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Meta-analysis of multi-center
transcriptomic profiles and
machine learning reveal
phospholipase Cb4 as a Wnt/
Ca²+ signaling mediator in
glioblastoma immunotherapy
Zhaoming Song1†, Fei Wang1†, Chen Yang1†, Yanao Guo2,
Jinfeng Li2, Run Huang2, Hongyi Ling2, Guosheng Cheng3,
Zhouqing Chen1*, Zhanchi Zhu3* and Zhong Wang1*

1Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou,
Jiangsu, China, 2Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China, 3Chinese
Academy of Sciences (CAS) Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech
and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
Introduction: Glioblastoma (GBM) is a highly aggressive brain tumor

characterized by pronounced invasiveness, rapid progression, frequent

recurrence, and poor clinical prognosis. Current treatment strategies remain

inadequate due to the lack of effective molecular targets, underscoring the

urgent need to identify novel therapeutic avenues.

Methods: In this study, we employedweighted gene co-expression network analysis

and meta-analysis, incorporating clinical immunotherapy datasets, to identify ten

candidate genes associatedwith GBM initiation, progression, prognosis, and response

to immunotherapy. Multi-omics analyses across glioma and pan-cancer datasets

revealed that these genes play pivotal roles in cancer biology.

Results: Phospholipase Cb4 (PLCB4) showed a negative correlation with tumor

grade in clinical samples, suggesting its potential role as a tumor suppressor.

Evidence indicated that PLCB4 expression is modulated by Wnt signaling, and its

overexpression may activate the calcium ion signaling pathway. Notably, PLCB4 is

strongly associated with aberrant tumor proliferation, making it a compelling

therapeutic target. Through structure-based virtual screening, five small molecules

with high predicted affinity for PLCB4 were identified as potential drug candidates.

Discussion: This study’s integrative approach—combining target identification,

pathway inference, and in silico drug screening—offers a promising framework

for rational drug development in GBM. The findings may reduce unnecessary

experimental screening and medical costs, and represent a significant step

toward improving therapeutic outcomes and prognosis for GBM patients.
KEYWORDS

g l iob la s toma , PLCB4 , mach ine lea rn ing , tumor mic roenv i ronment ,
multi-omics, immunotherapy
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1 Introduction

Glioblastoma (GBM) is the most aggressive and lethal form of

glioma, accounting for 70–75% of all diffuse gliomas, with a 5-year

survival rate of only 10% (1, 2). Current treatment strategies involve

a multimodal approach: maximal safe surgical resection, followed

by radiotherapy and chemotherapy with the alkylating agent

temozolomide, and often supplemented by tumor-treating fields,

which offer modest improvements in prognosis (3, 4). However,

GBM’s highly invasive nature and the presence of intratumoral

hypoxic regions contribute to the establishment of an

immunosuppressive microenvironment. This environment

supports the survival of GBM-initiating cells, promoting more

aggressive tumor recurrence (5, 6). GBM also severely impairs the

p53 signaling pathway, a key tumor suppressor, thereby facilitating

malignant progression (7). Concurrently, the tumor activates the

phosphoinositide 3-kinase (PI3K) and receptor tyrosine kinase–

RAS (RTK–RAS) signaling pathways, resulting in unchecked cell

proliferation and suppression of anti-tumor immune responses (8).

Therefore, identifying therapeutic targets capable of modulating

these pathways is critical for developing effective treatments and

improving patient outcomes.

The advent of next-generation sequencing and third-generation

sequencing technologies has enabled the establishment of large-

scale clinical genomic cohorts, such as The Cancer Genome Atlas

(TCGA), the Cancer Cell Line Encyclopedia (CCLE), and the

Clinical Proteomic Tumor Analysis Consortium (CPTAC). These

resources provide comprehensive multi-omics datasets that have

significantly advanced tumor biology research. However,

heterogeneity in findings across cohorts—due to differences in

sample sources, experimental designs, and data processing—
Abbreviations: GBM, glioblastoma; ProImmuML, Prognostic and

lmmunotherapy Meta-analysis, and Machine Learning; PI3K, Phosphatidyl-

inositol-3 kinases; RTK, Receptor-Tyrosine Kinase; NGS, next-generation

sequencing; TGS, third-generation sequencing; TCGA, Cancer Genome Atlas;

CCLE, Cancer Cell Line Encyclopedia; CPTAC, Clinical Proteomic Tumor

Analysis Consortium; LASSO, Least Absolute Shrinkage and Selection

Operator; GLM, Generalized Linear Model; RNAseq, RNA sequencing; Wnt,

wingless and lnt1; CCK-8, Cell Counting Kit-8; PD-1, programmed cell death

protein 1; PD-L1, programmed death ligand 1; CGGA, Chinese Glioma Genome

Atlas; GEO, Gene Expression Omnibus; GLASS, Glioma Longitudinal AnalySiS;

TPM, Transcripts Per Kilobase Million; RMA, robust multiarray averaging; RR,

risk ratio; HR, hazard ratio; CI, confidence interval; ssGSEA, Single Sample Gene

Set Enrichment Analysis; TOM, topological overlap matrix; GS, gene significance;

MM, module membership; Mlr3, Machine Learning in R3; ML, machine learning;

AUC, area under the curve; TIDE, Tumor Immune Dysfunction and Exclusion;

TME, tumor microenvironment; DepMap, Cancer Dependency Map; RNAi,

RNA interference; CNV, copy number variation; PE, paired-end; PFA,

paraformaldehyde; NC, negative control; qPCR, quantitative real-time

polymerase chain reaction; DEG, differentially expressed gene; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis;

RMSD, root-mean-square deviation; PLIF, protein-ligand interaction fingerprint;

K-M, Kaplan Meier; SNV, single nucleotide variation; PLC, phospholipase C;

NT2, NTERA2; PDAC, pancreatic ductal adenocarcinoma.
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necessitates further investigation to uncover the underlying causes

of these discrepancies (9). In this context, multicenter meta-

analyses offer a powerful tool to increase statistical robustness,

enhance sample size, reduce single-study bias, and improve the

reliability of conclusions. Moreover, through subgroup analyses,

these approaches can identify heterogeneity across clinical contexts.

For example, the ARDS Berlin Definition Study demonstrated the

superiority of a revised diagnostic criterion over the traditional

standard in predicting mortality via multicenter meta-analysis

analysis (10). Such integrative strategies can transform biological

and clinical heterogeneity into insights that refine diagnostics and

therapeutic decision-making.

