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Programmed cell death 
signatures-driven 
microglial transformation 
in Alzheimer’s disease: 
single-cell transcriptomics 
and functional validation 
Mi-Mi Li †, Ying-Xia Yang †, Ya-Li Huang †, Shu-Juan Wu, 
Wan-Li Huang, Li-Chao Ye* and Ying-Ying Xu* 

Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 
Fujian, China 
Background: This study aims to develop and validate a programmed cell death 
signature (PCDS) for predicting and classifying Alzheimer’s disease (AD) using an 
integrated machine learning framework. We further explore the role of S100A4 in 
AD pathogenesis, particularly in microglia. 

Methods: A total of one single-cell RNA sequencing (scRNA-seq) and four bulk 
RNA-seq datasets from multiple GEO datasets were analyzed. Weighted Gene 
Co-expression Network Analysis (WGCNA) was utilized to identify PCD-related 
genes. An integrated machine learning framework, combining 12 algorithms was 
used to construct a PCDS model. The performance of PCDS was validated using 
multiple independent cohorts. In vitro experiments using BV2 microglia were 
conducted to validate the role of S100A4 in AD, including siRNA transfection, 
Western blot, qRT-PCR, cell viability and cytotoxicity assay, flow cytometry, 
and immunofluorescence. 

Results: ScRNA-seq analysis revealed higher PCD levels in microglia from AD 
patients. Seventy-seven PCD-related genes were identified, with 70 genes used 
to construct the PCDS model. The optimal model, combining Stepglm and 
Random Forest, achieved an average AUC of 0.832 across five cohorts. High 
PCDS correlated with upregulated pathways related to inflammation and 
immune response, while low PCDS associated with protective pathways. In 
vitro, S100A4 knockdown in AbetaO-treated BV2 microglia improved cell 
viability, reduced LDH release, and partially alleviated apoptosis. S100A4 
inhibition attenuated pro-inflammatory responses, as evidenced by the 
reduced expression of pro-inflammatory mediators (IL-6, iNOS, TNF-a) and 
promoted an anti-inflammatory state, indicated by increased expression of 
markers such as IL-10, ARG1, and YM1/2. Furthermore, S100A4 knockdown 
mitigated oxidative stress, restoring mitochondrial function and decreasing 
ROS levels. 
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Conclusion: This study developed a robust PCDS model for AD prediction and 
identified S100A4 as a potential therapeutic target. The findings highlight the 
importance of PCD pathways in AD pathogenesis and provide new insights for 
early diagnosis and intervention. 
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Introduction 

Alzheimer’s disease (AD), a progressive neurodegenerative 
condition with irreversible progression, manifests through 
deteriorating cognitive function, episodic memory deficits, and 
compromised daily functioning. Representing the predominant 
etiology of dementia worldwide, AD constitutes approximately 
60-80% of diagnosed cases (1, 2) Central to its pathogenesis are 
two pathological signatures: extracellular aggregates of amyloid-

beta (Ab) peptides and intraneuronal tau-based neurofibrillary 
pathology arising from aberrant tau phosphorylation. These 
pathological hallmarks instigate synaptic impairment, progressive 
neuronal degeneration, and cerebral volume reduction, culminating 
in profound behavioral alterations and mortality (3). While existing 
pharmacotherapies provide symptomatic relief, therapeutic 
standardization remains hindered by considerable clinical and 
neuropathological heterogeneity in AD, including divergent Ab/ 
tau deposition profiles and non-canonical phenotypic presentations 
(4). Furthermore, despite population-based studies indicating 
potential benefits of anti-inflammatory agents in mitigating AD 
risk, interventional trials have not demonstrated clinical efficacy, 
underscoring a persistent translational gap (5). Consequently, 
advancing the comprehension of AD’s molecular drivers  is
critical. Prioritizing the identification of novel biomarkers for 
preclinical detection, establishing robust prognostic stratification 
systems, and devising integrative frameworks to direct 
individualized therapeutic regimens are essential steps toward 
optimizing clinical management and patient outcomes. 

