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GLP-1 receptor agonists in IBD:
exploring the crossroads of
metabolism and inflammation
Giulia Migliorisi 1,2, Roberto Gabbiadini 1, Arianna Dal Buono1,
Matteo Ferraris1,2, Giuseppe Privitera1,2, Lorenzo Petronio1,2,
Peter Bertoli 1,2, Cristina Bezzio1,2 and Alessandro Armuzzi1,2*

1IBD Center, Humanitas Research Hospital - IRCCS, Rozzano, Milan, Italy, 2Department of Biomedical
Sciences, Humanitas University, Milan, Italy
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) represent a cornerstone

in the treatment of diabetes and obesity and have emerged as a promising option

for other metabolic disorders, including hepatic steatosis. Recent evidence

highlights the direct and indirect anti-inflammatory properties of GLP-1,

suggesting a potential additional therapeutic strategy for patients with

inflammatory bowel disease (IBD). However, side effects of GLP-1 RAs,

particularly those affecting the gastrointestinal system, may limit their use in

patients with IBD. The rising prevalence of IBD worldwide and the ageing of the

IBD population will likely increase the number of patients with metabolic

comorbidities who may potentially benefit from a combination treatment with

GLP-1 RAs. A profound comprehension of the physiological function of intestinal

homeostasis and permeability is essential to more accurately evaluate the

prospective application of GLP-1 RAs in patients with ongoing inflammation.

While preclinical studies support this hypothesis, robust clinical evidence remains

limited. This narrative review aims to provide a synthesis of current knowledge

regarding the anti-inflammatory properties of GLP-1, with a particular focus on

safety concerns and potential future directions for its use in IBD management.
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1 Introduction

Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis

(UC), is a multifactorial, chronic, immune-mediated inflammatory disorder that affects the

gastrointestinal system. The prevalence and incidence of IBD are rising worldwide, placing a

significant burden on healthcare systems and social resources (1). Although significant progress

in the development of immunotherapy over the past two decades (2), approximately 50% of

IBD patients show response failure after initial advanced therapies, with response rates

exhibiting a further decline for second- and third-line treatments (3, 4). As a result, the

exploration of novel therapeutic strategies is crucial for improving IBD management.
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A promising explanation could be represented by the complex

interplay between inflammation and metabolism, which is still

largely unknown in the field of IBD management. Recent

evidence suggests that Westernized lifestyles, including dietary

habits and sedentary behavior, could have contributed to the

increasing global prevalence of IBD, particularly in newly

industrialized countries (5, 6). Notably, high sugar intake has

been identified as a potential risk factor for gut inflammation in

preclinical studies, leading to colitis and a significant accumulation

of inflammatory cells in mesenteric fat and lymph nodes in

genetically susceptible mice (7).

GLP-1 receptor agonists (GLP-1 RAs) have gained attention

due to their numerous effects on gut metabolism and immune

regulation. By stimulating glucose-dependent insulin secretion and

suppressing glucagon production, they are a cornerstone of the

treatment of type 2 diabetes (DM2), particularly in patients with a

higher risk of cardiovascular disease (8). Additionally, GLP-1 RAs

have been approved for obesity treatment given their ability to delay

gastric emptying, with enhanced satiety and reduction of energy

intake (9). In addition, GLP-1 RAs have shown to present direct

anti-inflammatory effects, by modulating immune cell signalling

and preventing the release of reactive oxygen species (ROS) (10).

Preclinical studies indicate that GLP-1 RAs may have an impact on

gut microbiota composition (11) and contribute to the maintenance

of intestinal mucosal barrier integrity, thereby reducing gut

permeability (12). Furthermore, by addressing metabolic

dysfunction in obese patients, whose prevalence is increasing in

the IBD population (13), GLP-1 RAs could indirectly mitigate

inflammation by decreasing the pro-inflammatory activity of

adipose tissue, particularly visceral adipose one. The convergence

of metabolic and inflammatory pathways suggests that GLP-1 RAs

hold promise as an adjunctive therapy for IBD. Nevertheless, their

therapeutic potentials are still subject of debate, particularly given

their known gastrointestinal side effects (e.g., nausea, vomiting, and

diarrhea), which may limit their application in IBD patients,

especially those with clinically active disease (14).