Machine learning (ML) has shown substantial promise in

patient stratification and treatment response prediction,

particularly in glioma research, where it enhances diagnostic

accuracy, refines prognostic models, and supports personalized

treatment strategies (11, 12). Traditional ML-based predictor

screening has primarily relied on the Least Absolute Shrinkage

and Selection Operator (LASSO), although each feature selection

algorithm uses distinct criteria to identify relevant variables.

Employing multiple algorithms can mitigate the randomness and

potential bias inherent in single-method approaches (13). For

instance, the “GLM with Elastic Net Regularization Classification

Learner” algorithm identified integrated molecular and functional

signatures of intrinsic apoptotic pathways that best predicted

therapeutic vulnerability in glioma (14, 15). The “Classification

Abess Learner” has proven effective in selecting statistically robust

feature subsets from high-dimensional datasets through adaptive

best subset selection (16). Similarly, the “Classification Priority

LASSO Learner” employs hierarchical prioritization to identify

clinically relevant predictors, thereby improving both the

accuracy and interpretability of models applied to complex multi-

omics data (17). Finally, the “Classification Tree Learner” has been

successfully utilized to analyze human microbiome profiles for

distinguishing colorectal cancer from normal tissue (18, 19).

Numerous clinical cohorts featuring RNA sequencing (RNA-seq)

data and immunotherapy response profiles have been published to

date (20). In GBM, responses to anti-PD-1 immunotherapy have

been linked to specific molecular alterations, immune infiltration

patterns, and immune expression signatures, which collectively

reflect the tumor’s clonal evolution during treatment (21).

Consequently, extracting immunotherapy response predictors

from pan-cancer immunotherapy cohorts using ML-integrated

features holds significant translational potential.

In this study, weighted gene co-expression network analysis

(WGCNA) was first used to identify gene modules most strongly

associated with GBM development and progression. Subsequently,

a meta-analysis was conducted to identify genes with stable

prognostic relevance and predictive power for immunotherapy

response. By intersecting the outcomes of these three layers of

screening, we isolated genes that were consistently associated with

GBM progression, predictive of immunotherapy efficacy, and

prognostically informative. An ML pipeline employing four

feature selection algorithms was then implemented to identify 10

key regulators of anti-tumor immunity. These genes were
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comprehensively evaluated across multiple layers of biological

information, including GBM-specific and pan-cancer multi-omics

data, immune infiltration characteristics, and immunotherapy

outcomes. In vitro validation and high-throughput sequencing

identified PLCB4 as a promising therapeutic target. Finally,

molecular docking and CCK-8 assays were used to screen for

candidate compounds targeting PLCB4.
2 Methods

2.1 Data acquisition

Data were derived from seven independent GBM cohorts. The

cohorts were as follows. The Chinese Glioma Genome Atlas

(CGGA, http://www.cgga.org.cn/index.jsp) (CGGA325 and

CGGA693), The Cancer Genome Atlas Program (TCGA, https://

portal.gdc.cancer.gov), The Glioma Longitudinal AnalySiS (GLASS,

http://www.synapse.org/glass), Clinical Proteomic Tumor Analysis

Consortium (CPTAC, https://pdc.cancer.gov/pdc) and Gene

Expression Omnibus (GEO; GSE121720 and GSE147352). The

RNA-seq validation cohort comprised 1,817 patients from CGGA,

TCGA, and GLASS. An additional 1,151 patients with microarray

data were sourced from GEO (Gravendeel and Rembrandt),

CGGA301, and ArrayExpress (https://www.ebi.ac.uk/biostudies/

arrayexpress; Kamoun). Pan-cancer clinical and multi-omics data

were obtained from TCGA (n = 12,106) and LinkedOmicsKB (n =

1042; https://kb.linkedomics.org). Immunotherapy cohorts were

accessed via The Tumor Immunotherapy Gene Expression

Resource (TIGER, http://tiger.canceromics.org), which included

PRJNA482620 (anti-PD-1, GBM), GSE78220 (anti-PD-1,

melanoma), GSE91061 (anti-PD-1, melanoma), Braun (anti-PD-

1, renal cell carcinoma), PRJEB23709 (anti-PD-1+anti-CTLA-4,

melanoma). The RNA-seq data of IMvigor210Core (anti-PD-1,

muscle-invasive urothelial carcinoma) were downloaded from the

IMvigor210CoreBiologies package.
2.2 Data processing

Raw RNA-seq read counts were transformed to transcripts per

kilobase million (TPM), followed by log2 and z-score normalization

to align gene expression values with microarray-based

measurements and enhance inter-sample comparability.

Microarray data obtained from GEO were processed using the

robust multi-array average (RMA) method implemented in the

“Affy” package. To construct a unified meta-cohort, the “ComBat”

function from the “sva” package was applied to correct for batch

effects caused by non-biological technical variations, using a

Bayesian framework. Risk scores for each patient within the

meta-cohort were subsequently calculated using the specified

formula.

Risk Score=o
n

k=1

(Coef *x
k)
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2.3 Meta-analysis

A meta-analysis was performed using the “meta” package (22).

Gene expression values were first log2-transformed and

standardized to z-scores across patients to reduce inter-cohort

heterogeneity. Risk ratios (RRs) for treatment response and

Benjamini-adjusted hazard ratios (HRs) derived from univariate

Cox regression—with corresponding 95% confidence intervals (CIs)

—were computed using a random-effects model. Statistical

significance was set at p< 0.05. To evaluate between-study

heterogeneity, chi-square tests and I² statistics were employed,

with I² values >50% and significant p-values indicating

substantial heterogeneity.
2.4 Calculation of GBM score and
weighted correlation network analysis

Three canonical signaling pathways—p53/cell cycle, PI3K, and

RTK-RAS—have been widely implicated in GBM initiation and

progression (23). To assess their activity at the individual patient

level, single-sample gene set enrichment analysis (ssGSEA) was

performed using curated gene sets (24). Co-expression networks

were constructed within discovery cohorts using the “WGCNA”

package. An optimal soft-thresholding power was selected to

approximate scale-free topology. The resulting weighted

adjacency matrix was converted into a topological overlap matrix

(TOM), and corresponding dissimilarities (1–TOM) were

calculated. Distinct gene modules were identified using dynamic

tree cutting, and for each gene, both gene significance (GS) and

module membership (MM) values were computed.
2.5 Machine learning prediction of
response to immune checkpoint block
therapy

