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Immune-mediated inflammatory diseases (IMIDs) are incurable pathologies with
an increased prevalence. Whereas different risk factors for IMIDs have been
identified, such as microbial dysbiosis, diet, Epstein-Barr virus infection, the exact
cause of most of these diseases remains unknown and it is thought to be a
combination of environmental exposures and genetic predispositions. Despite
their different clinical presentation, most IMIDs are genetically associated with
variants at multiple immune-related genes, predominately with different human
leukocyte antigen (HLA) alleles suggesting a strong pathological involvement of
adaptive immune responses. However, antigens causing these diseases remain,
in most cases, unknown. Using statistical analyses of the immune repertoire,
several markers of antigenic exposures have been associated with IMIDs. Here,
we discuss different approaches to identify disease-associated antigenic
exposure markers and formulate a framework to test their causal role in IMIDs.
We then discuss the potential contribution of risk HLA alleles to diseases
development and lastly, we discuss how either antigens causing IMIDs or their
signatures on the immune repertoire can be exploited therapeutically.
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There is an urgent need for an etiological
understanding of immune-mediated inflammatory
diseases

IMIDs are a group of pathologies where chronic inflammation is evidenced, leading to
tissue destruction, remodeling and eventually a loss-of-function. These diseases can be
organ-specific, such as multiple sclerosis (MS), which affects the central nervous system, or
systematic, impacting multiple organs simultaneously such as systemic sclerosis (SC).
Several risk factors have been implicated in the pathogenesis of IMIDs such as Epstein-Barr
virus (EBV) (1), for example, epidemiological and molecular studies established a strong
link between infectious mononucleosis and inflammatory bowel disease (IBD) (2, 3).
Furthermore, dysregulated immune responses toward EBV have been observed in other
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IMIDs as well, e.g. MS (4-6), rheumatoid arthritis (RA) (7),
systemic lupus erythematosus (8), and Sjogren’s syndrome (9).
Whereas a mechanistic understanding of the pathological role of
EBV in these diseases remains to be identified, several mechanisms
have been proposed, such as molecular mimicry between EBV and
human proteins, for example, EBNA1 and GlialCAM (10) and
EBNALI and Clq (11). Beside EBV, other disease-specific alterations
have also been identified, such as increased antibody responses
toward citrullinated peptides in RA (12) and an expansion of a
specific group of unconventional T cells in Crohn’s disease (CD)
(13, 14), which is a subset of IBD, among other disease-specific
immune dysregulations.

As an exact cause for most of these diseases remains to be
identified, treatments are mainly directed at inhibiting the
inflammation, to clinically control disease symptoms and induce
remission. This, arguably, partially non-specific inhibition of the
immune system is achieved using different ways, such as anti-TNFs,
anti-integrins and anti-cytokines antibodies, among others.
Nonetheless, these therapies fail to introduce remission in all
affected individuals, i.e. primary non-responders (15-17). Even
primary responders might develop resistance to these therapies,
i.e. secondary loss of response (15, 17), reaching what can be called a
“therapeutic celling” at least in some diseases such as IBD (18). This
problem is also aggravated by the lack of any approved prognostic
marker for therapy response, despite ongoing efforts (19).

The prevalence of some of these IMIDs have increased
significantly over the second half of the twentieth century, for
example, the prevalence of IBD in the Olmsted County in the US,
increased from 0.12% in 1960 to 0.63% in 2019 (20). Based on
current estimates, it is projected that the prevalence of IBD will be
~1% in Canada in the upcoming decade (20-22). Besides IBD, other
IMIDs are also prevalent in the population, for example, in the US
alone there is between 400,000 (23) to 700,000 (24) individuals with
MS and between 2 to 2.8 million individuals are living with the
disease globally (25, 26). A higher prevalence is seen with RA with
17.6 million people affected globally (27) and with atopic dermatitis
(AD) where more than 200 million individuals are living with the
disease worldwide (28).

The combination of high prevalence, lack of accurate prognostic
markers and the high cost of these medications is having a
deleterious impact on the quality-of-life of affected individuals
and healthcare systems. Thus, there is an urgent need for a better
understanding of these diseases which could lead to more
personalized therapies that induce a long-lasting remission in
most patients as well as the development of preventive strategies,
e.g. vaccines, in high-risk individuals.

