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Identifying early blood glucose
trajectories in sepsis linked to
distinct long-term outcomes:
a K-means clustering study
with external validation
Huan Ma1†, Xiayan Qian1†, Xiaodong Song1, Rongjie Jiang1,
Jialin Li1, Fang Xiao1, Ruoxu Dou1, Xiangdong Guan1,
Ka Yin Lui1*, Shuhe Li2* and Changjie Cai1*

1Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University,
Guangzhou, Guangdong, China, 2University of Exeter Medical School, University of Exeter,
Exeter, United Kingdom
Background: Blood glucose (BG) dysregulation, including hyperglycemia,

hypoglycemia and increased glycemic variability (GV), is common in septic

patients and potentially associated with poor clinical outcomes. However, the

prognostic value of early BG trajectories remains unclear. We intend to

investigate the association between the early dynamic trajectory of BG and 1-

year mortality among sepsis patients.

Methods: This retrospective study comprises a derivation cohort of sepsis

patients admitted to the First Affiliated Hospital of Sun Yat-sen University (FAH-

SYSU) from January 2018 to December 2023, and an external validation cohort of

10,874 sepsis patients from the Medical Information Mart for Intensive Care

(MIMIC) IV database. Distinct clusters were demarcated using K-means clustering

based on the BG trajectory within the first 48 hours after ICU admission, while the

optimal number of clusters was determined by a consensus of quantitative

metrics and the elbow plot. Kaplan-Meier survival curves and multivariable Cox

proportional hazards regression models were used to assess the association

between these identified clusters and 1-year mortality.

Results: Among 3,655 sepsis patients from the FAH-SYSU dataset, we identified 5

distinct clusters of BG trajectories, which were significantly associated with 1-

year mortality risk. In the full Cox regression model, patients with “low-stable”

and “moderate-stable” trajectories had the lowest 1-year mortality risk (P =

0.077). Conversely, patients with a “high-stable” trajectory (HR: 1.61, 95% CI:

1.35-1.92, P < 0.001) and those exhibiting unstable trends had significantly higher

mortality risks (“high-decreasing”, HR: 1.38, 95% CI: 1.16-1.65, P < 0.001;

“moderate-increasing”, HR: 1.37, 95% CI: 1.18-1.60, P < 0.001). External

validation found consistent clusters with similar mortality trends. Restricted

cubic spline analysis demonstrated a U-shaped association for mean glucose

levels and a J-shaped relationship for GV linked to 1-year mortality risks, while an

optimal glycemic range of 122 to 160 mg/dL and GV less than 0.18 indicated

improved survival.
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Conclusion: Early BG trajectory patterns are independently associated with long-

term mortality in sepsis patients. Incorporating dynamic BG measurements into

clinical practice may improve risk stratification and guide individualized glucose

management strategies.
KEYWORDS
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Background

Sepsis is a life-threatening organ dysfunction caused by a

dysregulated host response to infection and remains one of the

leading causes of mortality among intensive care units (ICU)

patients (1). A key component of sepsis pathophysiology is a

systemic inflammatory response, which involves the release of

both pro- and anti-inflammatory cytokines, as well as counter-

regulatory hormones (2). These metabolic alterations often result in

hyperglycemia, a common complication in septic patients (3).

Hyperglycemia triggers oxidative stress, mitochondrial

dysfunction, cell death, tissue injury, and ultimately, organ failure

(4–7).

Despite these findings, the optimal range of blood glucose (BG)

in patients with sepsis remains controversial (6, 8, 9). While early

studies suggested that strict glycemic control could improve

outcomes, subsequent trials failed to demonstrate consistent

benefits and even highlighted potential risks, including severe

hypoglycemia (10–15). As a result, the Surviving Sepsis Campaign

now recommends a more lenient glycemic target (<180 mg/dL)

instead of the previously advocated tight control (<110 mg/dL) (8).

Yet, the optimal glucose management strategy in sepsis remains a

topic of debate, as some patients appear to benefit from tighter

glucose control while others do not.

Beyond persistent hyperglycemia, glycemic variability (GV) has

emerged as a significant concern in critically ill patients. GV refers

to fluctuations in blood glucose levels over time, encompassing both

hypoglycemic episodes and postprandial spikes (16). Studies have

shown that increased GV is independently associated with poor

prognosis and increased mortality in septic patients (17, 18). Given

the association between GV and adverse outcomes, various

methods have been proposed to quantify glucose fluctuations,

including mean glucose concentration, mean absolute glucose

(MAG) change, standard deviation (SD), and incidences of hypo-

and hyperglycemia. However, the long-term prognostic impact of

GV in sepsis patients, as well as the optimal range for these

fluctuations, remains to be defined.

Recent research suggests that dynamic changes in blood glucose

levels over time—rather than static glucose measurements—may

provide more valuable prognostic insights (19–21). The concept of

glucose level trajectories, which describes longitudinal changes in

blood glucose concentrations, has been explored in some diseases
02
like acute ischemic stroke. Li et al. showed that individuals with

longitudinally elevated fasting glucose level trajectories had a higher

risk of death even if they had normal glucose levels at baseline (19).

Despite these findings, the prognostic relevance of early glucose

trajectories specifically in sepsis has yet to be fully clarified.