This narrative review describes the complex interplay between

GLP-1 signalling and intestinal inflammation, highlighting both the

potential benefits and limitations of GLP1 RAs in IBDmanagement,

with a particular focus on their promising role in selected obese

IBD patients.
2 GLP-1: a key player in metabolic
homeostasis

GLP-1 is a 31 aminoacid-long peptide derived from

proglucagon (15), which is produced in response to both

nutritional and inflammatory stimuli. It is mainly produced by

enteroendocrine L-cells, which are distributed throughout the

gastrointestinal tract, with increasing density from the proximal

jejunum to the colon (16). Additionally, GLP-1 is secreted by

brainstem neuronal cells (17). The release of GLP-1 follows a

biphasic pathway: an initial peak mediated by neural signalling,
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followed by a second phase which is triggered by direct mechanical

stimulation of L-cells, as nutrients pass through the gut (18).

GLP-1 is best known for its role in glucose homeostasis. It

enhances insulin secretion from pancreatic b-cells in a glucose-

dependent manner, whilst simultaneously suppressing glucagon

release from a-cells (19). It also promotes b-cell survival and

proliferation, strengthening its role in metabolic regulation (20).

Apart from its metabolic effects, GLP-1 plays a key role in

gastrointestinal motility. It is the main mediator of the

phenomenon known as the “ileal brake” (21), which delays both

gastric emptying and small bowel transit, with resulting slowed

nutrient absorption in direct proportion to carbohydrate intake (22,

23). This effect is primarily mediated by GLP-1 receptors (GLP-1Rs)

located on myenteric neurons of the digestive system, involving

nitrergic and cyclic adenosine monophosphate (cAMP)-dependent

mechanisms (22, 24).

Notably, GLP-1 appears to be a key messenger of the gut-brain

axis. In response to significant and/or high-nutrient meals, GLP-1

reaches high blood concentrations, exerting its effects on GLP-1Rs

located in the area postrema, the nucleus tractus solitarius, and the

hypothalamus. As a result, it induces satiety and regulates food

intake (25). This effect is significantly more pronounced in patients

undergoing GLP-1 RAs compared to the endogenous one (26), thus

justifying the use of these drugs in the treatment of obesity. In

support of their role in weight management, GLP-1Rs are expressed

in adipose tissue, where they regulate the proliferation of pre-

adipocyte cells and lipid homeostasis (27).

Apart from its metabolic effects, GLP-1 exerts a wide range of

physiological actions. Its receptors are expressed in multiple tissues,

including the heart, kidneys, lungs, and smooth muscle. The

protective effects of GLP-1 RAs against cardiovascular events have

been demonstrated in several studies, thus supporting their

application in patients with heart failure with preserved ejection

fraction and DM2 (28). These benefits primarily derived from

improved glucose control, weight reduction, enhanced cardiac

output, and lower blood pressure. Additionally, GLP-1 plays a

protective role for the endothelium. It reduces atherosclerotic

plaque formation, inhibits the expression of vascular adhesion

molecules, and prevents LDL-induced immune cell adhesion (29–

31). Notably, GLP-1Rs have also been found in the atrial cavities

and in the sinoatrial node, still their precise physiological function

remains unclear (32). Additionally, the therapeutic potentials of

GLP-1 could extend to renal and hepatic health. Recent studies

suggest that GLP-1 RAs could improve renal function in patients

with chronic kidney disease (CKD) and DM2 (33, 34). Despite the

absence of GLP-1Rs on hepatocytes, GLP-1 is involved in hepatic

lipid and glucose metabolism, by contributing to fibrosis reversal

and liver cells protection in patients with nonalcoholic

steatohepatitis (NASH) undergoing GLP-1 RAs (35).