The “mlr3” package, along with its extensions, provided a

comprehensive and extensible ML framework for feature selection

and classification. Four feature selection algorithms—GLM with

Elastic Net Regularization (classif.cv_glmnet), Classification Abess

Learner (c las s i f . abess ) (16) , Pr ior i ty Lasso Learner

(classif.priority_lasso) (17), and Classification Tree Learner

(classif.rpart) (19)—were applied to identify key predictors,

including the risk score. To assess the predictive power of these

features for immune response, the GLM with Elastic Net model was

fitted within a nested resampling and hyperparameter tuning

workflow, and its performance was evaluated using the area

under the curve (AUC). The AUC quantifies the discriminative

ability of diagnostic models in medical research, such as in

evaluating treatment efficacy or predicting disease risk (25).Genes

selected as key features in at least two immunotherapy-treated

cohorts (PRJNA482620, GSE91061, Braun, IMvigor, PRJEB23709,

PRJEB25780) were classified as regulators of antitumor

immune response.
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2.6 Immune infiltration

To provide a comprehensive immune genomic profile, we

analyzed 73 immune-related molecules across seven functional

categories: 21 pan-cancer ligands, 19 immune receptors, 14 antigen-

presenting molecules, 7 T-cell co-inhibitors, 3 cell adhesion molecules,

3 T-cell co-stimulatory molecules, and 6 additional immunoregulatory

components. Spearman correlation analysis was performed to explore

their associations. Multiple computational methods were used to

quantify immune cell infiltration in the TME. Particularly, the

“IOBR” package (26). enabled integration of various deconvolution

algorithms—including MCP-counter, xCell, EPIC, CIBERSORT, and

quanTIseq—to estimate immune cell abundance. The Immune Cell

Abundance Identifier portal was employed to quantify 18 T-cell

subtypes and 6 other immune cell types. To investigate the

interaction between the ProImmuML signature and immune

signaling, we evaluated 15 pre-defined immune regulatory pathways

(e.g., T-cell receptor signaling, cytokine–cytokine receptor

interactions, T-cell exhaustion (21, 27, 28)) using ssGSEA to derive

pathway activity scores, which were then correlated with the

ProImmuML signature via Spearman analysis. Additional immune

profiling included T-cell dysfunction scores and gene–CTL

correlations obtained from the Tumor Immune Dysfunction and

Exclusion (TIDE) platform, T-cell subtype abundances from

ImmuneCellAI, and analysis of cancer–immunity cycle activity via

the Tracking Tumor Immunophenotype portal.
2.7 Query genetic necessity in DepMap

The Cancer Dependency Map (DepMap; https://depmap.org/

portal/), constructed using experimental techniques such as RNA

interference (RNAi) and CRISPR-Cas9, is a comprehensive pan-

cancer susceptibility database. It integrates data from cancer cell

lines, gene knockout experiments, and offers online analytical tools.

DepMap enables queries on gene expression levels, mutational

profiles, and gene essentiality across cancer cell lines. A gene was

defined as essential if its Chronos Gene Effect Score (29) was

significantly lower in mutant cell lines compared to wild-type.

Additionally, genes with a correlation between copy number

variation (CNV) and Chronos Gene Effect Score< –0.4, or

between mRNA expression and Chronos Score< –0.4, were also

considered essential.
2.8 Transcriptome sequencing

For our RNA sequencing study, glioma tissue samples were

obtained from the in-house Gusu dataset. Tissues were pulverized

in liquid nitrogen and processed following a protocol approved by

the Ethics Committee of the First Affiliated Hospital of Soochow

University. Total RNA was extracted using TRIzol reagent, and its

quality was assessed using both a NanoPhotometer and the RNA

Nano 6000 Assay System to ensure integrity. Library preparation

was performed using 1 mg of total RNA per sample, involving
Frontiers in Immunology 04
mRNA enrichment, cDNA synthesis, end repair, dA-tailing, and

adaptor ligation. Libraries were sequenced on Illumina HiSeq,

NovaSeq, or MGI2000 platforms using 2×150 bp paired-end (PE)

configurations. Gene expression levels were quantified using FPKM

values (Supplementary Table S7).
2.9 Immunohistochemistry

A subset of glioma samples used in RNA sequencing was

selected from the Gusu dataset for immunohistochemical (IHC)

analysis. Samples were fixed in 4% paraformaldehyde (PFA),

embedded in paraffin, and sectioned. Sections were stained with

hematoxylin (Cat. No. G1005; Servicebio) and processed for IHC

using an anti-PLCB4 antibody (1:1000 dilution; Cat. No.

abx131466; Abbexa, Cambridge, UK) in accordance with the

manufacturer’s protocol for the IHC detection kit (Cat. No.

PK10006; Proteintech).
2.10 Cell culture

U87 glioma cells were cultured in Dulbecco’s modified Eagle

medium (DMEM; Gibco, USA) supplemented with 10% fetal bovine

serum (FBS; Gibco, USA) and 1% penicillin-streptomycin (Servicebio,

China). Cells were maintained at 37°C in a humidified incubator with

5% CO2 and subcultured at 80–90% confluence using 0.25% trypsin-

EDTA (Servicebio, China). Cell viability and morphology were

monitored via phase-contrast microscopy. Cells from passages 5–15

were used in all experiments to ensure genetic consistency.
2.11 Lentiviral transduction for PLCB4
overexpression