Accordingly, our study aimed to develop and externally validate

distinct clusters of BG trajectories based on two independent

cohorts of sepsis patients using a machine learning technique (K-

means clustering), and investigate the association between these

diverse trajectories within the first 48 hours after ICU admission

and 1-year mortality, thereby providing valuable insights into early

glycemic patterns as prognostic indicators and informing

personalized glycemic strategies in the ICU management.
Methods

Study design and population

We conducted a retrospective observational study utilizing data

from two independent cohorts. The derivation cohort was collected

from the First Affiliated Hospital of Sun Yat-sen University

database (FAH-SYSU) (Guangzhou, China), comprising data

from 10,029 ICU admissions between January 2018 and

December 2023. Access to clinical data was approved by the

Clinical Research Ethics Committee of the First Affiliated

Hospital of Sun Yat-sen University (Institutional Review Board

number: 2022-048). Additionally, the validation cohort was

obtained from the Medical Information Mart for Intensive Care

IV (MIMIC-IV) database, which contains a total of 299,712 ICU

admissions at the Beth Israel Deaconess Medical Center (Boston,

USA) between 2008 and 2019. One author (S. Li) is certified to get

access to the database and was responsible for data extraction. As

the data in the MIMIC-IV database were fully anonymized, the

Institutional Review Board at the Beth Israel Deaconess Medical

Center granted a waiver of informed consent (No.2001P001699).

Sepsis patients were diagnosed during ICU stay according to the

third international consensus definition, that is, suspected infection

accompanied by Sequential Organ Failure Assessment (SOFA)

score 2 points higher than baseline (1). For patients with

repetitive ICU admissions, only the first ICU admission was

considered. Exclusion criteria included: age less than 18 years old,
frontiersin.org
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ICU length of stay less than 48 hours, less than 4 times of blood

glucose measurements within the first 48 hours after ICU

admission, and lack of follow-up information or unplanned

discharge due to non-medical reasons. These criteria were applied

to both cohorts.
Data extraction

The following variables were extracted: (1) demographic

information, for instance, age, gender, surgical status, Charlson

Comorbidity Index (CCI), disease severity scores (Acute

Physiologic Assessment and Chronic Health Evaluation

[APACHE] II score and SOFA score), (2) laboratory results and

vital signs on ICU admission, including hemoglobin, white blood

cell (WBC) count, platelet count, creatinine, total bilirubin (TBIL),

prothrombin time (PT), and procalcitonin (PCT), (3) blood glucose

levels within 48 hours of ICU admission, (4) 1-year mortality, 30-

day mortality, ICU length of stay (ICU-LOS), the need of organ

support (vasopressors, mechanical ventilation, continuous renal

replacement therapy [CRRT]). All data were extracted using

Structured Query Language (SQL) queries via the pgAdmin4

(version 6.15) interface for PostgreSQL.
Outcomes

The main outcome was all-cause 1-year mortality after ICU

admission. Secondary outcomes included 30-day mortality, ICU

mortality, ICU length of stay, vasopressor dosages, the

administration of CRRT, ventilation duration, and doses of insulin.
Exposure and clustering

The primary exposure in this study was blood glucose level

trajectories within 48 hours after ICU admission. Specifically, we

used the maximum blood glucose values in every 8-hour block,

which were then standardized by subtracting the mean and dividing

by the standard deviation, to form clusters with similar dynamic

trends. In cases with missing glucose values, we imputed using the

mean of each patient’s available measurements. Alternative

methods (LOCF, NOCB, and MICE) showed consistent clustering

and survival results, confirming the soundness of this approach.

Next, we utilized K-means clustering to group patients into

distinct clusters, employing the Scikit-learn package (version 1.5.2).

This study was conducted according to the CAIR checklist

(Appendix 1) (22).To determine the optimal number of clusters

(K), multiple metrics were examined, including the sum of squared

errors (SSE), Silhouette Score, Calinski-Harabasz index, and

Davies-Bouldin index (23–25). Besides, an elbow plot was

generated to visualize the K and SSE, assisting in identifying a

point where increasing K no longer significantly improved the fit.

The final choice of K was based on a consensus among these

measures and a qualitative inspection of the elbow plot. Each
Frontiers in Immunology 03
patient was then assigned to the resulting clusters, and

subsequent analyses were conducted to compare clinical

characteristics and outcomes across these groups.

Moreover, we performed an external validation using the

MIMIC-IV database, ensuring the generalizability of the derived

clusters. The same data preprocessing and clustering processes were

replicated in this cohort.

To improve transparency and reproducibility, we incorporated

a schematic workflow diagram (Figure 1) to visually summarize the

study design and analytical pipeline. This diagram illustrates the key

stages of the study: cohort selection and exclusion criteria,

preprocessing of dynamic BG measurements, trajectory clustering

using k-means, external validation in an independent cohort, and

the subsequent outcome analyses including 1-year mortality

comparisons across clusters. This visual representation helps

clarify the sequence and rationale of the analytical steps.
Statistical analyses

Continuous variables were reported as mean (standard deviation

[SD]), while categorical variables were reported as counts with

percentages. Continuous variables were compared with a one-way

ANOVA test or the Kruskal-Wallis test based on the normality of

candidate variables. Categorical variables were compared with either a

chi-squared test or Fisher’s exact test when appropriate. Kaplan-Meier

curves and log-rank tests were used to compare the 1-year survival

outcomes across the groups. Additionally, we used both univariate and

two multivariate Cox proportional hazards regression models (Model

1: adjusted for age and gender; Model 2: adjusted for age, gender,

admission department, CCI, APACHE II, SOFA, creatinine, total

bilirubin, hemoglobin, heart rate, mean arterial pressure, and urine

output) to inspect the association between the formed clusters and 1-

year survival risks.