Taken together, GLP-1 is a major metabolic and regulatory

hormone, with many potential therapeutic implications beyond

glycemic control, encompassing cardiovascular protection,

enhanced renal function, and the potential benefits in

hepatic disease.
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3 GLP-1’s anti-inflammatory
properties

Recent scientific research has increasingly highlighted the

potential anti-inflammatory role of GLP-1. This premise is

reinforced by the discovery that different immune cells, including

B and T lymphocytes, as well as myeloid-lineage cells such as

monocytes, eosinophils, and neutrophils, express GLP-1Rs (36).

Notably, GLP-1Rs are also expressed by intestinal intraepithelial

lymphocytes (IELs), suggesting a role in immune homeostasis of the

digestive system (36, 37). Moreover, studies conducted on animal

models have shown that enteroendocrine L-cells increase the

secretion of GLP-1 in response to inflammatory cytokines (e.g.,

interleukin-6 (IL-6) and lipopolysaccharide (LPS) (38)) and

ischaemic injury (39). Furthermore, Kahlen et al. found that

critically ill ICU patients presented significantly higher plasma

GLP-1 levels versus healthy controls, which were directly

correlated to increased inflammatory biomarkers such as IL-6).

These results underscore a potential connection between GLP-1 and

inflammatory processes (40). Current evidence suggests that GLP-1

has a regulatory role in both innate and adaptive immunity

while also supporting intestinal barrier integrity and gut

microbiota health.
3.1 Innate and adaptive immune response

In rat models of systemic inflammation, a GLP-1 RA, exendin,

significantly lowered pro-inflammatory cytokine levels, including

IL-1b, IL-6, TNF-a, and interferon-gamma (IFN-g) (41). These

effects are primarily mediated by the inhibition of NF-kB and

mitogen-activated protein kinase (MAPK) pathways, both of

which are associated with stress, inflammation, and apoptosis

responses (10, 42). Interestingly, in the context of several in vitro

studies, GLP-1 RAs have demonstrated the capacity of promoting

an anti-inflammatory state by influencing immune cell

differentiation. For instance, exenatide, the first GLP-1-analogue

developed, demonstrated to promote human monocyte

differentiation into alternatively activated M2 macrophages,

leading to an increase in anti-inflammatory cytokines such as IL-

10 while significantly reducing pro-inflammatory cytokines,

including IL-6, TNF-a and IL-1b (43). Shiraishi et al.

demonstrated that GLP-1/GLP-1R signalling plays a crucial role

in activating signal transducer and activator of transcription 3

(STAT3), which directly promotes human M2 macrophage

polarization while inhibiting classically activated M1

macrophages, known for their pro-inflammatory and tissue-

destructive properties (44). In animal models, GLP-1/GLP-1R

signalling has demonstrated to be involved in key macrophage

functions such as phagocytosis and migration, though further

research is needed to confirm these effects in humans (45).

Additionally, both eosinophils and neutrophils express GLP-1R

on their surface. Notably, eosinophils of asthmatic patients exhibit

lower GLP-1Rs’ expression compared to healthy controls (46). The

interaction between GLP-1 and its receptor on eosinophils has been
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shown to reduce the production of pro-inflammatory cytokines,

including IL-4, IL-8 and IL-13 (47). Although the limited research

on the role of GLP-1 in neutrophils, preliminary findings have

shown that it may mitigate their activation, potentially reducing

myocardial ischemic injury rodent models (48). In conclusion, the

GLP-1/GLP-1R signalling plays a significant role in the balance of

innate immunity, particularly in the polarisation of macrophages.