The human PLCB4 coding sequence (Gene ID: 5332) was

cloned into a lentiviral overexpression vector driven by a CMV

promoter. A scrambled, non-targeting sequence served as the

negative control (NC). Lentiviral particles were generated in 293T

cells using a third-generation packaging system and transfected

with Lipofectamine 3000 (Invitrogen, USA). Viral supernatants

were collected at 48 h and 72 h post-transfection, filtered through

a 0.45 mm PVDF membrane, and concentrated using Lenti-X™

Concentrator. U87 cells were seeded into 6-well plates at 5 × 104

cells/well and transduced at 50–60% confluence with lentiviral

particles at a multiplicity of infection (MOI) of 10 in the presence

of 8 mg/mL polybrene. After 24 h, the medium was replaced with

fresh complete DMEM, and stable transductants were selected

using 2 mg/mL puromycin (Beyotime, China) for 7 days.
2.12 Quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) was performed to assess

the expression of APCDD1, RAC2, and PLCB4. Total RNA was
frontiersin.org
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isolated fromU87 cells using TRIzol® reagent (Invitrogen, USA), and

its concentration and purity were determined with a NanoDrop

spectrophotometer (Thermo Fisher Scientific, USA). First-strand

cDNA synthesis was carried out using 1 mg RNA and the

PrimeScript™ RT Reagent Kit (ACE, China). qPCR was performed

using SYBR Green Premix (Vazyme, China) on an Applied

Biosystems system. Primers for target and reference genes were

designed using Primer-BLAST and validated for specificity. The

thermal cycling conditions were: initial denaturation at 95°C for

30 s, followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. Melting

curve analysis confirmed the specificity of amplification. Relative

gene expression was calculated using the 2−DDCT method. Primer

sequences are provided in Supplementary Table S8.
2.13 EdU staining assay

Cell proliferation was evaluated using the Click-iT™ EdU

Imaging Kit (Beyotime, China). Cells were incubated with 10 mM
EdU for 2 h, fixed in 4% paraformaldehyde, permeabilized

with 0.5% Triton X-100, and stained with Alexa Fluor® 594-

conjugated EdU detection reagent. Nuclei were counterstained

with Hoechst 33342 (5 mg/mL). Fluorescence microscopy was

used for imaging, and EdU-positive cells were quantified using

ImageJ software.
2.14 Cell proliferation assay

For viability assays, cells were seeded in 96-well plates at 3000

cells/well and incubated for 24 h. Following treatment, 10 mL of

CCK-8 reagent (Beyotime, China) was added to each well and

incubated at 37°C for 4 h. Absorbance was measured at 450 nm

using a microplate reader. Cell viability was expressed relative to the

untreated control group.
2.15 Drug intervention

We employed quantitative real-time polymerase chain reaction

(qPCR) to validate the regulatory effects of modulators of the three

Wnt signaling pathways on the gene expression levels of PLCB4,

APCDD1, and RAC. Specifically, SKL-2001 and MSAB (TargetMol,

China) were used as the activator and inhibitor of the canonical Wnt/

b-catenin pathway, respectively. Lonomycin (LON; TargetMol,

China) and 2-APB (TargetMol, China) served as the activator and

inhibitor of the Wnt/Ca²+ pathway, while Wnt5a (TargetMol, China)

and blebbistatin (TargetMol, China) were used to modulate the Wnt/

PCP pathway. When cell confluency reached approximately 80%

(assessed via automated cell counter) or the cell concentration was

between 2.8 × 106 and 3.2 × 106 (measured using a cell counting

plate), the culture medium was removed, cells were washed with

phosphate-buffered saline, and fresh medium containing the

corresponding compounds was added. Drug concentrations were

selected based on manufacturer recommendations and previous
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studies, resulting in final concentrations of 20 mM for the

skl2001 group (30), 20 mM for the MSAB group (31), 100 mM for

the 2-APB group (32), 5 mM for the lonomycin group, 20 mM for the

blebbistatin group (33), and 20 mM for the Wnt5a group, among

others. Following 24 hours of incubation, total RNA was extracted

and analyzed using qPCR.
2.16 RNA sequencing and downstream
analysis

Total RNAwas isolated using TRIzol reagent (Invitrogen) according

to the manufacturer’s protocol. RNA purity and concentration were

assessed with a NanoDrop 2000 spectrophotometer (Thermo Scientific),

and RNA integrity was evaluated using the Agilent 2100 Bioanalyzer

(Agilent Technologies). RNA-seq libraries were constructed using the

VAHTS Universal V6 RNA-seq Library Prep Kit and sequenced on an

Illumina NovaSeq 6000 platform, generating 150 bp paired-end reads.

Raw FASTQ reads were aligned to the reference genome using

STAR (34).

Differential gene expression analysis was performed using

DESeq2. Significantly differentially expressed genes (DEGs) were

defined by a false discovery rate (FDR)-adjusted p-value< 0.05, Q-

value< 0.05, and fold change > 2 or< 0.5. Functional enrichment

analyses, including Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene Set Enrichment Analysis (GSEA) of

HALLMARK datasets, were conducted using the “clusterProfiler”

R package (35).
2.17 Molecular docking–based virtual
screening targeting PLCB4

To identify potential small molecules targeting PLCB4, virtual

screening based on molecular docking was performed. The active

sites H328 and H375 were predicted using the Site Finder module in

MOE, and Site 1 was selected for screening. The Protein

Preparation Wizard in Schrödinger was used to optimize the

Alphafold-predicted structure of PLCB4, including bond order

correction and protonation (pH 7.0) using the PROPKA method.

Structural energy minimization was carried out using the OPLS4

force field, with a convergence criterion of 0.3 Å for the RMSD of

heavy atoms. The T001 compound library (TopScience Co., Ltd.)

was processed using LigPrep (Schrödinger, LLC, New York, NY,

2021). Candidate molecules were evaluated through molecular

docking, protein-ligand interaction fingerprint (PLIF) analysis,

clustering, and binding mode analysis. Compounds with the

highest binding affinities for PLCB4 were shortlisted as potential

therapeutic agents.
2.18 Statistical analysis

All data processing, statistical analyses, and visualizations were

performed in R version 4.3.3. Group comparisons of continuous
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variables were conducted using the Wilcoxon rank-sum test.

Survival analysis was carried out using Kaplan–Meier (K-M)

curves and log-rank tests. Spearman correlation analysis was

employed to evaluate associations between continuous variables.

Both univariate and multivariate Cox regression analyses were

performed using the “survival” R package. The single-sample

GSEA (ssGSEA) algorithm implemented in the “GSVA” package

was used to estimate pathway activity based on curated gene sets. A

p-value< 0.05 was considered statistically significant.
3 Results

3.1 Identifying ProImmuML signature as
key regulators in GBM predicting
immunotherapy response and prognosis
through meta-analysis and machine
learning

To identify genes predictive of immunotherapy response and

with consistent prognostic value in GBM, we designed a

comprehensive analysis pipeline (Figure 1A). We incorporated

data from seven GBM cohorts and evaluated pathway

activities across p53, PI3K, and RTK signaling axes, which

exhibited substantial inter-patient variability (Supplementary

F i gur e S1A) . WGCNA iden t ified 12 gene modu l e s

(Supplementary Figure S1B), with the blue, brown, and green

modules positively associated with GBM progression, while the

turquoise module showed a strong negative association

(Supplementary Figure S1C).