Programmed cell death (PCD), a phylogenetically conserved 
process orchestrated by molecular pathways, enables controlled 
cellular elimination essential for developmental morphogenesis, 
immune regulation, and stress adaptation in both unicellular and 
multicellular life forms (6). To date, over 15 mechanistically distinct 
PCD modalities have been characterized (7). The most extensively 
studied  types  include  apoptosis,  a  caspase-dependent,  
immunologically silent mechanism facilitating orderly removal of 
superfluous or compromised cells (8); necroptosis, a lytic, 
inflammation-inducing pathway regulated by RIPK1/RIPK3 
signaling cascades and MLKL polymerization, culminating in 
cytoplasmic leakage and damage-associated molecular pattern 
(DAMP) dissemination (9); an inflammasome-mediated lytic 
02 
process where canonical/non-canonical inflammasome pathways 
activate inflammatory caspases (e.g., caspase-1/4/5/11), cleaving 
gasdermins to form cytolytic pores and stimulate IL-1b/IL-18 
secretion (10); ferroptosis, an iron-catalyzed, non-apoptotic demise 
marked by lipid peroxidation due to impaired redox homeostasis 
(GPX4 dysfunction) (11); autophagy-dependent cell death, arising 
from autophagic flux exceeding survival thresholds, resulting in 
catastrophic lysosomal degradation (12); PANoptosis, a recently 
defined convergent cell death modality integrating pyroptotic, 
apoptotic, and necroptotic machinery via multiprotein 
PANoptosome assemblies (13). Emerging paradigms such as 
cuproptosis (copper-induced proteotoxic stress) (14), paraptosis 
(ER/mitochondrial vacuolization) (15), and oxeiptosis (ROS­

triggered, caspase-unrelated death) (16) further expand the PCD 
landscape. In the context of AD, concurrent dysregulation of these 
pathways accelerates neuropathology. Amyloid-beta pathology and 
tau hyperphosphorylation induce bioenergetic failure and oxidative 
injury, activating caspase cascades to execute apoptosis (14). 
Concurrently, RIPK1/MLKL-mediated necroptosis and NLRP3 
inflammasome-driven pyroptosis intensify neuroinflammation 
through cytokine storm generation, perpetuating CNS damage (17, 
18). Iron dyshomeostasis and GPX4 suppression potentiate 
ferroptosis, exacerbating lipid peroxidation in AD-affected neurons 
(19). While autophagy initially mitigates proteotoxicity, its collapse in 
AD promotes pathogenic protein aggregation and autophagosome­

mediated degeneration (20). Notably, inter-pathway crosstalk 
(PANoptosis) and post-transcriptional regulatory mechanisms 
(RNA methylation) create feedforward loops that amplify neuronal 
loss and inflammatory cascades (21–23). Deciphering these 
interactions offers transformative insights into AD pathogenesis, 
highlighting PCD modulation as a promising axis for developing 
mechanism-based therapeutics, prognostic biomarkers, and 
personalized neuroprotective regimens. 

The identification and validation of biomarker candidates for 
AD are frequently compromised by methodological inconsistencies 
such as cohort selection biases, intrinsic and inter-individual disease 
variability, assay-dependent discrepancies, and reporting biases, 
collectively undermining the reliability and translational 
applicability of findings. Consequently, systematically mapping 
molecular correlates of AD through multi-omic profiling is 
pivotal for predicting disease trajectories and informing targeted 
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therapeutic interventions. Over the past decades, compelling 
evidence underscores the involvement of PCD pathways in the 
initiation and advancement of neurodegenerative disorders. 
However, current investigations lack integrative frameworks to 
dissect the multifaceted contributions of PCD dysregulation to 
AD pathobiology. Identifying reliable biomarkers is challenging 
due to disease heterogeneity and methodological inconsistencies. 
Integrated machine learning frameworks, which combine multiple 
algorithms, have shown great promise in analyzing complex 
biological data to uncover robust molecular signatures and 
improve prediction accuracy in various diseases (24–26). Such 
approaches are particularly suited for dissecting the multifaceted 
contributions of PCD dysregulation to AD pathobiology. To 
address this gap, we hypothesized that an integrative analysis 
combining transcriptomics with advanced machine learning could 
yield a robust Programmed Cell Death Signature (PCDS) capable of 
accurately predicting and classifying AD status. In this study, we 
leveraged single-cell and bulk RNA-seq data with an integrated 
machine learning approach to develop and validate such a PCDS. 
We further aimed to explore the biological role of a key gene within 
this signature, focusing on its function in microglia, a cell type 
critically involved in AD neuroinflammation. Our findings quantify 
interpatient variability in PCDS profiles and correlate these 
molecular signatures with distinct biological pathways and 
immune landscapes, offering a platform for patient stratification 
and mechanism-driven therapeutic development. 
Methods 