To further validate the credibility of the identified clusters,

subgroup analyses were performed stratifying by age (<=65 and >

65 years), gender, presence of septic shock, and surgical status, in

order to evaluate the hazard ratios of 1-year morality within each

subgroup. We also conducted a sensitivity analysis among patients

with and without pre-existing diabetes to assess whether the clusters

were associated with similar outcomes regardless of diabetes status.

The significance of the interaction was assessed using the Wald test,

and P values for interaction were reported. A P less than 0.05 was

considered indicative of a statistically significant interaction. Lastly,

restricted cubic spline (RCS) with four knots was adopted to

visualize the potential non-linear relationships between two

glycemic indexes (mean blood glucose levels, and the coefficients

of variation [CV] within the 48 hours after ICU admission) and 1-

year mortality. CV is an indicator for glucose variability in

continuous glucose monitoring (26), calculated as the standard

deviation of glucose values divided by the mean values in the same

observation period.

Statistical significance was defined as a two-tailed P value of less

than 0.05. All statistical analyses were conducted using R (version

4.2.2) or Python (version 3.12.2).
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Results

Derivation cohort characteristics

A total of 4,608 patients diagnosed with sepsis were admitted to

FAH-SYSU between January 2018 to December 2023. After

screening, 953 patients were excluded, with 3,655 eligible patients

included in our study. The process of participant enrollment is

displayed in Supplementary Figure S1A. Among these patients, the

mean age was 58.71 years (SD: 16.20), with 70.26% as male patients.

The mean APACHE II score at admission was 20.39 (SD: 7.76), and

54.31% presented with septic shock (N=1,985), indicating high

disease severity. The mean blood glucose level at admission was

164.82 mg/dL (SD: 75.01). There were 1,674 (45.80%) patients who

died within 1 year after diagnosis with sepsis, as shown in Table 1.
Blood glucose trajectory clustering

To determine the optimal number of clusters (K), multiple metrics

were employed, as shown in Supplementary Table S1 and

Supplementary Figure S2. The elbow plot and SSE values suggested

an “elbow” around K=5, where the incremental decrease of SSE became

relatively small after this point (Supplementary Figure S2). Additionally,

the Calinski-Harabasz index peaked at K=5, while the Silhouette Score
Frontiers in Immunology 04
remained satisfactory. Consequently, we selected K=5 as the optimal

cluster number, as these distinct trends exhibited high internal

similarity, with additional clusters offering limited gain in differentiation.

Figure 2A illustrates the longitudinal BG trajectories of the five

identified clusters over the initial 48 hours following ICU admission.

Cluster 0 (30.64%) displayed a relatively stable and low glucose

trajectory over the entire course (“low-stable”), with a median value

of 127.8 mg/dL (IQR: 108.0–149.0) at baseline and 120.6 mg/dL (IQR:

104.4–136.8) at 48 hours. Cluster 1 (9.99%) maintained high glucose

levels throughout the period (“high-stable”), with a median decrease

from 288.0 mg/dL (IQR: 241.2–347.4) to 255.6 mg/dL (IQR: 223.2–

302.4), corresponding to an absolute reduction of about 32.4 mg/dL.

Cluster 2 (31.66%) started at a moderate glucose level and remained

stable (“moderate-stable”), showing only a slight decline from 158.4

mg/dL (IQR: 135.0–183.6) to 156.6 mg/dL (IQR: 138.6–178.2). In

contrast, Cluster 3 (10.75%) presented with a high initial glucose level

but showed a pronounced drop over the 48-hour period (“high-

decreasing”), with values falling from 271.8 mg/dL (IQR: 239.4–

320.4) to 167.4 mg/dL (IQR: 140.4–198.0), representing an absolute

decrease of approximately 104.4 mg/dL and about 39% reduction from

baseline. Lastly, cluster 4 (16.96%) was characterized by starting at a

moderate level and then increasing (“moderate-increasing”), which

showed an upward trend in BG, increasing from amedian of 183.6 mg/

dL (IQR: 153.0–214.2) to 205.2 mg/dL (IQR: 180.0–237.6), with an

overall increase of 21.6 mg/dL.
FIGURE 1

Schematic workflow of the study design.
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TABLE 1 Demographic and clinical characteristics of sepsis patients stratifying by blood glucose trajectory clusters in the derivation cohort (N=3,655).

Variables Overall
n = 3655

Cluster 0
n = 1120

Cluster 1
n = 365

Cluster 2
n = 1157

Cluster 3
n = 393

Cluster 4
n = 620

P Value

Age, mean (SD), y 58.71 (16.20) 56.22 (17.74) 59.87 (15.70) 59.23 (15.22) 59.44 (15.15) 61.06 (15.44) <0.001

Sex, n (%) 0.66

Female 1087 (29.74) 344 (30.71) 103 (28.22) 329 (28.44) 123 (31.30) 188 (30.32)

Male 2568 (70.26) 776 (69.29) 262 (71.78) 828 (71.56) 270 (68.70) 432 (69.68)

BMI, mean (SD) 22.37 (2.93) 22.01 (3.15) 22.55 (2.67) 22.45 (2.86) 22.62 (2.87) 22.59 (2.77) <0.001

CCI, mean (SD) 3.48 (2.12) 3.30 (2.15) 3.26 (2.18) 3.61 (2.04) 3.58 (2.25) 3.64 (2.08) <0.001

Admission department, n (%) <0.001

Surgery 2053 (56.17) 637 (56.88) 167 (45.75) 702 (60.67) 222 (56.49) 325 (52.42)