The initial WGCNA screening yielded 2,917 genes associated

with GBM development across all seven cohorts (Figure 1B,

Supplementary Table S2). Concurrently, a meta-analysis of

immunotherapy response identified 886 genes (Supplementary

Table S3), and a separate prognostic meta-analysis identified 4,073

genes with stable prognostic value (Supplementary Table S4).

Intersection of these three gene sets resulted in 101 candidate genes

that met all criteria—associated with GBM development, predictive

of immunotherapy response, and possessing stable prognostic value

(Figure 1B, Supplementary Table S5). Functional enrichment

using Metascape revealed that these genes were largely involved

in anti-tumor immunity (Supplementary Figure S2). We then

employed multiple ML algorithms across six immunotherapy

cohorts to identify the most predictive features, ultimately defining

a ten-gene signature termed ProImmuML (Prognostic and

Immunotherapy Meta-analysis and Machine Learning). This

signature includes APCDD1, SOD3, ITPRIPL1, PLCB4, RAC2,

THRA, RIN3, HMGB2, IMPA2, and CD274 (Figure 1C).

Prognostic meta-analysis identified PLCB4, APCDD1, IMPA2,

RIN3, SOD3, and THRA as protective factors, whereas CD274,

HMGB2, ITPRIPL1, and RAC2 were classified as risk factors

(Figure 1D). Notably, higher expression of PLCB4, APCDD1,

and THRA correlated with reduced responsiveness to

immunotherapy (Figure 1E).
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3.2 Exploring the characteristics of the
ProImmuML signature at a multi-omics
level in GBM

We next investigated the potential of ProImmuML signature

genes as therapeutic targets for GBM from a multi-omics

perspective. At the genomic level, CNV deletion of PLCB4 was

observed in more than half of the patients across the TCGA,

CPTAC, and GLASS cohorts, potentially explaining its

downregulation in GBM. Notably, the high mutation frequency of

PLCB4 further supported its potential role as a tumor suppressor

gene (36) (Figure 2A). To assess the transcriptomic relevance of the

ProImmuML signature, we computed individual patient risk scores

based on gene expression and evaluated their association with

clinical characteristics. Univariate Cox regression analysis aligned

with results from our prognostic meta-analysis (Figure 2B).

Stratifying patients by increasing risk scores revealed significant

correlations with clinical variables such as MGMT methylation, 1p/

19q codeletion, IDH mutation status, age, and sex (Figure 2C). In

our in-house cohort (Supplementary Table S6), the expression

levels of CD274, HMGB2, RAC2, RIN3, and SOD3 were elevated

in WHO grade IV gliomas compared to grades II/III. In contrast,

APCDD1, THRA, and PLCB4 were downregulated, while

ITPRIPL1 exhibited an increasing trend (Figure 2D). We

validated these findings through a meta-analysis that integrated

RNA-seq (n = 1,817) and microarray (n = 1,151) datasets from LGG

and GBM samples, confirming that low PLCB4 expression was

associated with poor overall survival (HR = 1.32, 95% CI: 1.11–1.57,

p< 0.001) (Supplementary Figure S3). This association was

corroborated in our internal cohort, where PLCB4 expression

significantly decreased with increasing tumor grade (WHO IV vs.

II/III: p< 0.01). However, the limited sample size of this cohort

introduces certain limitations to the findings.

In the CPTAC dataset, PLCB4 transcript levels were elevated in

tumors harboring ATRX, TP53, and IDH mutations, and

downregulated in PTEN-mutant tumors (Supplementary Figure

S4A). Since proteins execute gene functions, we extended our

transcriptomic analysis to the proteomic level. Correlation

analyses demonstrated strong concordance between mRNA and

protein levels for RIN3 (R = 0.714, p< 0.05), CD274 (R = 0.763, p<

0.05), and RAC2 (R = 0.818, p< 0.05), while PLCB4 showed only a

moderate positive correlation (R = 0.348, p< 0.05; Supplementary

Figure S4B).
3.3 ProImmuML Signature was a promising
therapeutic target for pan-cancer

A waterfall plot of genomic alterations revealed that 740

samples had at least one single nucleotide variant (SNV), with

PLCB4 mutated in 45% of patients—compared to only 2% for

SOD3. All ten ProImmuML genes exhibited mutations,

predominantly missense, reinforcing their relevance in GBM

pathogenesis. These genomic alterations suggest that PLCB4 may
frontiersin.or
g

https://doi.org/10.3389/fimmu.2025.1610683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1610683
function upstream in tumor regulatory pathways (Figure 3A). We

also examined correlations between gene CNVs, mRNA expression,

and cancer cell lethality following CRISPR knockout. Notably,

IMPA2, SOD3, CD274, ITPRIPL1, and RAC2 displayed relatively

negative correlations across multiple cancers, including glioma
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(Figure 3B). Analysis of gene expression differences across 34

cancer types versus adjacent normal tissues showed significant

dysregulation in all key genes (Supplementary Figure S5).

Transcriptomic data from 36 tumor types identified PLCB4 as a

protective factor in more than 10 cancers (Figure 3C). Protein-level
FIGURE 1

10 genes of stable prognostic value, predicting response to immunotherapy and strongly associated with GBM development were screened through
ProImmuML. (A) Screening of key genes for GBM through WGCNA, immunotherapy meta-analysis and prognostic meta-analysis. (B) Venn diagram
showing the interaction of the three sets of screening results. (C) Identification of important features by 4 machine learning algorithms for feature
selection in 6 cancer immunotherapy cohorts. (D) Prognostic meta-analysis of the ProImmuML signature. (E) Immune response meta-analysis of the
ProImmuML signature.
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analyses in nine cancer types revealed decreased expression of

PLCB4, SOD3, and THRA, alongside increased expression of

HMGB2 and RAC2, relative to normal tissues (Figure 3D).

Consistent with findings by Waugh, PLCB4 was significantly

downregulated in various cancers, including glioma (36).