Disease-associated genetic variants
do not predetermine the development
of IMIDs

With the rise of genome-wide association studies (GWAS)
during the last couple of decades, the genetic signatures of IMIDs
have been heavily investigated (29-34). For example, using the
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genetic data of 47,429 individuals with MS and 68,374 controls,
more than 233 variants were associated with MS, 32 of them were
located within the extend HLA loci (35). Similarly for RA, a recent
meta-analysis spanning 35,871 individuals with RA and 240,149
controls from different ancestries identified 124 loci associated with
RA (32). Similar meta-analyses were conducted in other IMIDs
such as psoriasis, where a recent study has identified 109 loci that
are implicated in the disease using a large cohort of 36,466 cases and
458,078 controls (36). Also, in AD 71 genetic variants were
implicated in the disease by analyzing the genetic background of
65,107 individuals with AD and 1,021,287 controls (33).

A common denominator among these IMIDs was the lack of
clear causative genetic mutations, as opposed to Mendelian genetic
diseases, instead there was multiple associations to different
common genetic variants. For most IMIDs, these associations
resolved to genetic variants in different innate and adaptive
immunity-related genes and loci (32, 33, 35, 36) such as the
human leukocyte antigen (HLA) loci. Most of the associated HLA
alleles have a moderate association odds ratio (OR) and were
frequent in the study population in general. For example, in MS,
the strongest genetic association is with the HLA-DRB1*15:01 with
an OR of ~3 (37-39). Whereas the frequency of this alleles varies
across populations and ancestries, it is frequent in European
populations (frequency >10%) (39).

This implies that millions of individuals are carrying disease-
associated HLA alleles and are not affected, at least
symptomatically, with these diseases. This is clearly seen in celiac
disease (CeD) which is strongly associated with HLA-[DQ2.2,
DQ2.5 and DQ8] alleles (40, 41), nonetheless, not all carriers of
these alleles are developing CeD. Thus, other environmental factors
besides genetics are contributing to IMIDs such as gluten in the
context of CeD.

The adaptive immune system records
previous antigenic exposures as V(D)J
generated sequences

HLA proteins are a central hub for communication among
different parts of the immune system. They are classified into two
classes, class I which presents peptides to CD8" T cells and class 11
which presents peptides to CD4" T cells. Thus, they convey critical
information about potential peptide antigens between all nucleated
cells and CD8" T cells, between B cells and CD4" T cells and
between dendritic cells and T cells. A hallmark of adaptive
immunity is the formation of an immunological memory after an
antigenic exposure. This immune memory is composite of three
main elements, first, a unique immune receptor that recognize
different antigenic peptides from pathogens, i.e. T and B cell
receptors, TCRs and BCRs, respectively. These receptors are
generated via V(D)J recombination events and are engraved in
the DNA encoding the TCR and the BCR of this antigen-specific T
and B cells.

Nonetheless, before we continue our discussion, we need to
highlight important distinctions between TCRs and BCRs, namely,
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somatic hypermutation and class-switching which are exclusive to
BCRs. Somatic hypermutation is a process used by B cells to
enhance the affinity of their receptors, i.e. BCRs, toward a specific
antigen, through random mutations introduced in their immune
receptor chains followed by selection of mutations that increase the
affinity of the BCR toward its cognate antigen, via an interaction
with follicular helper T (Tth) cells (42). This results in a family of
related BCRs that bind the antigen with varying affinities, that is, a
phylogenetic tree of “evolutionary-related” sequences that respond
to the initial antigenic exposure (43). A second mechanism that is
also specific to BCRs is class-switching where the isotype of the
immunoglobin heavy chain is changing from L, which is formed
during the early phase of antigenic exposure, to other isotypes, for
example, o, y or € which are used in IgA, IgG and IgE antibodies,
respectively. Nonetheless, beside these differences between BCRs
and TCRs, an antigenic exposure is associated with the formation of
long-lived plasma cells and memory B cells that respond to this
infection and record this exposure in the form of a DNA-encoded V
(D)] recombination sequences (44).

The second part of an immune memory is a transcriptional
program that shapes the behaviors of antigen-specific T and B cells
and govern the phenotype of these cells, for example, T helper 1, 2,
or 17. Also, naive B cells can follow different developmental
trajectories after an antigenic encounter, for example, they can
develop into short-lived plasma cells, into germinal center (GC) B
cells or into GC independent memory B cells (44). The last part is
an epigenetic memory, which enforces and constrains the formed
transcriptional program of these antigen-specific T and B memory
cells (Figure 1A). These formed immune memories are mostly long-
lived and provide protection against repeated infections by the
same pathogen.