Non-surgery 221 (6.05) 60 (5.36) 20 (5.48) 66 (5.70) 26 (6.62) 49 (7.90)

ICU or Emergency 939 (25.69) 259 (23.12) 150 (41.10) 250 (21.61) 104 (26.46) 176 (28.39)

Other 442 (12.09) 164 (14.64) 28 (7.67) 139 (12.01) 41 (10.43) 70 (11.29)

Surgical type, n (%) <0.001

Gastrointestinal surgery 741 (20.27) 244 (21.79) 49 (13.42) 257 (22.21) 59 (15.01) 132 (21.29)

Hepatobiliary surgery 720 (19.70) 166 (14.82) 70 (19.18) 266 (22.99) 90 (22.90) 128 (20.65)

Vascular surgery 240 (6.57) 83 (7.41) 22 (6.03) 71 (6.14) 26 (6.62) 38 (6.13)

Orthopedic surgery 207 (5.66) 85 (7.59) 21 (5.75) 56 (4.84) 23 (5.85) 22 (3.55)

Other surgery 230 (6.29) 70 (6.25) 30 (8.22) 67 (5.79) 21 (5.34) 42 (6.77)

Non-surgery 1517 (41.50) 472 (42.14) 173 (47.40) 440 (38.03) 174 (44.27) 258 (41.61)

Severity score, mean (SD)

APACHE II 20.39 (7.76) 18.63 (7.08) 23.21 (8.77) 19.81 (7.30) 22.06 (7.99) 21.90 (8.01) <0.001

SOFA 7.56 (3.75) 7.07 (3.67) 7.74 (3.76) 7.65 (3.81) 7.99 (3.71) 7.89 (3.69) <0.001

Laboratory result, mean (SD)

BG on admission, mg/dL 164.82 (75.01) 121.57 (37.84) 269.52 (91.85) 144.01 (41.69) 249.93 (86.93) 166.18 (48.74) <0.001

Mean BG in 48hours, mg/dL 171.49 (48.17) 122.31 (13.79) 268.06 (26.59) 158.60 (11.88) 206.64 (21.28) 205.27 (16.57) <0.001

CV of BG in 48hours 0.20 (0.10) 0.17 (0.09) 0.22 (0.10) 0.17 (0.09) 0.28 (0.13) 0.20 (0.11) <0.001

Prothrombin time, s 18.23 (7.75) 17.95 (6.49) 17.58 (6.65) 18.22 (6.73) 18.38 (6.87) 19.04 (11.68) 0.03

CRP, mg/L 124.88 (85.22) 117.78 (81.63) 141.87 (92.67) 122.54 (83.48) 124.71 (87.76) 132.28 (86.96) <0.001

Procalcitonin, ng/mL 17.82 (63.71) 16.63 (72.22) 18.14 (54.56) 18.68 (69.98) 20.16 (60.38) 16.70 (36.43) 0.863

Creatinine, umol/L 147.93 (141.06) 143.50 (145.85) 167.66 (138.47) 141.56 (146.96) 155.67 (126.43) 151.10 (130.08) 0.018

Alanine Aminotransferase, U/L 151.78 (495.86) 136.81 (594.76) 141.95 (426.11) 166.87 (466.25) 181.73 (482.92) 137.91 (386.29) 0.407

Aspartate Aminotransferase,
U/L

342.03 (1366.61) 294.81 (1344.24) 304.52 (1088.24) 372.06 (1515.66) 429.51 (1375.92) 338.62 (1251.62) 0.459

Total bilirubin, umol/L 63.79 (109.59) 69.26 (125.54) 42.45 (69.56) 67.21 (108.65) 62.43 (104.41) 61.03 (101.44) 0.001

White blood cell count, ×1012/L 13.16 (9.27) 12.86 (11.65) 14.17 (8.25) 12.89 (7.80) 13.51 (7.87) 13.39 (8.22) 0.123

Hemoglobin, g/L 86.22 (21.25) 84.33 (20.71) 89.55 (23.08) 87.29 (21.68) 85.04 (20.93) 86.46 (20.14) <0.001

Platelet count, ×109/L 143.93 (112.86) 147.05 (114.65) 146.73 (99.58) 139.25 (102.94) 139.14 (106.14) 148.41 (136.35) 0.323

Lactic acid, mmol/L 3.53 (3.35) 3.05 (2.92) 3.68 (2.70) 3.53 (3.63) 4.62 (3.83) 3.64 (3.39) <0.001

(Continued)
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Baseline characteristics and outcomes of
different clusters

The baseline characteristics of these clusters are summarized in

Table 1, revealing diverse demographics, vital signs, blood counts

and biochemistry profiles. Notably, cluster 1 (“high-stable”) had the

highest mean glucose levels over the period (268.06 mg/dL),

whereas glycemic variability in cluster 3 (“high-decreasing”) was

the greatest (CV: 0.28), further supporting the clinical relevance of
Frontiers in Immunology 06
our clustering approach. Additionally, cluster 1 exhibited the

highest mean APACHE-II score (23.21) and 1-year mortality

(55.89%), followed by cluster 4 (“moderate-increasing”) and

cluster 3 (52.58%, 51.65%, respectively). Cluster 0 (“low-stable”)

was related to the lowest 1-year mortality (39.11%). Kaplan-Meier

curves of all clusters are illustrated in Figure 2B, indicating that

cluster 1 showed the worst 1-year survival (log-rank P < 0.001).