Furthermore, GLP-1 has been hypothesised to act as a mediator

between innate and adaptive immune responses. In mice single-cell

RNA sequencing identified a subpopulation of GLP-1R-positive

memory T-cells that was mainly composed of exhausted CD8+ T

cells: functionally, stimulation of the GLP-1R on these cells was

found to mediate apoptosis and anergic signals, thereby suppressing

effector T-cell function and the inflammatory response (49, 50). In

humans, the GLP-1 pathways act as a modulator of a specific subset

of T-cells, known as invariant natural killer T (iNKT) cells, and this

activity might be responsible for the improvements of some

immune-mediated disorders (such as psoriasis and suppurative

hidradenitis) observed in obese patients treated with GLP-1 RAs

(51–54). In mice, GLP-1 RA treatment also showed to inhibit the

differentiation of T helper (Th) cells into Th1 and Th17 subsets and

reduce the release of related proinflammatory cytokines, including

IFN-y, TNF-a, and IL-17. Instead, GLP-1 promotes the

polarization of Th2 and regulatory T (Treg) cells, increasing anti-

inflammatory cytokines such as IL-10 and IL-5 (55, 56).
3.2 Intestinal mucosal barrier

IELs are a heterogeneous population of T cells located among

intestinal epithelial cells (IECs), where they contribute to

maintaining mucosal barrier integrity (57). A particular subset of

IELs (Tab and Tgd) has been found to be enriched with GLP-1Rs

(37, 58). Their proximity to enteroendocrine L-cells suggests a

potential contribution of lymphoid tissue in GLP-1/GLP-1R

signalling, as mediator of L-cell proliferation (59, 60). Genetically

modified Glp1r−/− mice displayed greater levels of epithelial damage

in comparison to wild-type (WT) mice following inflammatory

stimulation. Conversely, WT mice exhibited higher expression of

antimicrobial and anti-inflammatory genes (37). Similarly, Wong

et al. described that IEL-expressing GLP-1Rs play a crucial role in

controlling gut inflammation of mice, by reducing IFN-g
production in IELs and promoting IEC survival and intestinal

barrier integrity (38). Additionally, GLP-1 showed to directly

stimulate murine Brunner’s glands to produce and release mucin,

thereby strengthening the mucosal barrier (61). Furthermore, GLP-

1Rs on IELs have been found to regulate the metabolic effects of

GLP-1 in animal models by entrapping it, thereby reducing its

systemic availability and lowering its plasma concentrations (62).

Moreover, GLP-1 could be involved in mechanisms of growth and

expansion of IECs, as the loss of GLP-1Rs on IELs has been

associated with shorter and smaller intestines in mice (59, 63, 64).

The anti-inflammatory role of GLP-1 in the gut is not limited to

the maintenance of IELs and L-cells but it is also interconnected with

gutmicrobiota. Thus, several microbiota-derivedmetabolites have been
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found to stimulate enteroendocrine L-cells producing GLP-1. Short-

chain fatty acids (SCFAs) such as butyrate, a bacterial metabolite

produced from dietary fibre, can directly trigger GLP-1 release by

binding to the membrane receptor GPR43 (65). Additionally, dietary

protein-derived metabolites, including tryptophan-indole, as well as

LPS from Gram-negative bacteria, directly promote the production of

GLP-1 (66, 67). Interestingly, bile acid metabolites have a dual effect on

GLP-1 secretion: they can both stimulate and inhibit its production

(66). Furthermore, the ileum of germ-free and antibiotic-treated mice

showed lower Glp1r gene expression compared to controls, with higher

incretin effect resistance (68).

