex vivo imaging, such as in

the visualisation of the role of ATP in limiting protective IgA

against enteropathogens (92), or in the visualisation of collagen

deposition and mesothelial cell activation in the intraperitoneal gut

following microbial contamination (230).

Three- and four-photon excitations have been instrumental to

reconstruct the entire depth of a popliteal lymph node (231) or the

deep vasculature in brain tumours (232), to the quantification of

calcium events in astrocytes in deep portions of tissue (233), and to

the acquisition of multichannel data sets (up to 6 channels) in

tumour tissues (234). The combined use of TPM and FLIM imaging

allows the characterisation of pH and metabolic changes in vivo

(235). Finally, to overcome the speed limitations inherent to laser

scanning systems, faster implementations have been developed that

use a synthetic aperture microscopy to achieve long-term imaging

at high speed (236) or with a scan-less multiphoton setup for fast,

deep, imaging-based neuron voltage recordings (237). On the other

hand, adaptive optics methods have been employed to limit

scattering in deep tissues and correct aberrations (233, 238).

Finally, sample drift or organ movements can pose challenges

that AI could address during or after acquisition.

2.2.5 Multiplex imaging
The goal of understanding biological function within the

complex context of tissues – which is of particular importance in

immunology – led to the development of techniques for visualising

and analysing multiple targets or markers within the same sample.

Standard imaging setups are usually limited to very few markers at

the same time, while multiplex imaging extends the total number of

markers in the order of several tens (239).

Current approaches to multiplex imaging include fluorescence

imaging, imaging mass spectrometry, or sequencing techniques. In

its fluorescence declination, samples are either stained with many

fluorophores simultaneously or repetitively stained with fewer

fluorophores in many cycles of imaging and fluorescence

bleaching (240). Samples are then acquired in widefield or

confocal microscopy, to achieve a cellular resolution (Figure 1J).

When combining multiple fluorophores at the same time, several
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techniques have been developed to ensure the separation of highly

overlapping emission spectra, either based on hardware, such as the

employment multiple emission windows and spectral unmixing

algorithms (241, 242), or by calculating spill-over with single-stain

samples (239). In the case of cyclic imaging, usually two or three

fluorophores are used per cycle, with repetitive staining, imaging

and bleaching phases, as applied to fixed tissues (243–245), cells

(246) and live samples (247). Multiplex imaging techniques require

a solid antibody validation, which is addressed also by community

efforts (248). Cycling imaging is time-consuming, then a possible

improvement is the use of fluorescent tags with DNA barcoding: the

sample is stained simultaneously with antibodies tagged with

orthogonal single-stranded DNA sequences and then imaged in

cycles by using an eraser strand between each cycle (249). Finally,

recent and promising advances in fluorescent multiplex imaging use

FLIM to increase the number of detectable fluorophores or

discriminate the autofluorescence contribution (250). In this

regard, techniques using AI to overcome the limitations of low

photon budget when performing spectral FLIM imaging are of

particular interest (115, 251).

Mass-spectrometry based techniques employ a raster-scanned

ionising beam to analyse a small portion of the sample that is then

associated with a single pixel in the resulting image reconstruction.

Material collected can be endogenous, such as proteins, metabolites,

lipids, or glycans (252), or exogenous, as in the case of antibody

staining with tags suitable for mass spectrometry, such as peptides

or rare metal elements. For example, Imaging Mass Cytometry

(IMC) and Multiplexed Ion Beam Imaging (MIBI) can reach single-

cell resolution, allowing highly multiplexed spatial proteomics (253,

254). With lower resolution (clusters of cells), metabolite mapping

has been performed with both mass spectrometry and Raman

spectro-microscopy (255). Overall, the development of these

techniques greatly increased the amount and quality of data

extracted from samples. Furthermore, the mentioned techniques

can be combined in a multi-omics approach to increase sample

information (256–258). Of interest are methods that couple

automated laser microdissection with shotgun lipidomics (259) or

with (epi)genomics and transcriptomics, as they integrate imaging,

analysis, and hardware feedback steps to extract interesting

information for subsequent analysis (260).

Data obtained with multiplex imaging techniques can pose

numerous problems regarding analysis due to size, complexity,

and heterogeneity. For example, in the case of fluorescence

imaging, removing autofluorescence from paraffin-embedded

tissues or complex tumour tissues can be hard to achieve (261).

Other challenges in the image analysis include segmentation of cells

in the complex tissue environment (240), and spectral separation in

the case of one-shot imaging with many overlapping fluorophore

spectra (262). On the data interpretation side, data clustering and

dimensionality reduction are needed to navigate complex multi-

channel data sets and integrate these data with other multi-omics

approaches (263). An example is the integration of multiplex

imaging and spatial transcriptomics to follow thymic evolution

(264). Finally, sharing code and protocols of the analysis pipeline

ensures a dissemination of techniques and best practices, fostering
Frontiers in Immunology 09
the improvement of data analysis pipelines (118). All these tasks can

be approached with standard or AI-assisted image analysis

techniques, as discussed in the second part of this Review (see

Section 3).

2.2.6 Light-sheet microscopy
Light-Sheet Fluorescence Microscopy (LSFM, also called

Selective Plane Illumination Microscopy, SPIM) achieves 3D

sectioning by illuminating the sample with a thin sheet of light

and collecting fluorescence emission in a plane orthogonal to the

illumination (265). A volume reconstruction can be obtained by

translating the beam or the sample in a single direction or by

rotating the sample to perform a tomographic reconstruction. This

type of illumination achieves a very fast volume reconstruction with

micrometre resolution (Figures 1H, 1J), high signal, low

photobleaching and phototoxicity (266). In live samples, this

technique has been applied to high-throughput live imaging of T

cell cytotoxic function against B-cell lymphoma or the interaction of

Tregs with gastric tumour spheroids (267).

A notable application of LSFM microscopy in immunology is

the reconstruction of fixed, cleared organoids and tissues. Clearing

removes the unwanted tissue components and improves the

uniformity of tissue refractive index, thus reducing light scattering

and improving image quality at high depth (268). LSFM has been

applied to reconstruct many organoid types (269). Its use on cleared

tissues is particularly interesting for the whole-organ

characterisation of immune landscape and vascularisation of the

brain (270), clinical identification of melanoma metastasis in the

human lymph node (271), and whole-mouse cleared tissue imaging

(272–275).

Lattice light-sheet can image subcellular details with an

illumination pattern that achieves diffraction-limited isotropic

resolution and high acquisition speed (276). This technique was

applied, for example, to the study of the interaction between

tumour-associated macrophages and CD8+ T cells (277) or to

characterise the effect of antigen strength on immune synapses

(31). Given the lower penetration depth of visible light compared to

multiphoton illumination, the application of LSFM in vivo has been

limited to investigating cleared samples, as with the organoids

mentioned above, or in embryo development studies (272, 278).