Primary and secondary outcomes across these clusters are displayed

in Table 2. There was no significant difference between these trajectories
TABLE 1 Continued

Variables Overall
n = 3655

Cluster 0
n = 1120

Cluster 1
n = 365

Cluster 2
n = 1157

Cluster 3
n = 393

Cluster 4
n = 620

P Value

Vital signs, mean (SD)

Heart rate,/min 116.12 (22.31) 114.48 (20.60) 119.91 (21.70) 114.75 (22.73) 120.28 (23.73) 116.78 (23.32) <0.001

Respiratory rate,/min 26.54 (7.64) 26.91 (7.51) 26.58 (8.38) 26.47 (7.30) 26.85 (8.26) 25.78 (7.61) 0.052

Mean arterial pressure, mmHg 62.54 (11.48) 63.62 (11.22) 61.87 (11.89) 62.52 (11.29) 61.54 (11.20) 61.69 (12.07) 0.002

Temperature, °C 37.40 (1.19) 37.36 (1.20) 37.63 (1.22) 37.37 (1.14) 37.28 (1.20) 37.48 (1.22) <0.001

Central venous
pressure, cmH2O

13.12 (7.53) 12.23 (6.92) 13.77 (8.02) 13.45 (7.89) 13.59 (7.32) 13.37 (7.58) <0.001

Urine output, mL 1882.49
(1347.15)

1861.37
(1333.26)

1886.93
(1282.78)

1907.29
(1410.19)

1878.31
(1279.32)

1874.26
(1333.15)

0.953

Steroid therapy, % 475 (13.00) 113 (10.09) 54 (14.79) 149 (12.88) 55 (13.99) 104 (16.77) 0.002

Insulin dose, IU 171.66 (326.69) 61.69 (148.99) 506.20 (557.99) 107.32 (217.84) 282.11 (436.77) 223.42 (302.20) <0.001

Organ support, %

CRRT 1308 (35.79) 339 (30.27) 156 (42.74) 408 (35.26) 163 (41.48) 242 (39.03) <0.001

MV 2769 (75.76) 769 (68.66) 292 (80.00) 909 (78.57) 312 (79.39) 487 (78.55) <0.001

1-year mortality, n (%) 1674 (45.80) 438 (39.11) 204 (55.89) 503 (43.47) 203 (51.65) 326 (52.58) <0.001
fro
Cluster 0 (“low-stable”), cluster 1 (“high-stable”), cluster 2 (“moderate-stable”), cluster 3 (“high-decreasing”), cluster 4 (“moderate-increasing”).
SD, Standard Deviation; BMI, Body Mass Index; CCI, Charlson Comorbidity Index; ICU, intensive care unit; APACHE, Acute Physiologic Assessment and Chronic Health Evaluation; SOFA,
Sequential Organ Failure Assessment; BG, blood glucose; CV, Coefficient of Variation; CRP, C Reactive Protein; CRRT, continuous renal replacement therapy; MV, Mechanical Ventilation;
×, multiplication.
FIGURE 2

Trajectories and survival analysis of derivation cohort. (A). Trajectories of blood glucose levels within 48 hours after ICU admission among patients
diagnosed with sepsis in the derivation cohort (N=3,655). (B). Kaplan–Meier survival curve of 1-year mortality across different blood glucose
trajectory groups. Cluster 0 (“low-stable”), cluster 1 (“high-stable”), cluster 2 (“moderate-stable”), cluster 3 (“high-decreasing”), cluster 4
(“moderate-increasing”).
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and ICU length of stay (P = 0.165). The trends of ICU and 30-day

mortality across the subtypes were similar to 1-year results. Specifically,

individuals in cluster 3 were associated with the largest amount of

vasopressor usage (50 mg, IQR [10, 148]), along with the longest

ventilation durations (106 hours, IQR [51, 212]), suggesting a greater

need for organ support and hemodynamic stabilization for those with a

“high-decreasing” glucose trajectory. Additionally, cluster 1 (“high-

stable”) received the highest doses of insulin (320 IU, IQR [168, 580]).
Multivariate Cox regression models

Univariate analysis revealed significant risk factors associated with

1-year mortality in sepsis patients, including age, gender, admission

department, CCI, APACHE II, SOFA, creatinine, total bilirubin,

hemoglobin, heart rate, mean arterial pressure, and urine output.

The association between blood glucose trajectories and 1-year

mortality risks in different Cox proportional hazards regression

models is presented in Table 3. Both unadjusted and adjusted hazard

ratios demonstrated that cluster 1 (“high-stable”) was related to a

significantly higher risk of 1-year mortality compared to cluster 0

(“low-stable”) (HR = 1.68, 1.63, 1.61 in the univariate model, model 1,

and model 2, respectively; all P < 0.001). Similarly, both cluster 3

(“high-decreasing”) and cluster 4 (“moderate-increasing”) were linked

to increased 1-year mortality risks in the full multivariate model (HR:

1.38, 95% CI: 1.16-1,65, P < 0.001; HR: 1.37, 95% CI: 1.18-1.60, P <

0.001, respectively). No significant difference was found in the 1-year

mortality risk of cluster 2 (“moderate-stable”) compared to the

reference group (P = 0.077 in model 2).
External validation

To externally validate our clustering approach, we applied the

same process to 10,874 sepsis patients from the MIMIC-IV
Frontiers in Immunology 07
database, with the selection process outlined in Supplementary