Data acquisition 

For bulk RNA-seq analysis, the GSE132903 dataset (97 control 
and 98 AD brain tissues), GSE5281 dataset (74 control and 87 AD 
brain tissues), GSE36980 dataset (47 control and 32 AD brain 
tissues), GSE33000 dataset (157 control and 310 AD brain tissues), 
GSE106241 dataset (60 AD brain tissues), GSE48350 dataset (173 
control and 80 AD brain tissues), and GSE122063 dataset (44 
control and 56 AD brain tissues) were all obtained from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/). The GSE132903, 
GSE5281, GSE33000, GSE36980, and GSE48350 cohorts were 
utilized to construct a Programmed Cell Death Signature (PCDS), 
while the GSE122063 and GSE106241 datasets were selected as 
external validation. For scRNA-seq analysis, the GSE157827 dataset 
(9 control and 12 human AD brain tissues) were also downloaded 
from the GEO database (27). Through comprehensive literature 
search (28), a total of 1554 genes with 17 PCD patterns were 
obtained after removing duplicates (Supplementary Table S1). 
These include genes related to apoptosis (580), pyroptosis (52), 
ferroptosis (88), autophagy (367), necroptosis (101), cuproptosis 
(19), parthanatos (9), Entotic cell death (38), NETosis (32), 
lysosome-dependent cell death (220), alkaliptosis (7), oxeiptosis 
(genes), immunogenic cell death (34), anoikis (338), paraptosis 
(66), methuosis (8), and disulfdptosis (9). 
Frontiers in Immunology 03 
scRNA-seq analysis 

Three files including barcodes, features, and matrix for each 
sample in GSE157827 dataset were downloaded to generate a Seurat 
object (29). Cells with low quality (<200 genes/cell, >10% 
mitochondrial genes, or >5% ribosomal genes) were excluded, as 
were genes expressed in fewer than three cells. Potential doublets 
were identified and removed using the DoubletFinder package. The 
gene expression matrix was normalized and scaled using the 
NormalizeData and ScaleData functions, respectively. Principal 
component analysis (PCA) was conducted on the top 2,000 most 
variable genes, identified via the FindVariableFeatures function 
with default parameters. Single cells were clustered in PCA space 
using the FindClusters function and visualized in two dimensions 
via the UMAP algorithm. In addition, Marker genes for different 
clusters were identified using the FindAllMarkers function with the 
default parameters: min.logfc = 0.25 and min.pct = 0.20. Clusters 
were manually annotated based on canonical cell markers. 
Bulk dataset preprocessing and analysis 

RNA sequencing data processing commenced with logarithmic 
transformation of the raw count matrix, followed by inter-sample 
normalization using the normalizeBetweenArrays algorithm from the 
limma R package (30). To address technical confounding factors 
across heterogeneous sample batches, cross-platform harmonization 
was implemented via the Combat function in the sva library (31). 
Data integration quality was subsequently verified through principal 
component analysis (PCA), which visualized inter-group variance 
attributable to residual batch effects. Subsequently, differentially 
expressed genes were determined using the limma package. 
Weighted gene co-expression network 
analysis 

WGCNA is an algorithm designed to identify genetic 
interactions in a weighted manner (32). It constructs a gene co­
expression network module that closely correlates with clinical 
traits through systematic biological methods. The analysis was 
conducted using the WGCNA R package. In summary, the top 
25% of highly variable genes (7932 genes) were selected as input 
genes. The input samples were filtered using the goodSamplesGenes 
function and were clustered to detect outliers. When the scale-free 
fit R² approaches 0.9, a soft-thresholding power of 10 and utilized to 
build a scale-free network, which was subsequently converted into a 
topological overlap matrix (TOM). Subsequently, the dynamic 
hybrid cleavage method was employed to identify multiple gene 
modules based on TOM-derived dissimilarity (minModuleSize 
=200), and the mergeCloseModules function was applied to merge 
similar modules. Finally, gene significance (GS) for AD, module 
members (MM) within the modules associated with AD, and the 
pearson correlations between GS and MM were determined. 
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Construction of PCDS based on an 
integrated machine learning−based 
framework 