However, the development of multiphoton light-sheet systems

(279), or the recent implementation of the NIR-II illumination

(1000–1700 nm) to light-sheet microscopy opened a window to the

feasibility of deep tissue LSFM in vivo (280). On the other hand, a

variation of visible-light LSFM called Swept Confocally Aligned

Planar Excitation (SCAPE) microscopy (281), was applied to the

histopathological characterisation of live tissues from their

autofluorescence (282). SCAPE provides information on tissue

architecture with cellular resolution, with a strong potential for

diagnostic applications.

Overall, LSFM is an exciting field, but numerous challenges

remain to be addressed. For instance, the vast amount of generated

data renders archiving, pre-processing, visualisation, and analysis

considerably more complex than other microscopy techniques

(283). Many platforms have been developed to tackle the analysis
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of these complex and big data sets (284). As outlined in a recent

review by Daetwyler and Fiolka (266), we also foresee that light-

sheet microscopy, with its fast-imaging capabilities, 3D

reconstruction of big volumes and generation of highly

informative data sets, will take a central stage in microscopy to

image cell-cell interactions in complex 3D structures such as

organoids and tissues. Also, the resulting data sets are already

pushing the generation of novel data analysis techniques (285, 286).

2.2.7 Conclusions on the use of light microscopy
for immunology

In conclusion, light microscopy techniques can span resolutions

from the nanometre to the centimetre (Figure 1I). They significantly

advanced our understanding of the immune system, by enabling

researchers to visualise complex subcellular structures, cellular

interactions, and dynamic processes, for immune phenotyping

and dynamic live analyses. Yet, biology occurs across all spatial

and temporal scales, while current techniques can only see a portion

of these events (25). To cover these different scales, we need both

progress in imaging techniques, as well as automated analyses that

can inform and guide the capture of events across scales in

real-time.
2.3 Image analysis

Image analysis is a crucial component of microscopy research,

enabling the extraction of quantitative data from complex visual

data sets in an unbiased manner (287). The standard toolbox for

image analysis comprises tools for image preprocessing,

segmentation, tracking, and quantification. Automating this

process ensures unbiased data analysis and simplifies compliance

with good practices for data and image acquisition reporting (288).

Image preprocessing seeks to minimise noise, enhance contrast,

correct geometric distortions, and improve resolution, thus

facilitating the subsequent image analysis steps. Denoising

techniques improve the signal-to-noise ratio (289): methods vary

from standard Gaussian blur and median filter to more advanced

techniques such as 3D block-matching (290), non-local means (291,

292), and wavelet transforms (293). Improvements in contrast and

resolution can be achieved with deconvolution techniques, where

the information about the point spread function of the microscope

is used to remove the signal contribution from out-of-focus planes

and surrounding signal sources (294). Resolution and contrast

improvements can also be obtained by acquiring the same image

with slight changes in the illumination beam (295, 296), with

general algorithms considering the noise distribution (150, 151),

analysing fluorescence fluctuations with algorithms such as mean

shift vector analysis (MSSR, 155), or by deconvolution, like in

SUPPOSe (297) or B-SIM and Sparse-SIM for SIM images (298,

299). Image registration corrects image distortions and time drift:

this is especially useful when reconstructing a volume in a mosaic

(300–302), aligning images in case of sample drift, as needed in

intravital microscopy (303–306) or aligning images acquired with

different modalities, such as in the case of CLEM (51). Lastly,
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crosstalk correction improves channel separation, eliminating

unwanted spectral bleed-through between channels (4, 174), while

spectral unmixing techniques use the characterisation of the

emission profile to separate many fluorophores with overlapping

emission spectra (241). These approaches are particularly useful in

multiplex imaging (239) and when subtracting unwanted

autofluorescence contributions (242). Other methods for spectral

separation include phasor analysis based on fluorescence spectral

data, or on fluorescence lifetime (307). Overall, effective image

preprocessing greatly simplifies image segmentation, ultimately

improving the extract ion of quant i ta t ive data from

microscopy images.

Segmentation of image data is the process of separating the

pixels of the background from the pixels of interest, labelling the

objects (e.g. organelles, cells, tissue areas) so that properties such as

geometrical descriptors can be measured, or intensity statistics be

calculated. Image segmentation is at the basis of most automated

analysis workflows (308). Segmentation techniques can be broadly

categorised into two main groups: region-based and edge-based

methods. Region-based segmentation algorithms group together

pixels with similar attributes (e.g., intensity, colour) to form

homogeneous regions within an image. These algorithms often

use intensity thresholding (309), clustering (310), or watershed

(311) to identify meaningful segments. On the other hand, edge-

based segmentation focuses on identifying boundaries between

objects in an image by detecting abrupt changes in pixel

attributes, such as intensity or texture. Common edge detection

methods include Canny (312, 313), Sobel (314), and Laplacian of

Gaussian (LoG) operators (308). The choice of segmentation

technique may vary depending on the specific application, where

factors to consider include image complexity, object shape, size, and

contrast with respect to the background. Object segmentation can

then be followed by object classification according to some

measurable property, such as object position or shape factors.

Object detection localises objects or regions of interest in an

image. The task typically involves identifying the object to be

detected (classification) and determining its position in the image

(localisation). Object detection is frequently employed to recognise

areas of interest, such as a compartment in a cell or tissue (315), and

to identify cells in time-lapse microscopy movies for object

tracking (316).

Tracking allows the study of temporal dynamics, such as cellular

or subcellular movements. Tracking objects in a movie is a two-step

process, where object detection and segmentation are followed by

object linking between frames (317, 318). Manual or semi-automated

tracking software has dominated the scene in studies of immune cell

mobility upon antigen presentation, in cell culture experiments, or in

lymph node imaging (319). However, when temporal sampling

cannot be done at high frequencies, or the linking process is

ambiguous, deep learning techniques may prove helpful in

enhancing the effectiveness of classical methods (316, 320).

Recent advances in bioimage analysis are significantly

broadening its accessibility, allowing researchers to leverage

powerful techniques with reduced reliance on programming

expertise and lowered computational resource demands. These
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developments are driven by a growing trend toward simplified user

interfaces (321–326), and standardised analysis protocols for light

microscopy (327) and electron microscopy (57). However, while

these tools streamline many routine analyses, complex or novel

research questions often require more sophisticated approaches.

This is where the role of the bioimage analyst remains crucial –

bridging the gap between readily available software and advanced

techniques, and facilitating the development of custom solutions to

address unique research challenges (328).
2.4 Impact of open-source software and
open hardware in image acquisition

Open-Source software (OSS) has a key role in bioimage analysis

because the access to source code enables any researcher to develop

customised workflows, even with a limited knowledge of

programming languages, thus guaranteeing more transparency

and reproducibility (329).

