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immune-mediated inflammatory
diseases statistically
Hesham ElAbd1,2* and Aya K. H. Mahdy1

1Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein,
Kiel, Germany, 2Institute for Digestive Research, Lithuanian University of Health Sciences,
Kaunas, Lithuania
Immune-mediated inflammatory diseases (IMIDs) are incurable pathologies with

an increased prevalence. Whereas different risk factors for IMIDs have been

identified, such as microbial dysbiosis, diet, Epstein-Barr virus infection, the exact

cause of most of these diseases remains unknown and it is thought to be a

combination of environmental exposures and genetic predispositions. Despite

their different clinical presentation, most IMIDs are genetically associated with

variants at multiple immune-related genes, predominately with different human

leukocyte antigen (HLA) alleles suggesting a strong pathological involvement of

adaptive immune responses. However, antigens causing these diseases remain,

in most cases, unknown. Using statistical analyses of the immune repertoire,

several markers of antigenic exposures have been associated with IMIDs. Here,

we discuss different approaches to identify disease-associated antigenic

exposure markers and formulate a framework to test their causal role in IMIDs.

We then discuss the potential contribution of risk HLA alleles to diseases

development and lastly, we discuss how either antigens causing IMIDs or their

signatures on the immune repertoire can be exploited therapeutically.
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There is an urgent need for an etiological
understanding of immune-mediated inflammatory
diseases

IMIDs are a group of pathologies where chronic inflammation is evidenced, leading to

tissue destruction, remodeling and eventually a loss-of-function. These diseases can be

organ-specific, such as multiple sclerosis (MS), which affects the central nervous system, or

systematic, impacting multiple organs simultaneously such as systemic sclerosis (SC).

Several risk factors have been implicated in the pathogenesis of IMIDs such as Epstein-Barr

virus (EBV) (1), for example, epidemiological and molecular studies established a strong

link between infectious mononucleosis and inflammatory bowel disease (IBD) (2, 3).

Furthermore, dysregulated immune responses toward EBV have been observed in other
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1610662/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1610662/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1610662/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1610662&domain=pdf&date_stamp=2025-06-17
mailto:h.elabd@ikmb.uni-kiel.de
https://doi.org/10.3389/fimmu.2025.1610662
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1610662
https://www.frontiersin.org/journals/immunology


ElAbd and Mahdy 10.3389/fimmu.2025.1610662
IMIDs as well, e.g. MS (4–6), rheumatoid arthritis (RA) (7),

systemic lupus erythematosus (8), and Sjögren’s syndrome (9).

Whereas a mechanistic understanding of the pathological role of

EBV in these diseases remains to be identified, several mechanisms

have been proposed, such as molecular mimicry between EBV and

human proteins, for example, EBNA1 and GlialCAM (10) and

EBNA1 and C1q (11). Beside EBV, other disease-specific alterations

have also been identified, such as increased antibody responses

toward citrullinated peptides in RA (12) and an expansion of a

specific group of unconventional T cells in Crohn’s disease (CD)

(13, 14), which is a subset of IBD, among other disease-specific

immune dysregulations.

As an exact cause for most of these diseases remains to be

identified, treatments are mainly directed at inhibiting the

inflammation, to clinically control disease symptoms and induce

remission. This, arguably, partially non-specific inhibition of the

immune system is achieved using different ways, such as anti-TNFs,

anti-integrins and anti-cytokines antibodies, among others.

Nonetheless, these therapies fail to introduce remission in all

affected individuals, i.e. primary non-responders (15–17). Even

primary responders might develop resistance to these therapies,

i.e. secondary loss of response (15, 17), reaching what can be called a

“therapeutic celling” at least in some diseases such as IBD (18). This

problem is also aggravated by the lack of any approved prognostic

marker for therapy response, despite ongoing efforts (19).