Figure S1B. Baseline characteristics are summarized in

Supplementary Table S2. Consistent clustering subtypes were

obtained in the validation cohort: cluster 0 (“low-stable”, 53.27%),

cluster 1 (“high-stable”, 4.71%), cluster 2 (“moderate-stable”,

25.51%), cluster 3 (“high-decreasing”, 10.27%), cluster 4

(“moderate-increasing”, 6.24%). As displayed in Figure 3, cluster

0 exhibited the most favorable 1-year survival, whereas both cluster

1 and cluster 4 showed the worst 1-year survival outcomes (log-

rank P<0.001).
Subgroup and sensitivity analyses

To control baseline imbalances across the formed clusters,

subgroup analyses were conducted in the derivation cohort, as

illustrated in Figure 4. The association between blood glucose

trajectories and 1-year mortality risk remained largely consistent

regardless of gender and surgical status, where a “low-stable” or

“moderate-stable” glucose trend was correlated with better

outcomes. In aging patients (>65 years), only cluster 1 (“high-

stable”) and cluster 3 (“high-decreasing”) showed significant long-

term mortality risks (P=0.006, 0.002, respectively), suggesting that

high glucose levels at admission may indicate poor outcomes for

elderly individuals. Additionally, in septic shock patients, only

cluster 1 exhibited a significantly worse prognosis (P=0.022),

which could be related to increased oxidative stress, coagulation

activation, and endothelial dysfunction as a result of persistent

stress hyperglycemia.

To validate the impact of diabetes history on the BG clustering

process, sensitivity analysis was performed in diabetes and non-

diabetes patients, respectively. In patients without diabetes history

(N=2,981), the survival outcomes across trajectories were similar to

the main results (Supplementary Figures S3A, B). However, in

diabetic patients, the blood glucose trajectories were similar to the
TABLE 2 Primary and secondary outcomes across different blood glucose trajectory clusters.

Variables Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P Value

Primary outcome

1-year mortality, % 438 (39.18) 204 (55.89) 503 (43.47) 203 (51.65) 326 (52.67) <0.001

Secondary outcome

ICU length of stay*, hours 141 (83, 271) 143 (93, 296) 140 (88, 253) 159 (95, 318) 137 (90, 257) 0.165

ICU mortality, % 167 (14.94) 104 (28.49) 202 (17.46) 94 (23.92) 154 (24.88) <0.001

30-day mortality, % 265 (23.70) 133 (36.44) 295 (25.50) 127 (32.32) 204 (32.96) <0.001

Vasopressors*, mg 20 (0, 90) 40 (10, 142) 30 (0, 110) 50 (10, 148) 40 (9.50, 130) <0.001

CRRT, % 339 (30.27) 156 (42.74) 408 (35.26) 163 (41.48) 242 (39.03) <0.001

Ventilation duration*, hours 72 (21, 173) 102 (61, 187) 76 (34, 173) 106 (51, 212) 91 (41, 186) <0.001

Insulin*, IU 6 (0, 58) 320 (168, 580) 25 (0, 104) 144 (40, 360) 120 (40, 280) <0.001
*Median (IQR); ICU, intensive care unit; CRRT, continuous renal replacement therapy.
Table legend: Cluster 0 (“low-stable”), cluster 1 (“high-stable”), cluster 2 (“moderate-stable”), cluster 3 (“high-decreasing”), cluster 4 (“moderate-increasing”).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1610519
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1610519

Frontiers in Immunology 08
primary analysis, whereas 5 clusters showed different 1-year

mortality. Cluster 0 (“low-stable”) presented the worst 1-year

prognosis, though there was no statistically significant difference

in 1-year mortality rate among the five groups (log-rank P = 0.2)

(Supplementary Figure S3C, D). This suggests that diabetic patients

may have a distinct immune response and metabolism as a

consequence of the host’s chronic tolerance to hyperglycemia.

Lastly, RCS was used to further explore the optimal mean blood

glucose and CV ranges associated with lower 1-year mortality risks

(Figure 5). Both blood glucose and CV exhibited a nonlinear

relationship with 1-year mortality (P for nonlinear < 0.001, both).

There was a U-shaped curve between the mean blood glucose values

within 48 hours and 1-year mortality, with an optimal range

between 122 mg/dL and 160 mg/dL. Contrarily, the relationship

between CV and 1-year mortality exhibited a J-shaped curve, with a

higher risk of death when CV was greater than 0.18.

Discussion

We identified and externally validated five distinct early blood

glucose trajectories in sepsis patients, namely, the “low-stable”, “high-

stable”, “moderate-stable”, “high-decreasing”, and “moderate-

increasing” trends. Additionally, these BG trajectories were

significantly associated with diverse 1-year mortality risks, supporting

the notion that early dynamic glucose patterns may play a crucial role

in long-term sepsis prognosis. The five trajectories were also

reproducible in the MIMIC-IV database.

Sepsis is a heterogeneous disease with high morbidity and

mortality that rapidly progresses, thus identifying prognostic markers

in the early stage could assist in risk stratification and individualized

management. Given the complex interplay between sepsis progression
TABLE 3 Univariate and multivariate Cox regression models of 1-year
mortality risk.