Image quantification has been made easy in the past decades by

many graphical user interfaces (GUI) suites, among which the most

renowned include ImageJ or FIJI (330), CellProfiler (323), napari

(331), QuPath (332). The key aspect that makes these GUIs widely

adopted is the abundance of scripts and plugins, together with the

possibility to access the source code and develop custom bioimage

analysis solutions, whether implemented as point and click

interaction or as a script.

A fundamental role of facilitator for bioimage analysis based on

scripting has been covered by development environments such as

RStudio1 (based on R language), JupyterLab (333, based on Python)

or visual programming suite KNIME (334). Because of the richness

of the Python environment, in terms of availability of packages,

many bioimage analysis solutions have been developed as Jupyter

notebooks, especially in the context of machine learning (ML) and

deep learning (DL), where code modification might enhance the

adaptation to specific image data (118, 335, 336). The availability of

complete notebooks where all the steps of a workflow are explained

with code comments facilitates the execution by the end user,

learning, and reproducibility (335).

The integration between the full control of microscope

motorisation (337), image acquisition, real-time (or offline) image

analysis, and the possibility to drive a new image acquisition, based

on the result of the analysis, constitutes the backbone of what is

called feedback microscopy (338), also referred to as smart

microscopy (339). The purpose of such integration is to allow the

adaptive imaging of the biological sample in the spatial and

temporal dimensions (340).

In Figure 2, we present a possible workflow of feedback-based

microscopy to identify infected cells and acquire them at higher

resolution, minimising the overall acquisition time. A multichannel

fluorescence image, including a nuclear marker and an infection

reporter (Figures 2A–C), is used to identify all the cells in the field of
1 https://www.rstudio.com
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view (Figure 2D) and measure the level of an infection reporter

(Figure 2E). Using a ML clustering algorithm (e.g. k-means

clustering), cells are classified based on their infection state

(Figure 2F). Then, cells are selected depending on their level of

infection (Figure 2G), and the microscope is instructed to navigate

to the cell position (Figure 2H), switch objective (Figure 2I), and

acquire a higher-resolution image (Figure 2J). This type of workflow

presents the advantage of scanning larger areas to increase the

number of inspected cells and use higher resolution imaging only

for the infected ones, which are identified with an unsupervised

ML algorithm.

Examples of software tools for feedback-based microscopy

include AutoscanJ, for the detection of mitotic cells or

chromosomal anomalies, based on the same principle of

rescanning cells of interest, previously detected with lower

magnification (341) or the real-time drift correction in intravital

movies (342). In the field of RT-EM, a similar approach has been

developed by SerialEM software (14) and its Python interface pyEM

(343). This approach was used in the contests of immunological

research to show, with tomographic reconstructions, that plasma

cells in patients with multiple myeloma display elongated centrioles

(344). Another application has been developed for combining light

microscopy and FIB-SEM (336). In single-particle cryo-EM,

automatic acquisition is even more important because thousands

of images are needed to perform a structural reconstruction (17,

345). In cryo-ET, machine learning approaches were used to fully

automate in-situ cryo-ET workflow (346).

While some scripting tools, such as ImageJ macro language, are

very popular in the bioimage analysis community (347), the

complexity of back-end programming languages (e.g. C or Java)

to develop software plugins may hinder the quick implementation

of novel ideas. To facilitate the use of feedback microscopy, projects

like Pycro-Manager (348) or pymmcore2 have been created to

implement translation layers between programming languages (in

this case, Python can be used to write scripts rather than Java). On

the other hand, the Open-Source Hardware (OSH) movement has

allowed the implementation of cheaper solutions for image

acquisition compared to proprietary microscopy software.

Projects like Micro-Manager (349) to control microscope

hardware have revolutionised the field, decoupling the need for

commercial licences to operate devices from the mere possession of

the equipment. In addition to gaining control of microscopy

equipment, the possibility to trigger and modulate the image

acquisition with plug-in electronics, for example based on

Arduino3 or Raspberry Pi4 development boards, has widened the

possibilities to customise every microscopy platform. However,

technology development requires the developers or early adopters

to carry the risks of investing resources in technologies that might

have limited or delayed benefits. Then, the advantage has to be

identified either in the reduced cost of existing open technology or
2 https://github.com/micro-manager/pymmcore

3 https://www.arduino.cc

4 https://www.raspberrypi.com
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in access to bleeding-edge techniques, which might be rewarded in

terms of scientific publications (350).

Finally, Computer-Aided Design (CAD) for machining or 3D

printing of microscope components or auxiliary devices has

improved the use of resources to run microscopy experiments.

Examples include the open optical setup of light-sheet system

openSPIM (351), the possibility of fully 3D printing experimental

tools or the wide database of open hardware projects developed by

the imaging community (for example, by the LIBRE hub5). These

can include accessories such as syringe injection motors, sample

supports, frames for optical filters, enabling components based on

electronics (352), or even part of the microscope body, etc. (353).

The adoption of OSS or OSH solutions is also strictly dependent on

their discoverability, modularity, and the standardisation of the

software interface (354).
5 https://librehub.github.io
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The revolution of openness in scientific software and hardware

is not necessarily in opposition to the business model of microscopy

companies (355). In fact, at the request of bioimaging researchers,

many companies offer support for the use of open software, such as

OMERO (supported by Glencoe6356), or have opened part of the

software by offering an API to interact with some of the GUI

modules, such as Zeiss7 with APEER platform for deep learning

(357) or Abberior8 with the possibility to reprogram the hardware

configuration (358). In addition to the highly beneficial effect on the

broader research community, we believe that companies can also

benefit from the openness of both software and hardware. This

applies whether resources for science are scarce or research is well

funded, because there is always a business model that can be

adapted to provide a service for less experienced users (355), and
FIGURE 2

Example of feedback microscopy based on machine learning to analyse infected cells. An application of feedback microscopy to detect infected
cells and trigger the acquisition at higher resolution. (A) Fluorescence image showing a nuclear marker (grey) and infection reporter (red). (B) The
nuclear marker channel is used to identify all the cells, while (C) the infection reporter is used to detect the infected cells. (D) Binary mask obtained
by thresholding the nuclear marker image in (B, E) The segmentation outlines are used to measure the fluorescence in the second channel (red) and
assess the level of the infection reporter. (F) K-means clustering can be used to identify cell populations and drive the acquisition of infected cells at
higher resolution. In this image, the k-means clustering is initialised by assuming 3 cell populations corresponding to possible levels of infection.
After clustering, the cell centroids are labelled with coloured dots, according to the level of infection: uninfected (dark blue dots), infected cells
(yellow dots), and highly infected (green dots). (G) The infected cells classified by the k-means clustering show a higher level of fluorescence, and
cells with a specific value of fluorescence reporter can be identified to trigger a (H) repositioning of the stage at a specific location (X,Y), executed
through a script (e.g. Micro-Manager beanshell script) and a (I) change of objective lens. Finally, (J) the identified cell can be acquired at higher
resolution.
6 https://www.glencoesoftware.com

7 https://www.zeiss.co.uk/microscopy/home.html

8 https://abberior.rocks/superresolution-confocal-systems/imspector
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the wide adoption of open imaging solutions by companies enlarges

potential customer markets.