Hence, as we age, we accumulate more antigenic exposures,
either from natural infections, or vaccines, each of these exposures
elicit the formation of an immune memory, resulting in the
accumulation of memory cells that record this exposure history.
Before we continue our discussion, we need to introduce two
temporal events, first, a starting point, which will be the 1%
trimester of gestation in humans where T and B cells begin to
form (Figure 1B). Indeed, different compartments of the adaptive
immune system develop at different stages of gestation for example,
thymic development of T cells beings in the 1°' trimester, however,
T cells egress from the thymus at the beginning of the 2™ trimester,
between the 12 and 14™ week of gestation (45-47).

Second, a sampling timepoint, it is the timepoint of sampling a
subset of the immune repertoire (Figure 1B). Based on these two
events, the immune repertoire is defined here as the collection of
immune memories, i.e. exposure histories, accumulated between the
beginning and the sampling timepoint. For the sake of
simplification, we are going to narrow down the definition of
immune memories into the unique collection of V(D)] generated
sequences. It is also worth mentioning that beside memory cells, the
repertoire also contains V(D)J sequences from naive cells, which
have not encountered their cognate antigen yet. Additionally, it
contains V(D)] recombination sequences derived from effector cells
responding to ongoing infections. For the sake of clarity, we focus
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on the memory compartment of the immune repertoire unless
stated otherwise.

A powerful method to study the collection of V(D)]
recombination events encoding immunological exposure histories,
is bulk immune receptor sequencing (Supplementary Figure S1A)
(48). Nonetheless, it has three main limitations, first, it only provides
the sequence of the generated receptor and not the antigen to which
it binds. Second, the temporal order or exposure histories is almost
not-captured, unless it is a very recent or an ongoing exposure that
results in the expansion of some V(D)] recombination sequences
(Supplementary Figure S1B). Third, it does not reveal the functional
state of cells expressing these receptors, for example, Th1, Th2, Th17,
among others. Furthermore, bulk immune-sequencing methods do
not provide the full sequence of the immune receptor only part of it,
for example, in case of TCRs, only the alpha (TRA) or the beta (TRB)
chain, that is, the pairing information is lost in bulk repertoire
profiling experiments.

Whereas the pairing information of TCRs and the
transcriptional landscape of cells expressing these receptors can
be identified via single-cell T cell receptor sequencing either using
short-reads (49) or long-read sequencing (50), this method has
several limitations. First, it is expensive, labor intensive and
provides a shallow profiling of the repertoire where only few
1000s of clonotypes are profiled using single cell approaches,
while in bulk immune sequencing 100,000s of clonotypes can be
identified (48). Second, it requires access to intact cells, e.g. fresh or
frozen PBMCs, which possess logistical problem when profiling the
repertoire of thousands of samples. Lastly, if the aim is to generate
pairing information without information about the cell type, then
probabilistic mapping of profiled immune receptor chains using
frameworks, such as pairSEQ (51) and TIRTL-Seq (52) might be a
more cost-efficient approach. Hence, by integrating these different
frameworks and methods, a better understanding of different
aspects of immune receptor chains can be obtained, for example,
using bulk TCR-Seq to profile the repertoire of thousands of
individuals. Then, utilize probabilistic pairing to obtain the
pairing information for candidate clonotypes across hundreds of
individuals and lastly, using single cell technologies to understand
the transcriptional landscape of these individuals in tens of samples.

Genetics has a fixed, robust effect on
the formed immune repertoire that
can be studied statistically

Before we delve deeper into how immune repertoires can be
investigated to identify the etiological causes of IMIDs, we need to
distinguish between two factors shaping the repertoire. First, fixed
effects that is genetically predetermined regardless of antigenic
exposures and second dynamic effects that result from a
combination of genetic predeterminants and antigenic exposures.
The fixed effects have three pillars, (i) germline encoded variation in
the V and ] genes, which forms the basis for V(D)] generated
sequences (53-55). Second allelic variation in the HLA region (56—
58) and third variation in other genomic loci (59). HLA proteins,
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T and B cell repertoires record the antigenic exposure history of an individual. (A) The formation of a long-lived adaptive immune memories after the
exposure to two distinct viruses, each of which will result in the formation of a distinct immune memory that records this antigenic exposure (B) The
immune repertoire contains long-lived adaptive immune memories the records previous antigenic exposure histories. Created in BioRender. Elabd,