To further explore its role in immunotherapy, we used the “Gene

Set Prioritization” module to assess relevance to immune

checkpoint blockade (ICB) resistance. The results indicated

that PLCB4 may contribute to immunotherapy response

modulation (Figure 3E).
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3.4 Analysis of immune cell infiltration
status reveals ProImmuML Signature was a
key regulator in the anti-tumor immunity

The tumor microenvironment (TME), comprising both internal

and external cellular contexts, plays a crucial role in tumor

initiation, progression, and metastasis. Immune correlation

analyses revealed that CD274, IMPA2, ITPRIPL1, RAC2, RIN3,

and SOD3 were positively associated with immune regulation,

whereas PLCB4, THRA, HMGB2, and APCDD1 were negatively
FIGURE 2

Evaluation of ProImmuML signature in GBM with Multi-omics landscape. (A) CNVs and SNVs of ProImmuML signature in genomic data of TCGA
cohort and CPTAC cohort (left panel), and GLASS cohort (right panel). (B) Prognostic value of the ProImmuML signature by univariate cox regression
analysis. (C) Relationship between clinical characteristics and the increasing order of risk score. (D) The expression of ProImmuML signature in the
Gusu in-house dataset. Significant difference, *P<0.05, **P<0.01. NS, Not Significant.
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correlated (Figure 4A). Using 15 predefined immune pathway gene

sets, we computed ssGSEA scores across individual patients

(Figure 4B). CD274, RAC2, and RIN3 showed the strongest

positive associations with immune pathway activation, while

PLCB4 and THRA were negatively associated. Other genes—

including APCDD1, HMGB2, IMPA2, ITPRIPL1, and SOD3—

showed no significant correlations, consistent with earlier

ProImmuML signature–immune association findings (Figure 4A).

To further investigate the relationship between the ProImmuML

signature and immune infiltration, we applied multiple

deconvolution algorithms. The signature correlated most strongly

with infiltration of macrophages, natural killer (NK) cells, and
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stromal cells, with RIN3 and RAC2 exhibiting particularly robust

associations. In contrast, correlations with B cells and CD8+ T cells

were either weak or negative (Figure 4C).
3.5 ProImmuML Signature Score exhibits
excellent predictive ability for
immunotherapy response

Based on prior analyses, the ProImmuML signature

demonstrated potential as a regulator of immunotherapy response

(Figure 5A). Using this signature, we calculated risk scores across
FIGURE 3

Evaluation of ProImmuML signature at the multi-omics level in pan-cancer. (A) Count of deleterious mutations (Missense_Mutaton,
Nonsense_Mutation, Frame_Shift_Ins, Splice_Site, Frame_Shift_Del, In_Frame_Del, Multi_Hit) of the ProImmuML signature in 29 cancer types.
(B) Correlation between mRNA expression (left panel), CNVs (middle panel) and mutation status (right panel) of the ProImmuML signature with the
CRISPR effect in each cancer cell line in DepMap database. (C) The heatmap showed the hazard ratio of the ProImmuML signature including 36
cancer types from TCGA. (D) Bubble plot showing the result of differential analysis of the protein expression of the ProImmuML signature including 9
different cancer types from CPTAC database and GTEx database. (E) The heatmap from the “Gene set prioritization” module of the TIDE portal
identified the role of the ProImmuML signature in resistance to ICB. Genes (row) were ranked by their weighted average value across four
immunosuppressive indices (columns), including T cell dysfunction score, association with ICB survival outcome, log-fold change (logFC) in CRISPR
screens, and T cell exclusion score. Significant difference, *P<0.05, **P<0.01, ***P<0.001.
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five immunotherapy cohorts and stratified patients into high-risk

and low-risk groups. Except for the RCC cohort, the low-risk group

consistently exhibited a higher proportion of responders, with

particularly marked differences observed in the GBM and

melanoma cohorts (Figure 5B). To assess predictive performance,

we compared the ProImmuML-derived risk score with established

predictors from the TIDE algorithm (CAF, CD274, CD8, IFNG,

TAM2, TIDE, MSI, MDSC). Feature importance was evaluated

using four ML algorithms, and predictive performance was

quantified via AUC values. Notably, the GBM cohort exhibited

the highest AUC values across models, especially under the Best

Subset Selection for Classification (Abess) algorithm (AUC = 0.89).

Among all variables, the risk score emerged as the most predictive

feature, further supporting its utility in forecasting immunotherapy

response (Figure 5C, Supplementary Figure S6).

To enhance predictive accuracy, we developed a composite

model incorporating the five most informative features: risk score,

CAF, IFNG, CD274, and CD8. ML analysis across the five

immunotherapy cohorts demonstrated that this integrated model

outperformed individual predictors. Moreover, predictive accuracy
Frontiers in Immunology 10
improved as more features were included (Supplementary

Figure S7).
3.6 Overexpression of PLCB4 activated
Wnt/Ca2+ signaling pathway

Metascape-based pathway enrichment analysis of the

ProImmuML signature revealed that ten key genes were

significantly enriched in the Wnt signaling pathway (Figure 6A).

Among them, APCDD1, RAC2, and PLCB4 were distributed across

three distinct Wnt sub-pathways (Supplementary Figure S8). It is

important to note that KEGG pathway diagrams aggregate

information from diverse biological contexts, which may not

directly reflect glioma-specific mechanisms. Although a direct role

for PLCB4 in theWnt pathway within glioma has not previously been

reported, our analysis suggests a functional connection involving

these three genes. To investigate this, we conducted targeted drug

intervention experiments using pathway-specific agonists and

inhibitors. Among the tested genes, only PLCB4 showed
FIGURE 4

Evaluation of ProImmuML signature in immune infiltration. (A) Correlation analyses between the ProImmuML signature and the expression of 74 key
immune modulators in 7 GBM cohorts. (B) The bubble plot showed the correlation between the ProImmuML signature and 15 gene sets of immune
signaling pathways collected from previously published literature. (C) Bubble plot showing the correlation between the ProImmuML signature and
the infiltration level of different immune cells with five robust deconvolution algorithms.
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statistically significant regulation—its expression was suppressed by

the Wnt pathway inhibitor 2-ABP and induced by the activator LON

(Figure 6B). Consequently, PLCB4 was selected as a central target for

further investigation. Immunohistochemical analysis of patient

tumor samples revealed a significant inverse correlation between

PLCB4 expression and glioma malignancy (Figure 6C), aligning well

with our previous bioinformatic predictions (Figure 3D). To explore

the molecular mechanisms underlying this association, we established

a U87 glioma cell line with lentiviral-mediated PLCB4 overexpression

and performed high-throughput RNA sequencing. Comparative

transcriptomic analysis of the overexpression (OE), negative control

(NC), and empty vector groups identified 235 upregulated and 65

downregulated genes (Figure 6D). KEGG pathway enrichment

analysis showed that the upregulated genes were significantly

clustered in the calcium ion signaling pathway (Figure 6E,

Supplementary Table S9), consistent with the results of our drug

perturbation experiments (Figure 6B). Gene Set Enrichment Analysis

(GSEA) further indicated that PLCB4 overexpression suppressed

pathways associated with cell proliferation (Figure 6F), a finding

corroborated by EdU assays (Figure 6G, Supplementary Figure S9).