Variables HR 95%CI P Value

Univariate model

Cluster 0 Ref

Cluster 1 1.68 1.42 1.98 <0.001

Cluster 2 1.12 0.98 1.27 0.086

Cluster 3 1.42 1.2 1.68 <0.001

Cluster 4 1.45 1.25 1.67 <0.001

Model 1

Cluster 0 Ref

Cluster 1 1.63 1.37 1.92 <0.001

Cluster 2 1.10 0.96 1.25 0.162

Cluster 3 1.40 1.19 1.66 <0.001

Cluster 4 1.41 1.22 1.63 <0.001

Model 2

Cluster 0 Ref

Cluster 1 1.61 1.35 1.92 <0.001

Cluster 2 1.13 0.99 1.29 0.077

Cluster 3 1.38 1.16 1.65 <0.001

Cluster 4 1.37 1.18 1.60 <0.001
Cluster 0 (“low-stable”), cluster 1 (“high-stable”), cluster 2 (“moderate-stable”), cluster 3
(“high-decreasing”), cluster 4 (“moderate-increasing”).
Model 1: adjusted for age, gender.
Model 2: adjusted for age, gender, admission department, CCI, APACHE II, SOFA, creatinine,
total bilirubin, hemoglobin, heart rate, mean arterial pressure, urine output.
FIGURE 3

External validation clustering results. (A). Trajectory validation of blood glucose levels within 48h after ICU admission in MIMIC IV database.
(B). Kaplan–Meier survival curve of 1-year mortality across different trajectories. Cluster 0 (“low-stable”), cluster 1 (“high-stable”), cluster 2
(“moderate-stable”), cluster 3 (“high-decreasing”), cluster 4 (“moderate-increasing”).
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and glucose metabolism, numerous investigations have focused on the

relationship between blood glucose levels and sepsis outcomes (17, 27–

30). However, most previous studies were based on cross-sectional

data, typically assessing the glycemic indexes at a specific time point.

For instance, Lu et al. utilized themean glucose values and glycemic CV

during the ICU stay to examine their impacts on ICUmortality among

7,104 adult sepsis patients (30). The multivariate logistic regression

results showed that both increased glucose levels and higher CV were

correlated with increased mortality risks (OR: 1.14, 1.05, respectively),
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while the harm of hyperglycemia was not observed in diabetic patients.

However, this approach neglects the dynamic nature of glucose

metabolism and its potential effect on sepsis outcomes. Our study

used time-series data of varying blood glucose trajectories and applied

K-means clustering to deconstruct the heterogeneity, providing a more

granular view of early glycemic patterns, in contrast to single snapshot

measurements. We identified five distinct clusters of early BG

trajectories, linking to different 1-year outcomes. The most favorable

prognosis was observed in patients with “low-stable” and “moderate-
FIGURE 4

Subgroup analysis of 1-year mortality risks across different trajectories, stratifying by age, gender, septic shock, and surgical status. APACHE, acute
physiologic assessment and chronic health evaluation; HR, hazard ratio. Cluster 0 (“low-stable”), cluster 1 (“high-stable”), cluster 2 (“moderate-
stable”), cluster 3 (“high-decreasing”), cluster 4 (“moderate-increasing”).
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stable” trajectories, whereas individuals with a “high-stable” trajectory

and those exhibiting unstable trends (“high-decreasing” and

“moderate-increasing”) showed significantly higher 1-year mortality

risks. These findings were consistent with survival analysis and

multivariate Cox proportional hazards regression results.

Several potential mechanisms may explain these findings. The

“high-stable” trajectory may reflect persistent stress hyperglycemia and

insulin resistance, which has been found to be associated with increased

oxidative stress, coagulation activation, and endothelial dysfunction

(31). Similarly, the dynamic increase of the triglyceride-glucose (TyG)

index trajectory, an indicator of insulin resistance, is also reported to be

associated with higher 28-day mortality risk (HR: 1.07, 95% CI: 1.02-

1.12) (32). Moreover, greater glycemic variability, as observed in two

clusters with unstable trends, has been linked to adverse outcomes in

critically ill patients. Previous research has suggested that apoptosis in

endothelial cells was evenmore severe with an acute fluctuating glucose

exposure than with a stable high glucose concentration (33, 34).

Besides, GV could also increase the occurrence of severe

hypoglycemia, leading to mortality, prolonged hospital length of stay,

and an increased risk of cardiovascular events for sepsis patients (35,

36). Importantly, our RCS analysis further supports these observations,

which revealed a U-shaped association for mean glucose values, and a

J-shaped relationship for GV linked to 1-year mortality, thus indicating

a detrimental effect of extreme glycemic levels and excessive

glucose fluctuations.

To ensure the consistency of our findings, we performed external

validation in a demographically diverse cohort, demonstrating the

reproducibility of our clustering technique. Despite the similarities in

trajectory clustering, slight differences in 1-year mortalities were

noticed between the FAH-SYSU and MIMIC cohorts. For instance,

cluster 4 (“moderate-increasing”) exhibited even worse 1-year survival

than cluster 1 (“high-stable”) in the MIMIC cohort. Variations in

mortalities across clusters suggest that latent factors, such as patient

demographics, insulin protocols, vasopressor usage, and the

implementation of advanced organ support, may influence

outcomes. Moreover, we conducted subgroup and sensitivity
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analyses, revealing that the relationship between BG trajectories and

1-year mortality remained largely consistent across different age

groups, genders, and sepsis subtypes. Notably, survival analysis

demonstrated that in diabetic patients, a “low-stable” trajectory

might indicate the worst 1-year prognosis in contrast to non-diabetic

patients. Lin et al. found that severe hyperglycemia did not increase the

risk of 28-day mortality among 3,500 sepsis patients with diabetes (HR:

1.06, 95% CI: 0.86-1.31), while a lower admission blood glucose level

was associated with increased risk of poor prognosis (29).