The need for openness is even more pressing when AI solutions

are implemented, as AI methods are inherently based on probability

and as such not prone to reproducibility, and often the general

audience employs such methods without a thorough understanding

of their applicability and limitations. The second part of this Review

aims to clarify some of the concepts and uses of AI for microscopy

and immunology.
3 Artificial intelligence for microscopy
with applications in immunology and
virology

3.1 Historical introduction to AI

The concept of artificial intelligence takes root in Leibniz’s

characteristica universalis, a common unified language of pure

thought in which every language could be translated, and in

calculus ratiocinator, a machine capable of replicating that

language (359). Computers were meant to take a set of rules and

input data and return some output, but could they think

autonomously or even generate novel ideas (360)? This question

is still guiding research in the AI field. In the 1940s and 1950s,

progress in computational capacity motivated people to explore

applications in the domain of pattern recognition, where the human

brain excelled. In a seminal paper, McCulloch and Pitts (361)

proposed the model of a network that took inspiration from the

structure of the brain. This network was composed of a single input

and output neuron, with an activation state that would contribute to

the final output of the network. Later, developments on this original

idea extended network complexity to a multi-layer network (362)

and developed algorithms to train networks with more than one

layer (backpropagation, 363–365).

In today’s technologies, artificial Neural Networks (NN) are

built from a collection of nodes (neurons), operating a set of

transformations on the input data to learn different

representations of it. Nodes can be aggregated in layers and are

connected by activation functions (synapses) computing a weighted

sum of their input data. When the NN is trained, some connections

get stronger, causing them to acquire a higher weight, while others

get weaker, thus reducing their weight. So, NN training is essentially

a problem of optimisation of parameters (366, 367). Training occurs

iteratively: at each cycle, the network’s weights are optimised, and a

loss function — an objective measure of training success — is

measured (368). This process continues until a stopping point, such

as reaching a specified value of the loss function or after a certain

number of iterations. A network may perform poorly because of

lack of convergence to validation data (underfitting) or lack of

generalizability (overfitting). The choice of loss function is an

important part of model design (369), along with the definition of

layers and their connection types, which are collectively referred to

as network architecture. For example, annotated tumour areas in

tissue slices are used as ground truth, and the NN predicts which
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areas could be classified as tumour in the same slice (370). The loss

function estimates how precisely the network predicts tumour

areas. After the training phase, the network is applied to predict

labels (tumour or healthy) on new tissue slices.
3.2 Machine learning or deep learning?

Machine learning (ML) is a subfield of AI (Figure 3A) that

enables systems to learn from data without being explicitly

programmed. It focuses on building models or algorithms that

can make predictions or decisions by identifying patterns in the

data and using them to improve performance over time (378).

There are four main types of ML approaches: supervised,

unsupervised, self-supervised, and reinforcement learning.

Supervised learning is trained on a previously labelled data set

that represents bona fide the desired outcome, so both the input and

desired output are known. This highlights the importance of

preparing a training data set that is most representative of the

desired outcome, a simple task in principle but one that should be

performed with great care (379). By contrast, unsupervised learning

finds a structure from the data itself without any prior labelling

information. This is a commonly employed technique when

unbiasedly clustering information (Figure 3B: middle row) and

grouping differences in classes. For example, k-means clustering or

Principal Component Analysis (PCA, Figure 3B: middle row)

belong to this category. Self-supervised learning finds a

classification by predicting or completing parts of its input,

creating labels automatically from unlabelled data. For example, a

self-supervised model has been developed to automatically learn

semantic relationships between genomic data and improve tasks

such as gene annotation or the role of polymorphisms (380). Lastly,

Reinforcement Learning (RL, Figure 3B: bottom row) involves an

agent interacting with an environment and learning through trial

and error. It’s often used in broad AI tasks, such as AI-assisted

game-playing and autonomous driving systems (376). Any ML

workflow comprises a set of input data, a model architecture, and

one or more loss functions. ML models can range from low-

complexity models with few layers of data transformation –

shallow learning – to higher complexity models involving many

layers and many connections between them – deep learning.

Deep learning (DL) is a subfield of machine learning

(Figure 3A) where many layers of data representation are

connected to create a complex model with multiple levels of

abstraction. Even though many foundational concepts and

algorithms have been developed in the twentieth century,

practical advancements in DL are relatively recent. Three

practical steps have contributed to these advancements and to a

general renaissance in the field of AI (368). First, the development

of small yet significant algorithms enhanced how these deep stacks

of layers can be interconnected (366, 367). Second, bigger storage

was available to host the growing training data sets. Lastly, cheaper

hardware increased computational power. In fact, DL models are

based on simple additions and multiplications of big multi-

dimensional arrays of data (called “tensors” in mathematics), and
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these operations can be easily parallelised. The development of

powerful graphical units (GPUs), originally designed to improve the

gaming experience but with the ability to be programmed for

massively parallelised calculations and scientific computing, led to

the implementation of GPU-based NNs (381, 382). Today, along

with gaming GPUs, researchers can also leverage dedicated GPUs,

optimised for DL tasks, and specialised hardware such as tensor

processing units (TPUs), with the potential for requiring less

computational resources and becoming an integral part of all

domains of science, including microscopy. However, practical

implementation of these networks still requires programming

skills, with Python being the primary development language;

popular frameworks include Tensorflow/Keras (368) and Pytorch

(383). DL algorithms are affected by hardware bottlenecks in steps

that are not hardware accelerated, therefore some attempts have

been made to leverage alternative electronics boards like field-

programmable gate array (FPGA, 384), which offer the flexibility

of reconfigurable circuitry. For applications requiring low power

consumption, FPGA have shown to be from 3 to 5 times more

efficient than GPU per processed image, for tasks such as image

compression (385). The advent of “liquid” and more efficient
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hardware such as FPGA will dictate the pace by which AI

methods are implemented in microscopy and other fields.