H. (2025) https://BioRender.com/tn5de67.

regardless of any antigenic exposure, have a major impact on
shaping the formed T cell immune repertoire, because of thymic
selection. Different HLA proteins present different peptides to T
cells, as shown previously by others and us (60-63), and during
positive selection only V(D)J recombination sequences able to
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recognize self-peptides loaded into HLA proteins receive survival
signal. Other genetic variants can have an influence by biasing the
process of V(D)] recombination prior (59) to selection either by
HLA proteins or by having coding variants that upon presentation
by HLA alleles will shape T-cell selection. Alternatively, other
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somatic genes might encode for signaling molecules that change the
perception and the execution of T and B cells to an antigenic
stimulus (64, 65).

From a molecular perspective, HLA exerts two effects on the
immune repertoire, first, it biases the frequency of utilizing different
V genes in the repertoire (57). Additionally, HLA proteins have a
strong effect on the frequency of amino acids in the
complementarity-determining region 3 (CDR3) (56). Thus, prior
to any antigenic exposure, an interaction between the germline
encoded genes, HLA allelic variants and other coding and non-
coding variants will shape the formation of naive T cells primarily
by shaping which V(D)] recombination is selected. Thus, forming
the base to which immune memories will be formed upon antigenic
exposures. Additionally, the generated TCRs can also shape the
transcriptional landscape of the generated naive cells, for example,
different TCR signaling intensities can module the differentiation of
double-positive T cells into either CD8" or CD4" single-positive T
cells (66). These sequence features can also play a role in the fate-
determination process of regulatory T cells (67). Hence, an
interaction among these different factors will have a strong effect
on shaping the generated repertoire not only in terms of sequence
diversity but also the functional landscape.

Using large-scale statistical analyses of the immune repertoire,
the fixed effect of HLA proteins on the immune repertoire can be
elucidated. For example, using >5,500 paired T cell immune
repertoire and HLA genotypes, we were able to discover hundreds
of thousands of clonotypes associated with tenths of HLA alleles
(68). These clonotypes could accurately impute the carriership of
these HLA alleles, indicating the strong impact of HLA protein on
shaping the generated immune memories. Using different statistical
frameworks, the impact of variable HLA sites on the frequency of
amino acids in the CDR3 of the TCR beta chains (69) was studied
by others (56) and us (69). Highlighting several paths by which
HLA proteins exhibit an effect on the formed immune repertoires.

Identifying disease-associated shared
antigenic exposures markers
statistically

An immune memory is formed upon an antigenic exposure that
results in the induction of a memory cell, the formation of these
memory cells depends on the antigen, and fixed effects encoded
genetically. With current technologies we can sequence V(D)]
events, but unfortunately, we cannot, in most cases, decode their
antigenic specificities, resulting in a trajectory of unknown antigenic
exposures (Supplementary Figure S1B). Whereas newer technologies
developed to decode the antigenic specificities of immune receptors,
such as T-Scan (70), TScan-II (71) and receptor-antigen pairing by
targeted retroviruses (RAPTR) (72), they require a rationally selected
library of candidate TCRs, as well as peptide-HLA complexes. This
represents a major hurdle for identifying the etiological causes of
IMIDs for multiple reasons, first, in most cases neither the antigen nor
the exact TCR(s) deriving these diseases are known. Second, the
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immune repertoire is extremely diverse and personal, that is, most
clonotypes are observed in one individual and are not shared among
individuals. Thus, it is not feasible neither financially nor logistically to
conduct these assays on all T cells of a cohort of individuals living with
an IMID of interest. Third, there might be a long variable time span
between the causative antigenic exposure and disease development,
which is evidenced in some IMIDs, e.g. MS (5) which complicates the
identification process of antigens implicated in the disease. Hence, a
narrowing down of candidate T cells involved in the disease is needed.