To develop robust PCDS, we evaluated 12 machine learning (ML) 
approaches. These methods were systematically integrated into a 
computational framework leveraging intersecting transcriptional 
profiles associated with PCD across five independent AD cohorts 
(GSE132903, GSE33000, GSE36980, GSE48350, GSE5281). A total of 
134 model permutations, including spanning penalized regressions 
(Lasso, Ridge, ElasticNet), ensemble learners (Random Forest, 
Gradient Boosting Machines, XGBoost), and probabilistic classifiers 
(Naive Bayes), were incorporated. A dual-algorithm approach, 
including separating feature selection from prediction rule derivation, 
was implemented to mitigate overfitting. Nested cross-validation 
ensured rigorous model training, with each permutation  generating
classification models. Predictive performance was quantified via receiver 
operating characteristic (ROC) curve analysis across cohorts, followed 
by hierarchical clustering heatmaps for comparative visualization of 
area-under-curve (AUC) metrics. The model demonstrating superior 
mean AUC values was designated optimal, with its feature subset 
prioritized for downstream mechanistic investigation. 
Calculation of PCDS score 

The PCDS score model was established using the following 
formula: 

9 
PCDS score = obi � Ei 

i=1 

Where i denotes individual PCD modules identified via ML 
frameworks, bi indicates module-specific regression coefficients, 
and Ei represents normalized expression levels. Patients were 
stratified into high/low PCD-AS subgroups using cohort 
median thresholds. 
Prognostic nomogram development 

A multivariable nomogram integrating PCDS and clinical 
variables (age, sex) was constructed using the rms R package. 
Predictive scores for individual covariates were summated to 
estimate total AD risk. Model accuracy was validated via 
calibration plots comparing predicted versus observed outcomes, 
supplemented by decision curve analysis (DCA) to quantify 
clinical utility. 
Pathway enrichment profiling 

Gene Set Variation Analysis (GSVA) is an unsupervised 
method for evaluating the enrichment of predefined gene sets in 
transcriptomic data, allowing for the inference of biological 
functions within samples (33). In this study, GSVA was 
Frontiers in Immunology 04
implemented to evaluate predefined molecular pathway activities 
(hallmark gene sets from MSigDB database). Pathways with 
absolute GSVA t-scores ≥2 were considered differentially 
regulated. Additionally, differentially enriched pathways between 
groups were analyzed using the GSEA package (34). For this 
analysis, the c2.cp.kegg.v7.1.symbols.gmt gene set was used as a 
reference, and false discovery rate (FDR) <0.05 was established. 
Immune infiltration analysis 

Immune cell infiltration patterns were deconvolved using the 
IOBR R package (35), integrating five computational methods: Cell-
type Identification by Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT), Microenvironment Cell Populations-
counter (MCPCounter), xCell, EPIC, and QUANTISEQ. Each 
approach provided distinct insights into gene expression profiles 
and immune cell abundance, collectively offering a comprehensive 
understanding of the AD immune landscape. Additionally, immune 
checkpoint molecules, including spanning antigen presentation, 
costimulatory/coinhibitory receptors, and cytokine signaling axes, 
were analyzed to delineate lymphocyte activation levels across 
PCDS subgroups. 
Cell–cell communication 

The CellChat package was utilized to integrate gene expression 
data and analyze differences in cell–cell communication between 
groups (36). Briefly, we generated a normalized expression matrix 
across distinct cell types to create a CellChat object. The default 
CellChatDB was selected as the ligand-receptor database. We 
identified overexpressed ligands or receptors in cell groups using 
the identifyOverExpressedGenes function with default parameters 
and inferred overexpressed ligand-receptor interactions using the 
identifyOverExpressedInteraction function. Gene expression data 
were projected using the projectData function. Communication 
probability and potential communication networks were 
calculated using the computeCommunProb function. Cell-cell 
communication networks were aggregated using the aggregateNet 
function. Finally, the netAnalysis_computeCentrality function was 
applied to determine the signaling effects and crucial contribution 
signals of cell types between distinct groups. 
Trajectory analysis 

The Monocle2 R package was employed to conduct pseudotime 
analysis, enabling the computation and ordering of gene expression 
changes in cells collected from different groups using an 
unsupervised approach (37). To extract the cell clusters of 
interest, the subset command from the Seurat package was 
utilized. Subsequently, a Monocle object was created using the 
newCellDataSet function from the Monocle2 package with 
lowerDetectionLimit set to 0.5. Genes exhibiting low expression 
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levels were filtered using the detectGenes function, with a minimum 
expression threshold of 0.1. The differentialGeneTest function 
identified differentially expressed genes along the trajectory with a 
q-value threshold of 0.01. Dimensionality reduction was performed 
using the DDRTree method, after which the orderCells function 
ordered the cells based on their expression profiles. Finally, the 
plot_cell_trajectory and plot_pseudotime_heatmap functions were 
used for visualization following cell ordering. 
Cell culture 