The prevalence of some of these IMIDs have increased

significantly over the second half of the twentieth century, for

example, the prevalence of IBD in the Olmsted County in the US,

increased from 0.12% in 1960 to 0.63% in 2019 (20). Based on

current estimates, it is projected that the prevalence of IBD will be

~1% in Canada in the upcoming decade (20–22). Besides IBD, other

IMIDs are also prevalent in the population, for example, in the US

alone there is between 400,000 (23) to 700,000 (24) individuals with

MS and between 2 to 2.8 million individuals are living with the

disease globally (25, 26). A higher prevalence is seen with RA with

17.6 million people affected globally (27) and with atopic dermatitis

(AD) where more than 200 million individuals are living with the

disease worldwide (28).

The combination of high prevalence, lack of accurate prognostic

markers and the high cost of these medications is having a

deleterious impact on the quality-of-life of affected individuals

and healthcare systems. Thus, there is an urgent need for a better

understanding of these diseases which could lead to more

personalized therapies that induce a long-lasting remission in

most patients as well as the development of preventive strategies,

e.g. vaccines, in high-risk individuals.
Disease-associated genetic variants
do not predetermine the development
of IMIDs

With the rise of genome-wide association studies (GWAS)

during the last couple of decades, the genetic signatures of IMIDs

have been heavily investigated (29–34). For example, using the
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genetic data of 47,429 individuals with MS and 68,374 controls,

more than 233 variants were associated with MS, 32 of them were

located within the extend HLA loci (35). Similarly for RA, a recent

meta-analysis spanning 35,871 individuals with RA and 240,149

controls from different ancestries identified 124 loci associated with

RA (32). Similar meta-analyses were conducted in other IMIDs

such as psoriasis, where a recent study has identified 109 loci that

are implicated in the disease using a large cohort of 36,466 cases and

458,078 controls (36). Also, in AD 71 genetic variants were

implicated in the disease by analyzing the genetic background of

65,107 individuals with AD and 1,021,287 controls (33).

A common denominator among these IMIDs was the lack of

clear causative genetic mutations, as opposed to Mendelian genetic

diseases, instead there was multiple associations to different

common genetic variants. For most IMIDs, these associations

resolved to genetic variants in different innate and adaptive

immunity-related genes and loci (32, 33, 35, 36) such as the

human leukocyte antigen (HLA) loci. Most of the associated HLA

alleles have a moderate association odds ratio (OR) and were

frequent in the study population in general. For example, in MS,

the strongest genetic association is with the HLA-DRB1*15:01 with

an OR of ~3 (37–39). Whereas the frequency of this alleles varies

across populations and ancestries, it is frequent in European

populations (frequency >10%) (39).

This implies that millions of individuals are carrying disease-

associated HLA alleles and are not affected, at least

symptomatically, with these diseases. This is clearly seen in celiac

disease (CeD) which is strongly associated with HLA-[DQ2.2,

DQ2.5 and DQ8] alleles (40, 41), nonetheless, not all carriers of

these alleles are developing CeD. Thus, other environmental factors

besides genetics are contributing to IMIDs such as gluten in the

context of CeD.
The adaptive immune system records
previous antigenic exposures as V(D)J
generated sequences

HLA proteins are a central hub for communication among

different parts of the immune system. They are classified into two

classes, class I which presents peptides to CD8+ T cells and class II

which presents peptides to CD4+ T cells. Thus, they convey critical

information about potential peptide antigens between all nucleated

cells and CD8+ T cells, between B cells and CD4+ T cells and

between dendritic cells and T cells. A hallmark of adaptive

immunity is the formation of an immunological memory after an

antigenic exposure. This immune memory is composite of three

main elements, first, a unique immune receptor that recognize

different antigenic peptides from pathogens, i.e. T and B cell

receptors, TCRs and BCRs, respectively. These receptors are

generated via V(D)J recombination events and are engraved in

the DNA encoding the TCR and the BCR of this antigen-specific T

and B cells.