To conclude, ML and DL techniques include computational

systems capable of learning from data. Shallow ML systems

continue to be utilised for their rapid training, minimal

computational resource requirements, and low complexity,

allowing for a complete understanding of how they operate. In

contrast, DL systems require significantly more computing

resources but have considerably higher capabilities, thus aiding all

areas of microscopy, from experimental design to image acquisition,

analysis, and data mining (386). These two types of systems are

often used together in algorithms mixing classic programming,

traditional ML, and DL according to the task (this permeability is

reflected in the dashed lines of Figure 3A).
3.3 Image-based machine learning

Image-based ML methods can preprocess images or segment,

detect, and track objects within multidimensional microscopy

images. The most used approach is supervised learning, which
FIGURE 3

Difference between Artificial Intelligence, Machine Learning, and Deep Learning and examples of methods applicable to microscopy and image
analysis. (A) The field of Artificial Intelligence (AI) builds on several disciplines, such as mathematics, physics, biology, and electronics. AI includes a
vast collection of computational methods and includes methods categorised as Machine Learning (ML). The latter includes a subcategory defined as
Deep Learning (DL). The boundaries between AI, ML, and DL categories should be considered quite permeable as techniques are shared and new
hybrid methods are developed. (B) Examples of DL, ML, and AI methods (text on top of the squares) with application to immunological imaging (text
on the bottom of the squares). in this figure, the same acronym is used for the singular and plural names of each method. From left to right, for DL:
Convolutional Neural Networks (CNN) such as StarDist (371) can be used for crowded nuclei segmentation, Feed-Forward Neural Networks (FFNN)
that have been adopted for cell counting (372), Autoencoder networks (AE) that have been used for several analytical tasks such as denoising and
spatial interpolation in spatial omics data (373). For ML, from left to right: Clustering methods such as DBSCAN for Single Molecule Localisation
Microscopy, Decision Tree methods like random forest for cell classification (322), Principal Components Analysis (PCA) for dimensionality reduction
in data analysis including multiple cell measurements (374). For AI, from left to right: Natural Language Processing (NLP) for data mining and code
generation (375), Reinforcement Learning (RL) for autonomous improvement of AI models and hardware control (376), and Generative Adversarial
Networks (GAN) used for data augmentation to improve the efficiency of image segmentation and interpolation of imaging data sets (377).
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employs a manually segmented data set to train the model.

Traditional, shallow ML techniques for image segmentation

include Support Vector Machines (SVM) and Decision Tree

classification (Figure 3B: middle row). Such ML models can yield

good results across various applications and are featured in

numerous open-source image analysis platforms (ilastik (322),

Fiji/ImageJ with WEKA (387) and LABKIT plugins (388),

QuPath (332), CellProfiler (323), MIB (389). They are user-

friendly, can be used even without programming experience, and

demand fewer computational resources compared to DL (388).

On the other hand, DL approaches for image processing have

expanded the range of problems that can be solved (366). In the case

of image-based methods, they are primarily employing a type of NN

called Convolutional Neural Network (CNN, Figure 3B: top row,

359, 379). CNNs use layers to extract hierarchical representations of

input data, in a way similar to how we learn information on an

object by viewing it from different distances or angles. These layers

implement two data processing functions: the convolutional filter

(hence the name) and the max pooling function. Convolutional

filters act like a magnifying glass that scans an input image while

applying different kernels (a small matrix) to the image at each

position. These kernels help identify specific features within the

image, such as edges or corners. The result of this operation is

referred to as a feature map, which highlights where these features

exist in the image. Max Pool operations are used after convolutional

layers to reduce the spatial size of the data while retaining important

information, thereby making the network more efficient for

computational analysis. Here, we will survey the landscape of

current applications of image-based DL methods to the

microscopy modalities that we previously discussed, highlighting,

where exist ing, their applicat ions to immunology or

virology (Table 1).

A major theme in DL applications to many microscopy

techniques has been finding ways to increase the wealth of

extracted information and overcoming the limitations of the

specific techniques, such as increasing resolution without

sacrificing acquisition speed. In cryo-ET, DL has been used to

learn structural information from single-particle cryo-ET analysis

(390) or to achieve isotropic resolution without the need for sub-

tomogram averaging (391). In single-particle cryo-EM, DL aided

particle model-building by creation of intermediate-resolution

maps (392) or model building automation (393). In virology, DL

with single-particle cryo-EM has been instrumental to the

character izat ion of tegument archi tecture in human

cytomegalovirus (394). In super-resolution, and specifically in

localisation microscopy, DL has been used to increase the

acquisition speed, by reducing the number of images needed to

reconstruct the structures of interest (109), or to help in localising

multiple adjacent emitters in 3D, thus improving volumetric

reconstructions (110). In immunology, DL with STED has been

applied to identify Zika virus reorganization of the endoplasmic

reticulum (111). In SIM microscopy, DL can increase resolution

and speed (395–397), thus better capturing live-cell events with

lower phototoxicity. In confocal and spinning-disk microscopy, DL
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can increase image resolution (113, 117), reduce optical aberrations

(114), and improve FLIM lifetime determination with low photon

budget, as in fast live-cell imaging (115). In TIRF, DL helped in

improving single molecule FRET (smFRET) by analysing single

molecule traces (112). In wide-field microscopy, DL was used to

enhance the resolution and optical sectioning capabilities (30, 123,

124), yielding confocal resolution while improving speed. In

intravital, microscopy, DL approaches combined with two-photon

excitation and adaptive-optics aberration correction have improved

subcellular resolution without sacrificing acquisition speed (133).

Finally, DL has been applied to light-sheet microscopy for physics-

informed deconvolution, i.e. a combination of DL with optical

information on the microscope setup (134). In light-sheet and

confocal microscopy, DL also provided axial resolution

enhancement, by learning from unpaired high-resolution, 2D

confocal images and low-resolution 2D images from other

planes (113).

Methods to improve resolution, signal or speed often apply to a

specific imaging modality and do not translate well to other image

modalities. Recent DL models have tried to provide a more general

approach, for example when restoring fluorescence images from all

imaging modalities (398), improving resolution without additional

data acquisition (399), interpolating images between frames (400)

or when performing object detection (401).

Major l imitat ions of fluorescence microscopy are

photobleaching, phototoxicity and limited speed when acquiring

multiple channels. DL methods can overcome these limitations by

providing in-silico labelling of transmitted light images (126–129).

For example, DL with in-silico labelling of brightfield images has

been used to improve the tracking in chemotaxis experiments (131),

or to predict the lineage choice of differentiating hematopoietic

progenitors (130). Finally, DL has been applied to phase, label-free

imaging (125), or to achieve fast, volumetric live-cell microscopy of

bioluminescent probes (402). In immunology, DL with optical

diffraction tomography has been instrumental for label-free

tracking of immunological synapse of CAR-T cells (403).

DL methods are now widely used for preprocessing,

segmentation, detection and tracking tasks (379, 404). In image

preprocessing, DL models are extensively used to denoise

fluorescence images, as indicated by the many examples in the

literature (290, 398, 405–414). In immunology, DL denoising was

instrumental to improve contrast in Imaging Mass Cytometry, thus

helping in characterizing the phenotype of immune populations in

human bone marrow samples (415). DL helped in separating

channels for filter-free imaging (125, 416, 417), and to assist

tracking by improving linking accuracy (316, 320, 418). Also, DL

is aiding cell phenotyping from multiplex immunohistochemistry

images, for example to characterize tumour microenvironment in

lung cancer (121) or pancreatic ductal adenocarcinoma (122).