Based on prior literature, these antiproliferative effects are likely

mediated through modulation of the P53, PI3K, and RTK-RAS

signaling pathways.
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3.7 Screening of five drugs inhibiting GBM
proliferation via molecular docking

We next constructed a structural model of the PLCB4 protein

and conducted molecular docking to screen 5,284 candidate

compounds for binding affinity (Supplementary Figure S10). The

top 84 molecules with the highest predicted affinities were shortlisted

(Supplementary Table S10). Of these, the 50 highest-ranking

compounds were subjected to cytotoxicity screening in GBM cells

using the Cell Counting Kit-8 (CCK-8) assay. From this, the top five

compounds with the strongest anti-GBM activity were selected for

further validation (Figure 7A), and their efficacy in suppressing GBM

cell proliferation was confirmed via EdU assays (Figures 7B, C).
4 Discussion

A total of 101 genes associated with GBM onset and progression—

each exhibiting stable prognostic value and predictive relevance for

immunotherapy response—were initially identified across seven GBM

cohorts using WGCNA, immunotherapy response meta-analysis, and

prognostic meta-analysis. These were further refined to 10 key genes

with high predictive performance using four ML algorithms across six
FIGURE 5

Evaluation of ProImmuML signature in predicting pan-cancer immunotherapy response. (A) Univariate cox regression analysis result of
immunotherapy response in pan-cancer. (B) Stacked bar chart showing the proportion of patients from five cohorts with response to PD-
1immunotherapy in high-risk score group and low-risk score group. (C) In the machine learning classification task, four feature selection algorithms
(“Classification Bayesian Additive Regression Trees Learner”, “Classification Priority Lasso Learner”, “Classification Tree Learner”, “GLM with Elastic Net
Regularization Classification Learner”) were used for the five immunotherapy response cohorts. The model was fit using the GLM with Elastic Net
Regularization Classification Learner algorithm.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1610683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1610683
immunotherapy cohorts. This final gene set, termed the ProImmuML

signature, includes: APCDD1, SOD3, ITPRIPL1, PLCB4, RAC2,

THRA, RIN3, HMGB2, IMPA2, and CD274. Multidimensional

analyses highlighted PLCB4 as a novel therapeutic target. This

finding was supported by internal cohort data showing decreased

PLCB4 expression with increasing tumor grade. Functional studies

further revealed that PLCB4 overexpression activated the Wnt/Ca²+

signaling pathway and inhibited GBM cell proliferation. A protein
Frontiers in Immunology 12
structure model of PLCB4 was also constructed, and virtual screening

identified five potential therapeutic compounds targeting this protein.

Literature review supports that several genes within the

ProImmuML signature are established or emerging focal points in

GBM research. CD274 is upregulated in most GBMs and is a principal

target in immune checkpoint blockade therapies involving PD-1/PD-

L1 interactions, offering renewed therapeutic promise for GBM

patients (37). SOD3 knockdown has been shown to suppress M2-
FIGURE 6

In vitro experiments showing that PLCB4 in the ProImmuML signature may be a downstream regulator of the Wnt pathway and inhibit GBM
proliferation. (A) Metascape analysis of the ProImmuML signature. (B) qPCR analysis was performed to analyze the effects of three different Wnt
pathway agonists/inhibitors on the expression of APCDD1 (left panel), RAC2 (middle panel), and PLCB4 (right panel). SKL: SKL-2001, Wnt/b-catenin
signaling pathway agonist; MSAB: MSAB, Wnt/b-catenin signaling pathway inhibitor; 2-APB: 2-APB, Wnt/Ca2+ signaling pathway inhibitor; LON:
Lonomycin, Wnt/Ca2+ signaling pathway agonist; BLE: Blebbistatin, Planar cell polarity pathway inhibitor; WNT: Wnt5a, Planar cell polarity pathway
agonist. (C) Representative IHC staining images of PLCB4 from four glioma patients with higher expression of PLCB4 (left panel, n = 2) and lower
expression of PLCB4 (right panel, n = 2). (D) The intersection of genes from two parallel comparisons identified 235 upregulated genes (left panel)
and 65 downregulated genes (right panel). (E) KEGG enrichment analysis of the upregulated genes. (F) GSEA revealing proliferation-related pathways
were significantly inhibited after overexpressing PLCB4. (G) EdU assay showing PLCB4 inhibiting the proliferation of glioma cells in U87. Significant
difference, *P<0.05, **P<0.01, ***P<0.001.
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like macrophage polarization and inhibit GBM growth (38). Similarly,

HMGB2 knockdown impairs GBM cell viability and invasiveness in

vitro, reduces tumor volume in vivo, and enhances sensitivity to

temozolomide, positioning it as a viable target for combinatorial

therapy (39). These findings affirm the biological relevance and

robustness of the gene selection process, providing novel targets for

GBM treatment and broader pan-cancer applications.
Frontiers in Immunology 13
Multi-omics analyses revealed that PLCB4 is frequently amplified

and mutated at the genomic level across several GBM patient cohorts,

yet its expression is consistently downregulated, indicating its

potential role as a tumor suppressor. At the transcriptomic level,

PLCB4 expression was significantly associated with key clinical

variables, and a moderate positive correlation was observed between

its mRNA and protein levels. Moreover, PLCB4 expression negatively
FIGURE 7

Identification of five PLCB4-Targeting drugs through molecular docking-based virtual screening and in vitro experiments. (A) Docking effect diagram
of five drugs and the Alphafold predicted structure of PLCB4_HUMAN protein, including 2D and 3D schematic diagrams, revealing the binding mode
of the compounds with the target. (B) EdU staining of the top 5 drugs with the highest GBM growth inhibition. (C) Fluorescence image of EdU
proliferation experiment, blue fluorescence represents DAPI and red fluorescence represents proliferating U87 cells.
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correlated with immune regulatory processes and immune cell

infiltration. Meta-analyses further demonstrated its high predictive

accuracy for both immunotherapy response and overall prognosis,

reinforcing its status as a stable protective factor in GBM—consistent

with the integrated multi-omics findings.