Assuming that there is a specific antigen or a group of antigens
that are causing IMIDs, then within individuals having the same
IMID and sharing the fixed-repertoire effects, e.g. similar HLA
background, we expect the same immune memories toward this
exposure to be formed. Thus, we expect some V(D)] recombination
sequences to be shared among individuals with a specific IMIDs
relative to individuals without this IMID. These shared V(D)J]
sequences represent the exposure signature of the disease, e.g. the
memory T cells associated with an antigenic exposure implicated in
the disease. From large repertoire profiling studies, it was observed
that most of the immune repertoire is private, that is, most
responses are detected in only one individual, and that shared or
public immune responses represent a small fraction of the
repertoire (73). These shared responses might represent an
exposure marker toward prevalent antigenic exposures, for
example, common viral and bacterial infections (74, 75). Our
ability to identify shared clonotypes involved in responding to a
known antigenic exposure by comparing the repertoires of exposed
to non-exposed (73, 76, 77), provides evidence to suggest that an
IMIDs-associated antigenic exposures can be identified by
comparing the repertoire of cases and controls (78).

Nonetheless, relative to disentangling the antigenic exposure of
a specific infectious agent, different factors might complicate our
analysis to identify exact antigenic exposures implicated in IMIDs.
First, the likelihood of an antigenic exposure causing the disease,
which is similar to the concept of “penetrance” in genetics. Here,
some antigenic exposures might not exhibit a perfect or near perfect
penetrance, where having the exposure does not guarantee a certain
likelihood to develop the disease, just an increase in the odds of
developing the disease. A perfect example of this is EBV, which have
been implicated in multiple IMIDs as discussed above, however, it is
a very prevalent infection where more than 95% of the population
is affected.

Second, some antigenic exposures might generate an immune
response in almost everyone in the population. For example, in
phage-immunoprecipitation (PhIP-Seq) (79, 80) studies of the
immune repertoire, multiple antigens have been shown to be
recognized by almost every individual in the population with a
prevalence of the immune response that is >95% (81-83). While
these antigens might be recognized by the immune system of every
individual it does not imply that they will be recognized by the same
immune receptor, or that the epitope is going to be mapped to the
same part of the protein in every individual. Hence, differences
between individuals with and without IMIDs, might not be per se in
the antigenic exposure but in the antigenic region, or the exact
epitope, targeted by the immune system.
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As a result, to disentangle disease signatures in IMIDs, a
methods that can identify immune signatures at the epitope level
is needed. This method should be able to identify antigenic
exposures at the infectious agent level, at the antigenic protein of
this pathogen and lastly at the epitope level, that is sub-antigenic
protein level. A powerful method to identify these disease signatures
is to analyze the T cell repertoire of thousands of individuals
statistically to identify disease signatures. Here, the immune
repertoire of T cells, which recognize short class of peptides,
between 9 and 17 amino acids, presented by either HLA-I or
HLA-II proteins is analyzed which provides us with an epitope-
based mapping of immune responses. By statistically investigating
the T cell repertoire of >5,000 individuals with IBD and >5,000
healthy controls we were able to identify >1,800 distinct V(D)]J
recombination sequences implicated in IBD (84).

Decoding the etiologies of IMIDs is
similar to solving a temporal-credit
assignment problem but with
incomplete action history

While the approach described above provides an unparallel
opportunity to identify disease etiologies, it has limitations primarily
rated to the lack of temporal exposure order as most repertoire profiling
methods provides a collection of immune memories without a temporal
order. Given that most studies depend on a cross-sectional study design
(Figure 2A) that includes individuals after their diagnosis with the
disease, proving causation between the associated V(D)J sequences and
the disease is not possible. Because these shared V(D)] sequences can be
a consequence of the diseases instead of being the cause of the disease,
i.e. a reverse-causation (Figure 2B).

A solution to this problem would require the temporal order of
antigenic exposures before and after diagnosis to be resolved
cohort-wide, to identify which antigenic exposure caused the
disease and which exposure was caused by the disease. In essence,
this will reduce the problem of identifying etiological factors into a
temporal credit assignment problem, where exposures can be
thought of as actions and developing the disease can be thought
of as a reward. Hence, the solution to this problem becomes finding
the action or series of actions, here antigenic exposures, responsible
for disease development, that is, the reward in this formulation.