Nonetheless, before we continue our discussion, we need to

highlight important distinctions between TCRs and BCRs, namely,
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somatic hypermutation and class-switching which are exclusive to

BCRs. Somatic hypermutation is a process used by B cells to

enhance the affinity of their receptors, i.e. BCRs, toward a specific

antigen, through random mutations introduced in their immune

receptor chains followed by selection of mutations that increase the

affinity of the BCR toward its cognate antigen, via an interaction

with follicular helper T (Tfh) cells (42). This results in a family of

related BCRs that bind the antigen with varying affinities, that is, a

phylogenetic tree of “evolutionary-related” sequences that respond

to the initial antigenic exposure (43). A second mechanism that is

also specific to BCRs is class-switching where the isotype of the

immunoglobin heavy chain is changing from m, which is formed

during the early phase of antigenic exposure, to other isotypes, for

example, a, g or e which are used in IgA, IgG and IgE antibodies,

respectively. Nonetheless, beside these differences between BCRs

and TCRs, an antigenic exposure is associated with the formation of

long-lived plasma cells and memory B cells that respond to this

infection and record this exposure in the form of a DNA-encoded V

(D)J recombination sequences (44).

The second part of an immune memory is a transcriptional

program that shapes the behaviors of antigen-specific T and B cells

and govern the phenotype of these cells, for example, T helper 1, 2,

or 17. Also, naive B cells can follow different developmental

trajectories after an antigenic encounter, for example, they can

develop into short-lived plasma cells, into germinal center (GC) B

cells or into GC independent memory B cells (44). The last part is

an epigenetic memory, which enforces and constrains the formed

transcriptional program of these antigen-specific T and B memory

cells (Figure 1A). These formed immune memories are mostly long-

lived and provide protection against repeated infections by the

same pathogen.

Hence, as we age, we accumulate more antigenic exposures,

either from natural infections, or vaccines, each of these exposures

elicit the formation of an immune memory, resulting in the

accumulation of memory cells that record this exposure history.

Before we continue our discussion, we need to introduce two

temporal events, first, a starting point, which will be the 1st

trimester of gestation in humans where T and B cells begin to

form (Figure 1B). Indeed, different compartments of the adaptive

immune system develop at different stages of gestation for example,

thymic development of T cells beings in the 1st trimester, however,

T cells egress from the thymus at the beginning of the 2nd trimester,

between the 12th and 14th week of gestation (45–47).

Second, a sampling timepoint, it is the timepoint of sampling a

subset of the immune repertoire (Figure 1B). Based on these two

events, the immune repertoire is defined here as the collection of

immune memories, i.e. exposure histories, accumulated between the

beginning and the sampling timepoint. For the sake of

simplification, we are going to narrow down the definition of

immune memories into the unique collection of V(D)J generated

sequences. It is also worth mentioning that beside memory cells, the

repertoire also contains V(D)J sequences from naive cells, which

have not encountered their cognate antigen yet. Additionally, it

contains V(D)J recombination sequences derived from effector cells

responding to ongoing infections. For the sake of clarity, we focus
Frontiers in Immunology 03
on the memory compartment of the immune repertoire unless

stated otherwise.

A powerful method to study the collection of V(D)J

recombination events encoding immunological exposure histories,

is bulk immune receptor sequencing (Supplementary Figure S1A)

(48). Nonetheless, it has three main limitations, first, it only provides

the sequence of the generated receptor and not the antigen to which

it binds. Second, the temporal order or exposure histories is almost

not-captured, unless it is a very recent or an ongoing exposure that

results in the expansion of some V(D)J recombination sequences

(Supplementary Figure S1B). Third, it does not reveal the functional

state of cells expressing these receptors, for example, Th1, Th2, Th17,

among others. Furthermore, bulk immune-sequencing methods do

not provide the full sequence of the immune receptor only part of it,

for example, in case of TCRs, only the alpha (TRA) or the beta (TRB)

chain, that is, the pairing information is lost in bulk repertoire

profiling experiments.