Both preclinical and clinical studies have demonstrated that GLP-

1’s modulate the gut microbiota composition by delaying gastric

emptying and altering luminal glucose (12). Zhao et al. observed that

the gut microbiota of diet-induced obese (DIO) mice treated with

liraglutide for four weeks displayed a similar phylogenetic composition

in comparison to the start of the treatment, but was characterized by a

significant decrease in microbial phenotypes associated with obesity

(e.g., Firmicutes Lachnospiraceae and Clostridiales), alongside an

increase in Proteobacteria (e.g., Burkholderiales bacterium YL45) and

Akkermansia muciniphila—a species largely associated with high-fibre

diets and mucosal barrier health (11, 69–71). Notably, the

administration of GLP-1 RA resulted in an elevated Firmicutes/

Bacteroidetes ratio and an increase in Prevotella, species that have

been linked to lower inflammation (12, 70). Similar results were

reported by Wang et al., where GLP-1 RA treatment had a notable

impact on the abundance of weight-related microbial phylotypes,

though no significant change in the Firmicutes/Bacteroidetes ratio

was observed (72).

The findings concerning human gut microbiota remain

controversial. Although liraglutide treatment led to a decrease in

pro-inflammatory microbial species (e.g., Escherichia–Shigella,

Megamonas, and Bacillus) in DM2 patients, no statistically

significant differences were observed when compared to

metformin treatment. However, a significant increase in

Bifidobacterium, Dialister, and Alistipes was reported (73). A

recent study conducted on 41 diabetic patients demonstrated that

exposure to the GLP-1 RA dulaglutide over a 48-week period was

associated with a substantial decrease in non-butyrate-producing

Firmicutes (e.g., Ruminococcus and Blautia), accompanied by an

increase in Bacteroides, Lactobacillus, and Prevotella (74).

In conclusion, GLP-1 contributes to gut homeostasis and

inflammation control through its modulatory effects on

immunity, epithelial cell proliferation, and microbial composition

(Figure 1). Whilst emerging evidence suggests the extensive

therapeutic potential of GLP-1, further studies are needed to fully

elucidate its mechanisms and its clinical applications in

gastrointestinal disorders.
4 Metabolic disorders and IBD

The prevalence of metabolic disorders, including DM2 and

obesity, is increasingly rising in the IBD population. Approximately

15-40% of individuals diagnosed with IBD and an additional 20-
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40% are estimated to be obese and overweight respectively (13). IBD

and metabolism are strongly interconnected (Table 1). Adipokine

levels are frequently altered in IBD patients (75, 76). Leptin, a key

regulator of satiety and appetite, is decreased in active IBD,

probably due to exhaustion after transient overproduction related

to TNF-a hyperactivity. In contrast, high levels of resistin levels

have been found in active IBD, correlating with NF-kB pathway

activation and increased secretion of TNF-a, IL-6, and IL-1b (77).

Moreover, despite normal glycemic levels, elevated serum resistin

has been linked to hyperinsulinemia in active IBD (78). IBD

patients, present higher risk of developing insulin resistance,

particularly those diagnosed with CD (79, 80). However, a recent

study did not support this finding but rather attributed the

increased risk of insulin resistance to the concomitant presence of

metabolic dysfunction–associated steatotic liver disease (MASLD)

(81). Furthermore, omentin-1, an anti-inflammatory adipokine that

inhibits TNF-induced vascular inflammation, exhibit low levels in

patients with active CD and UC (82), emphasising the profound

connection between IBD and adipose tissue.

The impact of obesity on IBD onset and progression is an area

of growing research, though evidence remains controversial. Severe

obesity and bariatric surgery have been recognized as independent

risk factors for the development of IBD (83). Additionally, obesity

in early adults has been linked to a substantially increased risk of

CD onset in the elderly (84). A recent propensity-matched cohort

study also identified obesity as a risk factor for corticosteroid use,

therapy escalation, and colectomy in UC patients (85). However, no

increased risk of perianal or stricturing complications has been

observed in CD patients (86, 87). Interestingly, a retrospective

analysis of 202 UC patients showed that higher BMI was

inversely related to disease severity and IBD extent (88).