Physiologically, patients with diabetes have chronically grown

tolerance to hyperglycemia with impaired b-cell function, thus a

“low-stable” trajectory may signal treatment-induced hypoglycemia.

It is argued that various rapidly dividing cells, including immune cells,

rely on aerobic glycolysis as a normal metabolic strategy (37). For

patients with diabetes, elevated glucose levels may play a vital role in

maintaining biosynthetic activities associated with the expansion of

immune cells and the production of immune modulators during

critical conditions (29). Moreover, insulin administration may

adversely affect clinical outcomes by inhibiting autophagy, which

could lead to the inability to remove damaged proteins or degrade

noxious factors including bacteria and endotoxins (37). Our findings

further highlight the importance of continuous blood glucose

monitoring and individualized glycemic control strategies based on

the patient’s comorbidities. Future studies should explore whether

interventions targeting specific BG trajectories can improve survival

in various sepsis patients.

Our study has several strengths. First, it is the largest investigation

to our knowledge examining the relationship between hyperglycemia

BG trajectories and long-term outcomes in sepsis patients, while

previous investigations have largely focused on snapshot glycemic

measurements and prognoses in the short-to-medium term. Second,

the use of unsupervisedmachine learning (K-means clustering) and the

consensus approach utilizing both quantitative metrics and qualitative

inspection to determine the optimal K provide an objective

classification of BG patterns without predefined assumptions, thereby

ensuring that the formation of clusters can best explain the data. Third,
FIGURE 5

RCS curves of glycemic indexes associated with 1-year mortality risk: (A). RCS curves of mean blood glucose within 48 hours after ICU admission.
The reference glucose levels are between 122 mg/dL and 160 mg/dL. (B). RCS curves of glycemic CV within 48 hours after ICU admission. The
reference value of CV: 0.18. RCS, restricted cubic spline; CV, Coefficient of Variation; HR, hazard ratio.
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the validation in a demographically diverse and independent cohort

further strengthens the generalizability of our findings.

However, the limitations should also be acknowledged. First, this

study is retrospective in nature; therefore, biases in data collection and

patient selection may have occurred during the database construction

and information extraction, potentially affecting the accuracy and

reliability of our clusters. Nevertheless, we have utilized internal and

external validation to ensure the credibility of the clustering approach,

and conducted various statistical analyses to account for potential

confounders. Second, due to the requirement of calculating dynamic

trajectory, patients who stayed less than 48 hours were excluded, thus

individuals with milder conditions or those who died before the

endpoint were not considered in our clustering process. The

exclusion of these patients may lead to neglect in identifying certain

BG patterns. Additionally, we acknowledge the inherent limitations of

the K-means clustering algorithm. K-means assumes spherical clusters

of equal variance and is sensitive to initial centroid placement. It also

requires pre-specifying the number of clusters (k), which may not

perfectly capture the true underlying data structure. While we

addressed this by using multiple metrics including SSE, Silhouette

Score, Calinski-Harabasz index, and Davies-Bouldin index to

determine an optimal k, more advanced trajectory modeling

techniques such as group-based trajectory modeling or latent class

mixed models may offer improved flexibility in future work. In our

study, 13% of patients in the derivation cohort received steroid therapy

within the first 48 hours after ICU admission, which may contribute to

hyperglycemia or glycemic variabilityFuture prospective studies should

incorporate detailed treatment data, including insulin protocols,

corticosteroid dose, and nutritional interventions, to better

understand how clinical interventions shape blood glucose

trajectories and long-term outcomes.
Conclusion

Distinct trajectories of early blood glucose dynamic change were

significantly associated with 1-year mortality in patients with sepsis,

while individuals with persistent hyperglycemia and unstable

glucose trends showed significantly higher 1-year mortality risks

after adjusting for confounders. By focusing on the early post-

admission period, our findings highlight the prognostic value of

dynamic BG measurements, offering a novel approach to predict

clinical outcomes in sepsis.
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The elbow plot of K-means clustering results.
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Sensitivity analysis among patients with and without diabetes. (A). Trajectory
of blood glucose levels within 48h after ICU admission in non-diabetic
patients. (B). 1-year Kaplan–Meier survival curve of non-diabetic patients.

(C). Trajectory of blood glucose levels within 48h after ICU admission in
diabetic patients. (D). 1-year Kaplan–Meier survival curves of diabetic patients.
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cluster 3 (“high-decreasing”), cluster 4 (“moderate-increasing”).
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Demographic and clinical characteristics of external validation cohort from
the MIMIC-IV database. Cluster 0 (“low-stable”), cluster 1 (“high-stable”),

cluster 2 (“moderate-stable”), cluster 3 (“high-decreasing”), cluster 4
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APACHE acute physiologic assessment and chronic health evaluation
Frontiers in Immunol
BG blood glucose
CCI Charlson Comorbidity Index
CI confidence interval
CRRT continuous renal replacement therapy
CV Coefficient of variation
FAH-SYSU the First Affiliated Hospital of Sun Yat-sen University
GV glycemic variability
HR hazard ratio
ICU intensive care unit
IQR interquartile range
LOS length of stay
MAG mean absolute glucose
ogy 14
MIMIC-IV the Medical Information Mart for Intensive Care IV
OR odds ratio
PT prothrombin time
PCT procalcitonin
RCS restricted cubic spline
RCTs randomized controlled trails
SOFA sequential organ failure assessment
SQL Structured Query Language
SD standard deviation
SSE Sum of Squared Errors
TBIL total bilirubin
TyG triglyceride-glucose
WBC white blood cell.
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