Whereas the pairing information of TCRs and the

transcriptional landscape of cells expressing these receptors can

be identified via single-cell T cell receptor sequencing either using

short-reads (49) or long-read sequencing (50), this method has

several limitations. First, it is expensive, labor intensive and

provides a shallow profiling of the repertoire where only few

1000s of clonotypes are profiled using single cell approaches,

while in bulk immune sequencing 100,000s of clonotypes can be

identified (48). Second, it requires access to intact cells, e.g. fresh or

frozen PBMCs, which possess logistical problem when profiling the

repertoire of thousands of samples. Lastly, if the aim is to generate

pairing information without information about the cell type, then

probabilistic mapping of profiled immune receptor chains using

frameworks, such as pairSEQ (51) and TIRTL-Seq (52) might be a

more cost-efficient approach. Hence, by integrating these different

frameworks and methods, a better understanding of different

aspects of immune receptor chains can be obtained, for example,

using bulk TCR-Seq to profile the repertoire of thousands of

individuals. Then, utilize probabilistic pairing to obtain the

pairing information for candidate clonotypes across hundreds of

individuals and lastly, using single cell technologies to understand

the transcriptional landscape of these individuals in tens of samples.

Genetics has a fixed, robust effect on
the formed immune repertoire that
can be studied statistically

Before we delve deeper into how immune repertoires can be

investigated to identify the etiological causes of IMIDs, we need to

distinguish between two factors shaping the repertoire. First, fixed

effects that is genetically predetermined regardless of antigenic

exposures and second dynamic effects that result from a

combination of genetic predeterminants and antigenic exposures.

The fixed effects have three pillars, (i) germline encoded variation in

the V and J genes, which forms the basis for V(D)J generated

sequences (53–55). Second allelic variation in the HLA region (56–

58) and third variation in other genomic loci (59). HLA proteins,
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regardless of any antigenic exposure, have a major impact on

shaping the formed T cell immune repertoire, because of thymic

selection. Different HLA proteins present different peptides to T

cells, as shown previously by others and us (60–63), and during

positive selection only V(D)J recombination sequences able to
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recognize self-peptides loaded into HLA proteins receive survival

signal. Other genetic variants can have an influence by biasing the

process of V(D)J recombination prior (59) to selection either by

HLA proteins or by having coding variants that upon presentation

by HLA alleles will shape T-cell selection. Alternatively, other
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FIGURE 1

T and B cell repertoires record the antigenic exposure history of an individual. (A) The formation of a long-lived adaptive immune memories after the
exposure to two distinct viruses, each of which will result in the formation of a distinct immune memory that records this antigenic exposure (B) The
immune repertoire contains long-lived adaptive immune memories the records previous antigenic exposure histories. Created in BioRender. Elabd,
H. (2025) https://BioRender.com/tn5de67.
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somatic genes might encode for signaling molecules that change the

perception and the execution of T and B cells to an antigenic

stimulus (64, 65).

From a molecular perspective, HLA exerts two effects on the

immune repertoire, first, it biases the frequency of utilizing different

V genes in the repertoire (57). Additionally, HLA proteins have a

strong effect on the frequency of amino acids in the

complementarity-determining region 3 (CDR3) (56). Thus, prior

to any antigenic exposure, an interaction between the germline

encoded genes, HLA allelic variants and other coding and non-

coding variants will shape the formation of naive T cells primarily

by shaping which V(D)J recombination is selected. Thus, forming

the base to which immune memories will be formed upon antigenic

exposures. Additionally, the generated TCRs can also shape the

transcriptional landscape of the generated naive cells, for example,

different TCR signaling intensities can module the differentiation of

double-positive T cells into either CD8+ or CD4+ single-positive T

cells (66). These sequence features can also play a role in the fate-

determination process of regulatory T cells (67). Hence, an

interaction among these different factors will have a strong effect

on shaping the generated repertoire not only in terms of sequence

diversity but also the functional landscape.