Finally, DL models can assess the quality of fluorescence images

and identify artefacts (419). Moreover, DL has been applied to

denoise low-dose cryo-TEM images (420).

DL is employed in supervised cell segmentation, such as in the

case of general models U-Net (421), StarDist (371), Cellpose (422)
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and Segment-Anything Model (SAM) models (423, 424), which are

available as plugins in many open-source and proprietary image

analysis software. Specialised models tackle intracellular organelle

segmentation (327, 425), segmentation of extracellular vesicles in

TEM (103), HIV-1 virions in TEM (104) or mitochondria in FIB-

SEM (426). In immunology and virology, DL has been applied to

FIB-SEM images of SARS-CoV2 patient-derived platelets to

segment a-granules or mitochondria (105). Ligh-sheet

microscopy of lungs together with DL-based analysis allowed the

spatial profiling of nanoparticle delivery to alveolar macrophages

(135). Image segmentation is a challenging part of image analysis in

multiplex imaging, where cells are often densely packed. In this

case, DL was employed to perform cell segmentation, thus

improving single-cell feature extraction (118, 119), or to perform

a detection-based classification, therefore providing phenotypic

analysis without segmentation (120).

In detection tasks from fluorescence images, DL helped in

recognizing apoptotic cells from intravital multiphoton movies

(427), phototoxicity in widefield time-lapse experiments (428) or,

together with widefield high-content screening, to detect virus-

infected cells and predict if they will follow a lytic or non-lytic

infection (429). Furthermore, DL with confocal microscopy helped

in classifying expression of TLRs from PBMCs of HIV-positive

patients under ART therapy (430). In cryo-ET, CNNs are helping

annotation and feature extraction for in situ identification of

structures of the molecular components of interest (431), or

template matching, i.e. detection of objects with an arbitrary

shape, which is the most widely used approach in cryo-ET for

particle picking (106). Still in cryo-ET, DL has been applied for

finding macromolecules in cellular 3D tomograms (28). DL

detection algorithms can also support feedback microscopy in real

time (432) by automatically detecting events to guide acquisition,

generate feedback, and predict cell fate.

In tracking, CNNs with intravital multiphoton microscopy have

been used to accurately measure the position and shape of CD4+ T

cells interacting with plasmacytoid dendritic cells in vivo, aiming to

study interaction differences in lupus nephritis (132) or to link cell

tracks in intravital imaging of leukocytes (433).

One of the limitations of supervised learning is the generation of

accurate training data sets, which is, in most cases, a manual task

that can be time-consuming and still prone to bias. A possible

approach to overcoming this limitation is the use of self-supervised

methods. For example, information from the OpenCell database

was used to cluster proteins into organelles and individual protein

complexes (434). Similarly, in another study DL was used to

segment mitochondria, based on a training data set that was

generated with DL (435). Such simulation-supervised approach

could be, in principle, generalisable to other organelles or even to

cellular segmentation in tissues. Self-supervised or weakly

supervised models are also employed for cancer prognosis and

diagnosis in pathology slides (436).

Overall, image-based DL methods are assisting a wide range of

microscopy techniques in tasks from acquisition to image analysis

and data extraction (Table 2). Many of the above examples are
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widely applicable to different types of samples, including those

related to immunology or virology.
3.4 Data-based machine learning

Data-based ML can analyse, interpret, and learn from data. In

this Review, we refer to data-based methods as the ones that can be

applied generally to numerical or categorical data without the

specific need for data to be generated with imaging techniques.

For example, data-based ML is used in microscopy when clustering

data extracted from images with the previously described image-

based methods (442, 444), or when combining information from

microscopy with text data generated with other methodologies,

such as genomics or proteomics data (445). These tasks can be

approached using traditional, shallow ML or DL.

Techniques using traditional ML include linear regression,

logistic regression, and decision trees, such as Random Forest. For

example, logistic regression was employed to predict MHC ligand,

where a binding model and an antigen processing model were

combined, and results were classified according to logistic

regression score (446). Random forest was applied to analyse T

cell-dendritic cell interaction in a lupus nephritis model (132).

Instead, unsupervised learning techniques are employed when

the desired outcome is unknown or input data are not labelled. In

this case, unsupervised learning can help clustering data in groups.

Notable examples are the K-means, DBSCAN, and an unsupervised

version of random forest algorithms (378). Clustering techniques

have been used in high-throughput screenings to highlight

differences between biological conditions when segmenting and

measuring cells (374), or, in immunology, to cluster signatures and

perform neighbourhood analysis in multiplex imaging in tissues

(206, 439, 447) and single cells (246).

Another set of techniques, called dimensionality reduction, is

used to group variables into “super variables”. Techniques falling in

this category are PCA, t-SNE, and UMAP (378). Dimensionality

reduction has been used to classify cell cycle and disease progression

after feature extraction with CNNs (448), to segment touching cells

in confocal and two-photon microscopy (449), to group clonal

distribution of CD4+ T cells in gut epithelium following Listeria

monocytogenes infection (450), or to obtain behavioural signatures

of immune cells in intravital inflammation models, guiding the

discrimination between pathogenic and non-pathogenic

phenotypes (440). Also, dimensionality reduction techniques are

essential in multiplex imaging when grouping cell phenotypes

(240, 451).

DL for data-based methods can employ different types of

architecture depending on the purpose. An Autoencoder Network

(AE) is a type of NN that learns to encode input data into a lower-

dimensional representation and then decode it back into the

original form, thus learning meaningful representations from the

data. This can be helpful for tasks like dimensionality reduction or

feature extraction. AE (Figure 3B: top row) has been used to

combine low-dimensional representations of scRNA data,
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generated using large language models, with actual single-cell

scRNA-seq data from different species to create a supergene

classification that can bridge differences between individual

single-cell experiments and different species (452), or to create

deep generative models for spatial-omics analysis that can take into

account the spatial relationship information (373). A Feed-forward

neural network (FFNN, Figure 3B: top row) is another type of NN

where information flows only in one direction (forward) through

layers of interconnected nodes. FFNNs are commonly applied to

regression and classification tasks, as they can learn complex non-

linear relationships between inputs and outputs. For example, a

feedforward network was used to classify cell tracks in 3D

biomimetic gels of immune cells co-cultured with breast cancer

cells in organ-on-chip (453).