Nonetheless, BMI was directly associated with higher risk of

severe hospitalization, longer hospital stays and increased surgical

intervention rates, mainly due to metabolic comorbidities (89). The

discrepancies may be attributed to the limitations of BMI as a lone

evaluator of metabolic disorders. A recent cohort study involving

200 IBD patients identified visceral adiposity, rather than BMI, as a

predictive risk factor for a shorter time to IBD flare, particularly for

CD patients (90). Additionally, recent data recognized visceral fat as

a risk factor for postoperative recurrence in CD patients (76).
4.1 The role of GLP-1 RAs in IBD

The previously mentioned intrinsic connection between

metabolism and the inflammatory response led researchers to

investigate the role of GLP-1 modulation in the management of

IBD. Evidence suggests that IBD pathogenesis is closely linked to

gut failure in controlling inflammation, with enteroendocrine cells

(EECs) playing a pivotal role in the process (91). In this regard,

TNF-a has been demonstrated to trigger the NF-kB pathway in

EECs, which are a target of the GLP-1/GLP-1R pathway. This, in

turn, results in the production of IL-17C, a process that contributes

to the propagation of inflammation in individuals suffering from

IBD (92). Preclinical models found that GLP-1 RAs reduce
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intestinal inflammation in dextran sulfate sodium (DSS)-induced

colitis, by increasing IL-22 production by colonic IELs and several

beneficial bacteria, including Firmicutes, Proteobacteria and

Lactobacillus reuteri (93). Furthermore, in human samples, GLP-

1R was deregulated in IBD active biopsies (94), with elevated GLP-1

plasmatic levels being associated with severe active disease (95).
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Anecdotal evidence suggests that GLP-1 RAs may be beneficial in

IBD treatment. A case report documented clinical remission in a

42-year-old UC patient following liraglutide administration for

obesity treatment (96). This lends further weight to prospective

investigation of the benefits and safety of GLP-1 RAs in the real

world which are resumed in Table 2.
FIGURE 1

The image in panel (A) illustrates how various metabolites derived from diet and gut microbiota (bile acids, tryptophan, LPS, SCFAs) stimulate
enteroendocrine L-cells in the intestinal mucosa to secrete GLP-1. GLP-1 acts both locally at the level of the intestinal epithelium and systemically
through blood vessels and immune cells. GLP-1 reduces IFN-g, crypt cell apoptosis, and cytotoxicity by intraepithelial lymphocytes (IELs) and at the
same time, it stimulates the proliferation of intestinal epithelial cells (IECs) and L-cells, as well as mucin production by Brunner’s glands (37, 41, 49,
50, 61). Moreover, GLP-1 RAs are found to be associated with alteration of intestinal microbiota (11, 72). Panel B is a concise representation of the
role of GLP-1 in immune responses. GLP-1 modulates monocytes/macrophages, promoting polarization toward M2 macrophages (anti-
inflammatory), which release IL-10 and suppress pro-inflammatory cytokines (IL-1b, IL-6, TNF-a). Furthermore, it Influences indirectly T helper
lymphocytes polarisation to Th2 cells and release of IL-5 and IL-10, contributing to a more tolerogenic immune response (41, 44). Overall, GLP-1
acts as an immuno-metabolic modulator, supporting intestinal barrier protection and a regulated inflammatory response.
TABLE 1 IBD and metabolic disorders are closely interconnected.

Alterations of metabolism in IBD patients Obesity impact on IBD patients

Alteration of adipokines
• Decrease of leptin and omentin-1
• Increase of resistin

Onset of IBD

• Severe obesity and bariatric surgery are
independent risk factors for IBD onset