Using large-scale statistical analyses of the immune repertoire,

the fixed effect of HLA proteins on the immune repertoire can be

elucidated. For example, using >5,500 paired T cell immune

repertoire and HLA genotypes, we were able to discover hundreds

of thousands of clonotypes associated with tenths of HLA alleles

(68). These clonotypes could accurately impute the carriership of

these HLA alleles, indicating the strong impact of HLA protein on

shaping the generated immune memories. Using different statistical

frameworks, the impact of variable HLA sites on the frequency of

amino acids in the CDR3 of the TCR beta chains (69) was studied

by others (56) and us (69). Highlighting several paths by which

HLA proteins exhibit an effect on the formed immune repertoires.
Identifying disease-associated shared
antigenic exposures markers
statistically

An immune memory is formed upon an antigenic exposure that

results in the induction of a memory cell, the formation of these

memory cells depends on the antigen, and fixed effects encoded

genetically. With current technologies we can sequence V(D)J

events, but unfortunately, we cannot, in most cases, decode their

antigenic specificities, resulting in a trajectory of unknown antigenic

exposures (Supplementary Figure S1B). Whereas newer technologies

developed to decode the antigenic specificities of immune receptors,

such as T-Scan (70), TScan-II (71) and receptor–antigen pairing by

targeted retroviruses (RAPTR) (72), they require a rationally selected

library of candidate TCRs, as well as peptide-HLA complexes. This

represents a major hurdle for identifying the etiological causes of

IMIDs for multiple reasons, first, in most cases neither the antigen nor

the exact TCR(s) deriving these diseases are known. Second, the
Frontiers in Immunology 05
immune repertoire is extremely diverse and personal, that is, most

clonotypes are observed in one individual and are not shared among

individuals. Thus, it is not feasible neither financially nor logistically to

conduct these assays on all T cells of a cohort of individuals living with

an IMID of interest. Third, there might be a long variable time span

between the causative antigenic exposure and disease development,

which is evidenced in some IMIDs, e.g.MS (5) which complicates the

identification process of antigens implicated in the disease. Hence, a

narrowing down of candidate T cells involved in the disease is needed.

Assuming that there is a specific antigen or a group of antigens

that are causing IMIDs, then within individuals having the same

IMID and sharing the fixed-repertoire effects, e.g. similar HLA

background, we expect the same immune memories toward this

exposure to be formed. Thus, we expect some V(D)J recombination

sequences to be shared among individuals with a specific IMIDs

relative to individuals without this IMID. These shared V(D)J

sequences represent the exposure signature of the disease, e.g. the

memory T cells associated with an antigenic exposure implicated in

the disease. From large repertoire profiling studies, it was observed

that most of the immune repertoire is private, that is, most

responses are detected in only one individual, and that shared or

public immune responses represent a small fraction of the

repertoire (73). These shared responses might represent an

exposure marker toward prevalent antigenic exposures, for

example, common viral and bacterial infections (74, 75). Our

ability to identify shared clonotypes involved in responding to a

known antigenic exposure by comparing the repertoires of exposed

to non-exposed (73, 76, 77), provides evidence to suggest that an

IMIDs-associated antigenic exposures can be identified by

comparing the repertoire of cases and controls (78).

Nonetheless, relative to disentangling the antigenic exposure of

a specific infectious agent, different factors might complicate our

analysis to identify exact antigenic exposures implicated in IMIDs.

First, the likelihood of an antigenic exposure causing the disease,

which is similar to the concept of “penetrance” in genetics. Here,

some antigenic exposures might not exhibit a perfect or near perfect

penetrance, where having the exposure does not guarantee a certain

likelihood to develop the disease, just an increase in the odds of

developing the disease. A perfect example of this is EBV, which have

been implicated in multiple IMIDs as discussed above, however, it is

a very prevalent infection where more than 95% of the population

is affected.