Nonetheless, resolving the temporal order of immune exposures
from a profiled immune repertoire is still not possible with current
technologies. A more practical approach will be to sample the
repertoire of the study cohort across multiple timepoints ideally
before disease development. This can be done using large-scale
prospective or retrospective cohorts where multiple samples are
collected from individuals before they develop the disease, as well
as after they develop the disease (5, 85-87). By decoding the immune
exposure across multiple points, a better understanding of exposures
responsible for developing the disease can be obtained (Figure 2B).
Given the high cost of immune profiling and the low incidence rate
of most of these diseases, focusing the profiling on high-risk
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individuals, e.g. patients’ relatives (88), might provide a cost-
efficient way to identify antigenic exposures causing the disease.

Which or when, the importance of
exposure timing

In our discussion so far, we have focused on identifying antigens
deriving the disease regardless of the timing of exposure, which might be
critical for shaping the outcome of the disease. For example, infectious
mononucleosis, which is predominantly caused by an EBV infection has
been implicated in many chronic inflammatory diseases, e.g MS (5,
6, 89), RA (7, 90), and IBD (2, 91), among others. While EBV infection
is commonly associated with infectious mononucleosis in adults, this
rarely happens in children (92), suggesting that the same antigenic
exposure can lead to different outcomes based on the timing of
exposure. Beside biological age, previous exposures can also have a
strong influence on shaping the outcomes of an exposure (93), hence,
the exposure trajectory plays important roles in shaping the
generated outcome.

Do we need to identify etiological
factors causing IMIDs to treat these
diseases?

Given the high prevalence of IMIDs and their associated burden
on health care systems, there is an urgent need for developing better
therapeutic strategies to treat these diseases. However, do we need to
know the etiology to effectively treat these diseases? By identifying V
(D)J sequences associated with ankylosing spondylitis (78, 94) and
depleting T cell populations containing these V(D)] sequences a novel
therapy that induce remission in ankylosing spondylitis patients was
developed (95). Whether this approach would generalize to other
diseases with different etiologies and driver-antigens remains an
open question.

Can we escape the inevitable?

In some cases, antigens causing and deriving the disease are
common environmental exposures, e.g. gluten in CeD, making
avoiding the exposure a practical approach to control the disease
(Supplementary Figure S2A). Nonetheless, these avoidance
approaches still have challenges, for example, a gluten-free diet is
expensive with a limited set of options available in the market (96)
and the risk of gluten contamination and mislabeling exists (97). As
a result, different pharmacological interventions are being
developed to treat CeD, for example, peptidases to digest gluten
before it can elicit an immune response and intestinal barrier
regulators (98).

In other cases, disease-causing antigenic exposures might be a
common viral infection, such as EBV which infects >90-95% of the
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population, making avoidance a much harder problem. While
identifying antigenic exposures causing the disease might provide a
promising strategy for therapeutic interventions, developing a
preventive strategy might not be trivial, e.g. avoiding the exposure
might not be possible. Alternatively, other sophisticated approaches,
such as vaccines for either inducing tolerance (Supplementary Figure
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S2B) (99), or protection against a particular disease-causing exposure
(100) might be needed to prevent disease development. Lastly, by
identifying disease-causing antigens and their cognate immune cells,
technologies like monoclonal antibodies targeting the V(D)]
recombination of these cells (Supplementary Figure S2C) (95) and
chimeric autoantibody receptor (CAAR) T cells can be used to
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specifically deplete immune cells driving the disease (Supplementary
Figure S2D) (101).

Concluding remarks

There is an urgent, unmet need for a better understanding of
IMIDs. The strong association between most of these diseases and
several HLA alleles suggest an import role for adaptive immunity,
specifically, T cell mediated responses in the disease. Nonetheless,
the antigens causing these diseases remain to be identified, here we
discussed several approaches and frameworks to identify antigenic
exposure markers implicated in the disease, as well as potential
experimental designs to establish causation. Despite the recent
progress, many open questions remain to be addressed, for
example, can we develop a more sample-efficient algorithm to
identify disease-associated clonotypes? Current approaches
depend on utilizing large cohorts of cases and controls; however,
it is a very costly approach and not suitable for rarer diseases where
assembling large cohorts is not feasible. Additionally, can we infer
the antigenic specificity of a given V(D)] recombination event
computationally? Can we infer the antigenic exposure trajectories,
i.e. the order of antigenic exposures from the profiled T cell
repertoire? Further, what is the contribution of private immune
responses to IMIDs, relative to shared or public responses? In
conclusion, the identification of disease-causing antigens or even
their corresponding V(D)] sequences, will have a transformative
utility on the development of therapeutic and preventive strategies
for IMIDs.
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