• Obesity in early adulthood increase risk of CD
in elderly

Glycemic metabolism
• Hyperinsulinemia and insulin resistance in CD,

although normal glycemia levels
IBD progression

• Higher risk of steroid, advanced therapies and
surgery in UC

• No risk of perianal and/or structuring complications
in CD

Hepatic metabolism • Increased risk of developing MASLD Visceral fat
• Predictive factor of short-term postoperative

recurrence in CD.
On one hand, IBD can lead to dysregulation of adipokines, shifting the balance towards a pro-inflammatory state, on the other hand obesity and higher BMI are associated with higher risk of
developing IBD and worse clinical outcomes, particularly for UC. Although the association between IBD and insulin resistance andMASLD is controversial, visceral fat is gaining prominence as a
predictive prognostic factor of postoperative recurrence in CD patients.
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Desai et al. found that both UC and CD patients with DM2

presented a reduced risk of surgery when treated with GLP-1 RAs

compared to other hypoglycemic agents (97). A Danish nationwide

cohort study also reported a lower risk of corticosteroid use and

hospitalization in IBD patients with DM2 undergoing GLP-1 RAs

rather than other antidiabetic treatments (98). Additionally, a

nationwide study conducted in Israel found improved IBD

outcomes, with a significant reduction of hospitalization rates;

however, these benefits were limited only to obese patients (99).

Furthermore, recent finding reported that GLP-1 RAs significantly

reduced C-reactive protein (CRP) levels in obese IBD patients,

alongside a nearly statistically significant reduction in fecal

calprotectin (100). However, not all studies align with these

results. Levine et al. observed no statistically significant

differences in disease exacerbation, corticosteroid-free remission,

or therapy escalation in the same cohort of 224 IBD patients after

one year of GLP-1 RAs treatment. Despite this, CRP levels showed

improvement (101). A further study conducted on IBD patients and

not diagnosed with DM2 also reported no significant alterations in

inflammatory markers. However, only a small number of patients

were included in the study, and median levels were not elevated

even before the commencement of GLP-1 RAs’ treatment (102).

These discrepancies may stem from short observation periods and

small sample sizes respectively (101, 102).

With regard to safety concerns, the most prevalent adverse

effects associated with GLP-1 RAs are gastrointestinal, such as
Frontiers in Immunology 06
bloating, dyspepsia, nausea, vomiting, diarrhea and constipation

(107). It is noteworthy that the majority of these gastrointestinal

manifestations are of a mild nature and predominantly occur

during the titration phase (108). These symptoms are often the

reasons why patients stop their treatment. Registration clinical trials

show that 16-37% of patients discontinue within a year (109–111).

However, real-life analyses indicate a higher discontinuation rate, of

approximately 70% stopping within 2 years, especially in non-

diabetic patients (112, 113). Interestingly, GLP-1 RAs showed a

favorable safety profile in IBD patients, exhibiting comparable

tolerability to non-IBD populations. Clarke et al. found that IBD

did not affect weight loss outcomes in obese patients and that anti-

TNF-a therapy did not reduce the likelihood of achieving ≥5% total

weight loss (TWL) (66% vs. 58%, P = 0.33). This indicates that the

combination of these agents can be safely and effectively

administered to patients with IBD (103). Moreover, IBD patients

exhibited lower prevalence of nausea, vomiting, and diarrhea, but

increased rates of constipation (11%) in comparison to the general

population (103). Two retrospective studies further corroborated

the safety and efficacy of GLP-1 RAs in treatment of obesity in IBD

patients. They reported mild gastrointestinal symptoms and no

substantial changes in disease activity scores (104, 105).

Semaglutide has been observed to induce the most substantial

weight loss in IBD patients, with no discrepancies in the

attainment of >5% TWL when compared to the general

population (104–106). Additionally, semaglutide has been shown
TABLE 2 This table compiles current knowledge evaluating the impact of GLP-1 RAs on disease outcomes and safety in IBD patients.