Second, some antigenic exposures might generate an immune

response in almost everyone in the population. For example, in

phage-immunoprecipitation (PhIP-Seq) (79, 80) studies of the

immune repertoire, multiple antigens have been shown to be

recognized by almost every individual in the population with a

prevalence of the immune response that is >95% (81–83). While

these antigens might be recognized by the immune system of every

individual it does not imply that they will be recognized by the same

immune receptor, or that the epitope is going to be mapped to the

same part of the protein in every individual. Hence, differences

between individuals with and without IMIDs, might not be per se in

the antigenic exposure but in the antigenic region, or the exact

epitope, targeted by the immune system.
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As a result, to disentangle disease signatures in IMIDs, a

methods that can identify immune signatures at the epitope level

is needed. This method should be able to identify antigenic

exposures at the infectious agent level, at the antigenic protein of

this pathogen and lastly at the epitope level, that is sub-antigenic

protein level. A powerful method to identify these disease signatures

is to analyze the T cell repertoire of thousands of individuals

statistically to identify disease signatures. Here, the immune

repertoire of T cells, which recognize short class of peptides,

between 9 and 17 amino acids, presented by either HLA-I or

HLA-II proteins is analyzed which provides us with an epitope-

based mapping of immune responses. By statistically investigating

the T cell repertoire of >5,000 individuals with IBD and >5,000

healthy controls we were able to identify >1,800 distinct V(D)J

recombination sequences implicated in IBD (84).
Decoding the etiologies of IMIDs is
similar to solving a temporal-credit
assignment problem but with
incomplete action history

While the approach described above provides an unparallel

opportunity to identify disease etiologies, it has limitations primarily

rated to the lack of temporal exposure order as most repertoire profiling

methods provides a collection of immunememories without a temporal

order. Given that most studies depend on a cross-sectional study design

(Figure 2A) that includes individuals after their diagnosis with the

disease, proving causation between the associated V(D)J sequences and

the disease is not possible. Because these shared V(D)J sequences can be

a consequence of the diseases instead of being the cause of the disease,

i.e. a reverse-causation (Figure 2B).

A solution to this problem would require the temporal order of

antigenic exposures before and after diagnosis to be resolved

cohort-wide, to identify which antigenic exposure caused the

disease and which exposure was caused by the disease. In essence,

this will reduce the problem of identifying etiological factors into a

temporal credit assignment problem, where exposures can be

thought of as actions and developing the disease can be thought

of as a reward. Hence, the solution to this problem becomes finding

the action or series of actions, here antigenic exposures, responsible

for disease development, that is, the reward in this formulation.

Nonetheless, resolving the temporal order of immune exposures

from a profiled immune repertoire is still not possible with current

technologies. A more practical approach will be to sample the

repertoire of the study cohort across multiple timepoints ideally

before disease development. This can be done using large-scale

prospective or retrospective cohorts where multiple samples are

collected from individuals before they develop the disease, as well

as after they develop the disease (5, 85–87). By decoding the immune

exposure across multiple points, a better understanding of exposures

responsible for developing the disease can be obtained (Figure 2B).

Given the high cost of immune profiling and the low incidence rate

of most of these diseases, focusing the profiling on high-risk
Frontiers in Immunology 06
individuals, e.g. patients’ relatives (88), might provide a cost-

efficient way to identify antigenic exposures causing the disease.
Which or when, the importance of
exposure timing

In our discussion so far, we have focused on identifying antigens

deriving the disease regardless of the timing of exposure, whichmight be

critical for shaping the outcome of the disease. For example, infectious

mononucleosis, which is predominantly caused by an EBV infection has

been implicated in many chronic inflammatory diseases, e.g. MS (5,

6, 89), RA (7, 90), and IBD (2, 91), among others. While EBV infection

is commonly associated with infectious mononucleosis in adults, this

rarely happens in children (92), suggesting that the same antigenic

exposure can lead to different outcomes based on the timing of

exposure. Beside biological age, previous exposures can also have a

strong influence on shaping the outcomes of an exposure (93), hence,

the exposure trajectory plays important roles in shaping the

generated outcome.
Do we need to identify etiological
factors causing IMIDs to treat these
diseases?