Recurrent Neural Networks (RNNs) excel at processing

sequential data like natural language text, where the context of

previous words influences the use of subsequent ones. After

dividing data into small chunks – called tokens –, RNNs process

them recursively to generate the most likely information based on

the previous information. For example, this type of network could

predict the cell lineage of hematopoietic cells from brightfield
Frontiers in Immunology 17
images by extracting time signatures of cells from image features

extracted with a CNN (130).

On the other hand, transformer networks weigh the importance

of input tokens to construct a connection map without requiring

sequential processing (454). They are at the basis of the Natural

Language Processing (NLP, Figure 3B: bottom row) chatbots used

today, such as ChatGPT, and are also called Large Language Models

(LLMs). These tools can serve as a valuable resource aiding

researchers in designing microscopy experiments (455) or

drafting algorithms to implement the ML techniques described

here. LLMs can be applied to data mining in scientific data sets, such

as those generated from single-cell omics (as reviewed in 456), and

some attempts exist to apply it to bioimage analysis (443, 457). We

also foresee that these techniques will be increasingly integrated in

microscopy hardware, for AI-assisted sample exploration

and acquisition.

Another type of generative network is called Generative

Adversarial Network (GAN, Figure 3B: bottom row). This

network comprises two networks, one generating new data and

the other evaluating its suitability as output. The generating

network challenges the evaluating network, thus introducing an

element of randomness and “creativity” in the output (458). This

broad class of networks can be used to generate models of protein

structures (the general AlphaFold (459) and its open version

OpenFold (460), or a more specific version for proteins of the

immune system (461)) or to reconstruct molecules from cryo-ET

tomograms (390, 462). Generative neural networks informed on the

features of highly metastatic melanoma by “reverse engineering” a

supervised CNN for cell classification. In this example, a CNN is

initially trained on patient-derived melanoma xenografts to classify

them based on their metastatic capability. Then, a generative neural

network is used to create in silico cell images with exaggerated

features, which are then used to analyse which features in the CNN

are most prevalent (463). This approach is particularly intriguing as

it uncovers new quantitative insights within the hidden features of

DL, thereby providing information that could potentially lead to the

generation of new scientific hypotheses.

In summary, we outlined some applications of data-based ML

techniques for microscopy (Table 2). The field is vibrant and

complex, and evolving at a fast pace. Shallow ML and DL can be

employed to cluster information and combine microscopy data with

multi-omics data (29, 441, 442), or to predict molecular biomarkers

from pathology images (464). These technologies could aid vaccine

design, as outlined in Hederman and Ackerman (465) or to improve

antibody design (466). As such, a dialogue between computer

scientists, microscopists and immunologists is fundamental.
3.5 Impact of open-source software in AI
deployment and democratization

AI can hugely facilitate the analysis of large image data sets and

the characterisation of rare biological events. Because OSS solutions

can rely on the contribution and critical judgement of the wide

imaging community, they are indispensable for the development of
TABLE 2 Examples of AI approaches for selected tasks.

Task Examples of AI approaches

User-friendly segmentation of
cells or organelles

Traditional ML techniques (322, 332, 387–389)
or DL plugins (371, 422, 423) within common
image analysis platforms

In-silico labelling of
transmitted light images

(126–129, 131)

Cell segmentation in
multiplex imaging

Segmentation-based approaches (118, 437) or
segmentation-free phenotyping (120)

Resolution enhancement In confocal (113) or super-resolution
localisation microscopy (109, 110), and SIM
microscopy (299, 395–397, 411)

Increasing acquisition speed DL to reduce the number of acquired planes
(202, 438) or provide virtual optical sectioning
from widefield microscopy (30, 123, 124)

Detection of phototoxicity in
live-cell imaging experiments

Detection of apoptotic cells (427), evaluation of
phototoxicity (428)

Denoising of fluorescent
images

(290, 398, 405–414)

Improving linking accuracy
in tracking

(316, 320, 418)

Clustering of phenotypes or
behaviours of immune cells

Traditional ML for phenotyping multiplex
images (206, 439). DL for clustering
phenotypes in high-content screening (374).
DL to cluster behaviours from intravital cell
dynamics (440)

Integrating microscopy data
with multi-omics

(29, 441, 442)

Dialoguing with imaging data
and software

(443)
The table summarises the main approaches employing traditional ML or DL for selected tasks
in image analysis and immune phenotyping.
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trustable AI applications for bioimage analysis. In this regard,

several software tools have been deployed during the past years,

both as plugins for the major software GUI such as FIJI (StarDist

(371), Cellpose (467), DeepImageJ (468)) or napari (SAM (423)), or

as code notebooks (ZeroCostDL4Microscopy (335)).

In the previous sections, we outlined the main DL applications

to analyse bioimage data, many of which are distributed as open-

source software. Although some of these applications were not

specifically developed with immunology in mind, their usage can

significantly benefit immunological imaging. For instance, existing

code can be adapted for specific biological questions, or their

training data can be used to enhance other domain-specific

DL models.

Furthermore, publicly available image databases are key in truly

open-source AI models (469), as outlined by the Open-Source AI

Definition9. In this sense, data sets specific to the immunological

field (319), or for broader imaging purposes, such as the ones hosted

on BioImage Archive (470), can constitute a valuable resource of

image data to test AI software tools and foster immunological

research. These data sets should follow the “Findable, Accessible,

Interoperable, Reusable” (FAIR) principles (471).

Finally, the use of LLMs or other AI methods to aid software

creation (443) will constitute an essential part of AI deployment and

democratisation, as it empowers every scientist, even without

programming experience, with the “wisdom of the crowd”

provided by AI training data sets that can summarise a vast

amount of human knowledge.
3.6 AI for instrument control

The role of AI for instrument control and automation can be

delineated in at least two different ways: the first being the support of

AI in automating the development of open-source code (443) for

feedback microscopy, while the second involves utilising the AI-based

methods described above to interpret the image data, thereby revealing

information that can be used to redirect the acquisition process.

The use of open-source platforms Micro-Manager (349) or

Pycro-Manager (348) for microscope control can be integrated

with Python packages such as Scikit-Image10 (472) for image

segmentation and Scikit-Learn11 (473) to run ML tasks and feed

results back into the acquisition software. As a practical example,

DL segmentation methods have been used to identify cells and set

the correct acquisition parameters (474) or switch microscopy

modality (31) to image immunological synapses. Furthermore,

cost-effective open hardware facilitates possible integrations of the

acquisition microscope with AI feedback tools, for example to

control anaesthesia, temperature, and humidity in intravital

imaging (similarly to approaches tested in the clinics, 475, 476),

or correcting the state of the optical system by acting on adaptive

optics to minimise the loss of signal (238).
9 https://opensource.org/ai

10 https://scikit-image.org

11 https://scikit-learn.org
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The implementation of AI for instrument control is automating

the execution of precise and complex hardware tasks, shifting the

troublesome duties from the human to the machine. In our view,

rather than totally delegating the control of the experiment and the

handling of expensive instruments to the automatic agents (as a kind

of hardware/software AI-equipped decision maker), the

implementation of AI tools should work as advanced technology to

help the human researcher in steering the course of the experiment.