Reference Study design Population Key findings/outcome Safety notes

Jeffrey et al. (96) Case report
42-year-old
with UC

Clinical remission after liraglutide treatment
for obesity

Not specified

Desai et al. (97) Retrospective cohort study IBD with DM2 Significantly reduced risk of surgery Not specified

Nielsen et al. (98) Retrospective cohort study IBD with DM2
Lower risk of corticosteroid use
and hospitalization

Not specified

Gorelik et al. (99) Retrospective cohort study
IBD with DM2
and/or obesity

Significantly reduced hospitalisation rates;
benefit limited to obese subgroup

10% of GI adverse events

Sehgal et al. (100) Retrospective cohort study IBD obese patients
Significantly reduced CRP, near-significant
reduction of fecal calprotectin

Not specified

Levine et al. (101) Retrospective cohort study
IBD with DM2
or obesity

No significant difference in remission or
escalation; CRP improved

No increased rate of
IBD exacerbation

St-Pierre
et al. (102)

Retrospective observational cross-
sectional cohort study

Non-diabetic
patients with IBD

No significant alterations in
inflammatory markers

Not specified

Clarke et al. (103) Retrospective cohort study IBD obese patients
IBD did not reduce weight loss or affect anti-
TNF-a synergy

Reduced risk of diarrhea/nausea,
increased constipation rate

Anderson
et al. (104)

Retrospective cohort study IBD obese patients
Mild GI symptoms, no major disease
activity change

Well tolerated

Ramos Belinchon
et al. (105)

Retrospective case series IBD obese patients No major disease activity change Well tolerated

Desai et al. (106) Retrospective cohort study IBD obese patients Semaglutide most effective for weight loss;
Similar GI adverse events risk than
general population
Overall, GLP-1 RAs show potential benefits including reduced hospitalization, lower inflammatory markers, and effective weight loss, particularly in obese patients. While gastrointestinal side
effects are common, they are generally mild and transient, especially with proper patient education and dose titration. Current evidence supports a favorable safety profile in the IBD population,
warranting further investigation through ongoing clinical trials.
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to have a comparable risk profile to other GLP-1 RAs with respect

to gastrointestinal adverse effects in the IBD population (106).

Consequently, some authors consider GLP-1 RAs to be safe in the

IBD population, however, they emphasise the necessity of providing

educational advice to patients (e.g. small and frequent meals) and

employing a gradual dose-up titration strategy (114).

Currently, two ongoing clinical trials are investigating the role

of GLP-1 RAs in IBD management, that would lead to further

knowledge: a French study (ID NCT05196958) evaluating the safety

and efficacy of GLP-1 RAs in treatment of DM2 in overweight IBD

patients (115), and an American study (ID NCT06774079)

comparing the efficacy of GLP-1 RAs tirzepatide versus diet in

CD patients (116).

In summary, the interplay between IBD and metabolism

represents a growing area of research and therapeutic interest,

with GLP-RAs emerging as a promising therapeutic option.

While preclinical and clinical studies have reported anti-

metabolic and anti-inflammatory benefits with a favourable safety

profile, further evidence from long-term and large-scale trials is

necessary to guide clinicians in real-life scenarios.
5 Conclusions

In conclusion, GLP-1 plays a pivotal role in controlling both

blood glucose levels and body weight. The interaction between

GLP-1, IELs and gut microbiota highlights its vital role in

preserving the integrity of the intestinal mucosal barrier and the

gut immunity homeostasis. Emerging evidence suggests the

potential benefits of GLP-1 RAs in the treatment of IBD through

enhanced mucosal healing and reduced inflammation.

Furthermore, GLP-1 RAs seem to have similar safety profile in

the IBD population to the one observed in the general population,

based on real-world observations. However, further research is

required to ascertain the long-term outcomes of GLP-1 RAs in

IBD patients, with some studies indicating potential benefits and

others highlighting concerns regarding altered gut immunity.

Further clinical evidence is needed to clarify their role, optimise

treatment strategies, and assess their impact on disease progression

and patient outcomes.

However, further research is required to ascertain the long-term

outcomes of GLP-1 RAs in IBD patients, with some studies

indicating potential benefits and others highlighting concerns

regarding altered gut immunity. Further clinical research is

needed to clarify their role, optimise treatment strategies, and

assess their impact on disease progression and patient outcomes.
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