Given the high prevalence of IMIDs and their associated burden

on health care systems, there is an urgent need for developing better

therapeutic strategies to treat these diseases. However, do we need to

know the etiology to effectively treat these diseases? By identifying V

(D)J sequences associated with ankylosing spondylitis (78, 94) and

depleting T cell populations containing these V(D)J sequences a novel

therapy that induce remission in ankylosing spondylitis patients was

developed (95). Whether this approach would generalize to other

diseases with different etiologies and driver-antigens remains an

open question.
Can we escape the inevitable?

In some cases, antigens causing and deriving the disease are

common environmental exposures, e.g. gluten in CeD, making

avoiding the exposure a practical approach to control the disease

(Supplementary Figure S2A). Nonetheless, these avoidance

approaches still have challenges, for example, a gluten-free diet is

expensive with a limited set of options available in the market (96)

and the risk of gluten contamination and mislabeling exists (97). As

a result, different pharmacological interventions are being

developed to treat CeD, for example, peptidases to digest gluten

before it can elicit an immune response and intestinal barrier

regulators (98).

In other cases, disease-causing antigenic exposures might be a

common viral infection, such as EBV which infects >90-95% of the
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population, making avoidance a much harder problem. While

identifying antigenic exposures causing the disease might provide a

promising strategy for therapeutic interventions, developing a

preventive strategy might not be trivial, e.g. avoiding the exposure

might not be possible. Alternatively, other sophisticated approaches,

such as vaccines for either inducing tolerance (Supplementary Figure
Frontiers in Immunology 07
S2B) (99), or protection against a particular disease-causing exposure

(100) might be needed to prevent disease development. Lastly, by

identifying disease-causing antigens and their cognate immune cells,

technologies like monoclonal antibodies targeting the V(D)J

recombination of these cells (Supplementary Figure S2C) (95) and

chimeric autoantibody receptor (CAAR) T cells can be used to
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FIGURE 2

Identifying antigenic exposures deriving IMIDs. (A) Identifying diseases-associated antigenic exposures from cross-sectional studies. (B) An alternative
framework to identify disease-causing antigenic exposures through longitudinal sampling of pre-clinical individuals. Created in BioRender. Elabd, H.
(2025) https://BioRender.com/2cvfi4o.
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specifically deplete immune cells driving the disease (Supplementary

Figure S2D) (101).
Concluding remarks

There is an urgent, unmet need for a better understanding of

IMIDs. The strong association between most of these diseases and

several HLA alleles suggest an import role for adaptive immunity,

specifically, T cell mediated responses in the disease. Nonetheless,

the antigens causing these diseases remain to be identified, here we

discussed several approaches and frameworks to identify antigenic

exposure markers implicated in the disease, as well as potential

experimental designs to establish causation. Despite the recent

progress, many open questions remain to be addressed, for

example, can we develop a more sample-efficient algorithm to

identify disease-associated clonotypes? Current approaches

depend on utilizing large cohorts of cases and controls; however,

it is a very costly approach and not suitable for rarer diseases where

assembling large cohorts is not feasible. Additionally, can we infer

the antigenic specificity of a given V(D)J recombination event

computationally? Can we infer the antigenic exposure trajectories,

i.e. the order of antigenic exposures from the profiled T cell

repertoire? Further, what is the contribution of private immune

responses to IMIDs, relative to shared or public responses? In

conclusion, the identification of disease-causing antigens or even

their corresponding V(D)J sequences, will have a transformative

utility on the development of therapeutic and preventive strategies

for IMIDs.
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