The phospholipase C-beta (PLC-b) family is abundantly expressed

in the nervous system, where it responds to neurotransmitter and

hormone signaling. It plays a pivotal role in regulating tumor growth,

angiogenesis, migration, invasion, and drug resistance by modulating

cellular processes such as proliferation, differentiation, and apoptosis.

Furthermore, PLC-b has been implicated in the pathogenesis of various

neurological disorders, including Alzheimer’s disease, epilepsy, bipolar

disorder, and autism spectrum disorder (40). Previous studies have

shown that PLCB4-positive Purkinje neurons in mice exhibit marked

transcriptional plasticity during sensorimotor learning, offering

mechanistic insight into the differential susceptibility of these

neurons to neurological disease (41). Frequent mutations in PLCB4

have been identified in GBM, leading to pro-oncogenic signaling and

trafficking defects that may confer a survival advantage during tumor

progression (36). In uveal melanoma, PLCB4 mediates complex

downstream signaling cascades triggered by upstream driver

mutations, contributing to tumors with diverse genetic and signaling

characteristics (42). Integrated multi-omics analyses in pancreatic

ductal adenocarcinoma revealed a significant correlation between

PLCB4 mRNA expression and gene copy number variation, with

tumors exhibiting both intra- and inter-tumoral heterogeneity in

CNV patterns (43). In colorectal cancer, low PLCB4 expression has

been associated with poorer patient survival, suggesting its potential as

a novel therapeutic target (44). Collectively, these studies underscore

the multifaceted role of PLCB4 across cancer types and highlight its

promise as a target for cancer immunotherapy.

Aberrant Wnt signaling has been implicated in immune evasion by

facilitating crosstalk between tumor cells and the TME, thereby

promoting immune dysregulation and resistance to immunotherapies

(45). PLCB4 is believed to modulate calcium signaling through the IP3

pathway, which in turn influences Wnt signaling activity. This

mechanism may enhance the maintenance of cancer stem cell

phenotypes and contribute to the development of an

immunosuppressive microenvironment (46, 47). Elevated PLCB4

expression has also been linked to increased PD-L1 expression and

the activation of immunosuppressive cell populations via the Wnt

pathway, ultimately reducing the efficacy of immunotherapy (45).

Targeting PLCB4 as a modulator of Wnt signaling has thus emerged

as a promising strategy to reverse immunosuppression in GBM and

improve therapeutic outcomes. Based on these insights, we propose a

therapeutic strategy that targets PLCB4-mediated calcium signaling

through Wnt/Ca²+ modulators. This approach holds potential to

enhance the effectiveness of immunotherapy, particularly when

integrated with conventional treatment regimens, thereby advancing

personalized cancer care.

This study offers several strengths that enhance its significance and

translational relevance in cancer research. Through a multi-tiered

screening strategy and comprehensive multi-dimensional analyses, we

identified genes with clear biological significance. We leveraged

extensive multi-omics data from both public databases and our
Frontiers in Immunology 14
proprietary Gusu cohort, alongside multi-center validation studies, to

ensure analytical robustness. Furthermore, we conducted preliminary

in vitro experiments that supported the potential of PLCB4 as a

therapeutic target in GBM, providing empirical, theoretical, and

experimental substantiation of our conclusions. However, certain

limitations remain. Although bioinformatic analyses suggested strong

therapeutic potential, only a subset of identified targets underwent

experimental validation, limiting definitive functional characterization.

Additionally, most analyses were based on bulk transcriptomic data,

with only partial validation using single-cell transcriptomics, precluding

more granular resolution at the cellular level. The relatively small

sample size of our in-house cohort may also constrain the

generalizability of our findings to broader patient populations.
5 Conclusions

In this study, we developed a novel screening framework termed

ProImmuML, which identified ten key genes with high predictive power

for immunotherapy response and prognosis in GBM. Among these, in

vitro experiments revealed PLCB4 as a novel therapeutic target, with

expression inversely correlated with tumor grade. Functional assays

indicated that PLCB4 inhibits GBM cell proliferation via activation of

the Wnt/Ca²+ signaling pathway. Molecular docking analyses further

identified five candidate compounds with high affinity for PLCB4. These

findings underscore the therapeutic promise of PLCB4 and demonstrate

the value of integrative methodologies in accelerating GBM treatment

development. Future validation in preclinical and clinical settings

is warranted.
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SUPPLEMENTARY FIGURE 1

Clustering analysis of p53, PI3K, and RTK signaling pathways.(A) Clinical
characteristics of seven GBM cohorts validated by three signaling

pathways.(B) Gene dendrogram showing the WGCNA identified 12 gene
modules.(C) Correlation between each gene module and the occurrence

and development of GBM in three signaling pathways.

SUPPLEMENTARY FIGURE 2

Metascape of 101 Genes of intersection of three layers screening.

SUPPLEMENTARY FIGURE 3

Prognost ic meta-analysis integrat ing LGG/GBM RNA-seq and

microarray datasets.

SUPPLEMENTARY FIGURE 4

Transcriptomics, proteomics and post-translational modification data from
the CPTAC database.(A) Differential expression analysis based on the CPTAC

cohort showing the mRNA, protein and phosphorylation expression of the
ProImmuML signature in seven cancer driver alterations compared to

unaltered patients.(B) Correlation analysis between mRNA and protein
expression of ProImmuML signature based on CPTAC cohort.

SUPPLEMENTARY FIGURE 5

Differential expression of the ProImmuML signature between 34 cancer

tissues and adjacent normal tissues.

SUPPLEMENTARY FIGURE 6

Nested resampling used for hyperparameter tuning and calculating the

average AUC value.

SUPPLEMENTARY FIGURE 7

The AUC of 31 combinations across five cohorts showed in heatmap.
Combinations highlighted in red represent the inclusion of risk score.

SUPPLEMENTARY FIGURE 8

Composition and mechanism of Wnt signaling pathway.

SUPPLEMENTARY FIGURE 9

The quantitative graph for the EdU staining.

SUPPLEMENTARY FIGURE 10

Flowchart of drug screening.
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