In this regard, the integration of large language models and feedback

microscopy is foreseen as the future evolution of microscopy, where

the user doesn’t necessarily need to be highly skilled in all the aspects

of microscope acquisition, hardware control, bioimage analysis: a

microscopy platform could accept human language instructions and

convert these into hardware control operations to provide the

requested type of data sets (477).
4 Discussion

In this Review, we surveyed the primary applications of light

and electron microscopy in immunology and virology for

preclinical research, outlined the concepts of AI, ML, and DL,

and explored their current uses in microscopy, image analysis, data

analysis, and feedback microscopy. Although we mentioned studies

employing microscopy and AI in immunology, the intersection of

these fields remains largely unexplored. For instance, many of the

tools discussed are designed for specific applications, and few

attempt to integrate multiple imaging modalities or tasks. Lack of

generalizability, when not due to training issues, is a major

challenge in the current research on DL and microscopy. On this

topic, Kawaguchi et al. showed that analytical insights into building

more generalizable architectures could be drawn when using

specific loss functions and concluded on the importance of

human reasoning on the physical properties and engineering

principles of the specific problem at hand (478). We believe this

capability could arise either through AI-assisted multimodal

visualisation or through a combination of direct visualisation and

AI computational modelling of structures or dynamic events.

DL networks concatenate many hidden layers to generate a rich

output, and although these layers are just composed of numbers and

simple operations, understanding how the output relates with their

inner functioning is exceptionally challenging. Also, the

mathematical structure of DL makes it prone to hallucinations,

i.e. the generation of plausible but incorrect output (479). These two

problems could be seen as epistemically relevant if we treated the

output as scientific knowledge in its own right, without further

experimental verification (480). Rather than seeing this as a

problem, we think that integrating DL with additional local data,

for example from microscopy or other techniques, could enhance

our ability to interrogate data and generate additional perspectives

(27, 481), potentially inspiring new scientific ideas, to be later

supported by rigorous verification, or highlighting the limitations

of current theories (482). Finally, the use of AI in real-time contexts

requires an evaluation of the possible outcomes of AI

hallucinations, with respect to model reliability and consistency.

In this regard, the openness of the AI-decision making process, the
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integration with traditional techniques and a dialogue with the

human researcher still have a prominent role.

While one might be tempted to attribute some level of

understanding to AI models, it is essential to recognise that these

models merely process numerical representations of data generated

through mathematical transformations (368). As such, their ability to

think is as limited as the size of the data set and the types of possible

transformations. This highlights the importance of dataset

preparation to achieve reliable outcomes, as well as the need of a

community effort for more curated, freely accessible, “FAIR” (471)

microscopy data. The careful evaluation of possible cognitive biases

during curation of training datasets is very important (483). For

example, researchers can assess the imbalance between classes, i.e. the

under-representation of certain types of conditions during data

generation, the uniformity of data acquisition across instruments or

laboratories, the quality of annotations or the methods used for data

augmentation (484). Also, the application of AI might require

considerations about data privacy and the openness of AI models,

especially when relying on external services for the AI processing.

Steps to make AI more accessible and broaden its usage include

creating efficient models that require less hardware resources and

could be used on low-cost computers, or designing better user

interfaces to guide the user in all the phases of AI implementation,

such as with data quality assessment and data preparation, with the

choice of NN architecture, with model validation and during model

usage. For example, projects like DeepImageJ (468) and its model

sharing platform BioImage Model Zoo12 are going in this direction.

Finally, a rigorous determination of the amount of scientific data

needed to obtain reliable training is required, as well as techniques for

performing automatic choice of DL architecture and training (485).

A cross-disciplinary approach that includes skills in biology,

microscopy, electronics, and software programming is necessary for

implementing AI-based hardware and software tools. This

approach could help shaping open, local models with efficient use

of hardware resources, to the benefit of real-time hardware control.

To achieve this fully integrated use of AI tools, LLMs can help in

data mining and code drafting tasks but are still limited in their

capabilities to precisely manipulate factual knowledge, for example

to provide advice on microscopy. A step towards more specific and

fact-based AI tools is represented by Retrieval-Augmented

Generation (RAG) models (486). Ideally a general model, for

instance a chatbot such as BioImage.IO (455), could understand

better the initial request for help posed by a human researcher (e.g.

“find the organelle in these cells”) and could drive a more

specialised model, for example a CNN, to perform specific tasks

(e.g. segmenting specifically mitochondria).

Looking ahead, we can imagine a future where multiple AI

models, or agents, could act on specific parts of the microscopy

process (487). New DL agents could integrate fact-checked advice

on experiment design with code generation models, AI-based

hardware control and analysis models, to assist the user across

the whole research cycle. Integrating AI, imaging data science and

microscopy automation will allow the automatic monitoring of the
12 https://bioimage.io
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sample, the detection of anomalies, and the adaptive change of

hardware to guide the acquisition of key biological events, thus

enhancing our visualisation capabilities across scales and our

systemic understanding of the immune system.
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421. Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, et al. U-Net:
Deep learning for cell counting, detection, and morphometry. Nat Methods. (2018)
16:67–70. doi: 10.1038/s41592-018-0261-2

422. Stringer C, Pachitariu M. Cellpose3: one-click image restoration for improved
cellular segmentation. Nat Methods. (2025) 22:592–9. doi: 10.1038/s41592-025-02595-5

423. Archit A, Freckmann L, Nair S, Khalid N, Hilt P, Rajashekar V, et al. Segment
anything for microscopy. Nat Methods. (2025) 22:579–91. doi: 10.1038/s41592-024-
02580-4
Frontiers in Immunology 28
424. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. (2023).
Segment anything, in: 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), Paris, France. San Diego, CA: IEEE. doi: 10.1109/iccv51070.2023.00371

425. Morone D, Marazza A, Bergmann TJ, Molinari M. Deep learning approach
for quantification of organelles and misfolded polypeptide delivery within
degradative compartments. Mol Biol Cell. (2020) 31(14):1437–549. doi: 10.1091/
mbc.E20-04-0269

426. Suga S, Nakamura K, Nakanishi Y, Humbel BM, Kawai H, Hirabayashi Y. An
interactive deep learning-based approach reveals mitochondrial cristae topologies. PloS
Biol. (2023) 21:e3002246. doi: 10.1371/journal.pbio.3002246

427. Pulfer A, Pizzagalli DU, Gagliardi PA, Hinderling L, Lopez P, Zayats R, et al.
Transformer-based spatial–temporal detection of apoptotic cell death in live-cell
imaging. eLife. (2024) RP90502. doi: 10.7554/eLife.90502
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