This study received approval from the Institutional Animal 
Care and Use Committee at The Second Affiliated Hospital of 
Fujian Medical University. The BV2 murine microglial cell line and 
HT-22 hippocampal neuronal cell line were acquired from Procell 
Life Science & Technology Co., Ltd. (Wuhan, China). Cells were 
maintained in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, 
USA) supplemented with 10% fetal bovine serum (FBS), 50 U/mL 
penicillin, and 50 μg/mL streptomycin, and incubated at 37°C in a 
humidified atmosphere containing 5% CO2. For subculturing, 
adherent cells were detached using 0.25% trypsin-EDTA solution 
(Gibco, USA) upon attaining 80% confluency. 
Amyloid beta oligomers treatments in BV2 
cells 

Briefly, a total of 1 mg of AbetaO powder obtained from 
ChinaPeptides Co., Ltd (Shanghai, China) was dissolved in 
DMSO to prepare a stock solution with a concentration of 1 mM, 
followed by the dilution with DMEM to a final concentration of 5 
mM. The soluble fraction was stored at -80°C. BV2 cells were 
subsequently incubated with 5 mM AbetaO for 24 hours at 37°C 
to establish an Alzheimer’s disease (AD) cell model. 
 

Small interfering RNA and transfection 

Scrambled siRNA (si-NC) or S100A4 siRNA (si-S100A4) 
(RiboBio, Guangzhou, China) was transfected into BV2 cells 
utilizing the Lipofectamine 2000 transfection reagent (Invitrogen, 
CA, USA). Briefly, an equal volume of each siRNA solution was 
combined with Lipofectamine 2000, gently mixed, and incubated 
for 20 minutes. BV2 cells at 70-80% confluency in 6-well plates were 
then transfected with the mixture in OptiMEM (Invitrogen, 
Carlsbad, CA, USA) for 24 hours. Following transfection, cells 
were cultured in antibiotic-free medium for an additional 72 
hours before proceeding with further experiments. 
Western-blot analysis 

BV2 microglial cells were collected and lysed in ice-cold RIPA 
lysis buffer (Beyotime, China) supplemented with protease/ 
Frontiers in Immunology 05 
phosphatase inhibitors and PMSF. The lysate was centrifuged at 
12000 rpm for 30 minutes at 4°C, after which the clarified fraction 
was isolated. Protein concentrations were determined using a 
bicinchoninic acid (BCA) assay kit (Thermo Fisher, USA). Equal 
protein aliquots from each group were resolved on 10% SDS-PAGE 
gels and electroblotted onto PVDF membranes (Millipore, USA). 
Membranes were blocked with 5% bovine serum albumin (BSA) in 
Tris-buffered saline containing 0.1% Tween-20 (TBST) for 1 hour at 
room temperature, followed by overnight incubation at 4°C with a 
primary antibody targeting S100A4 (1:10000; Proteintech, USA). 
After TBST washes, membranes were incubated with horseradish 
perox idase  (HRP)-conjugated  secondary  ant ibodies .  
Immunoreactive bands were detected using a chemiluminescent 
substrate (Bio-Rad, USA), and densitometric quantification was 
performed with ImageJ software. 
Quantitative real-time PCR 

Total RNA was extracted from BV2 microglial cells using 
TRIzol reagent (Invitrogen, CA, USA) according to the 
manufacturer’s protocol. The concentration and integrity of RNA 
were evaluated using a NanoDrop 2000 spectrophotometer 
(Thermo Fisher Scientific, USA). Complementary DNA (cDNA) 
was synthesized using the RevertAid First Strand cDNA Synthesis 
Kit (Thermo Fisher Scientific, USA), and qRT-PCR was performed 
on a 7500 Real-Time PCR System (Applied Biosystems, USA) with 
specific primer sequences listed in Supplementary Table S2. Relative 
mRNA expression levels were calculated using the 2-DDCt method 
and normalized to b-actin. Data are presented as fold changes 
relative to the control. 
Cell viability assay 

The viability of BV-2 cells was assessed using the Cell 
Counting Kit-8 (CCK-8) (Beyotime, China). Briefly, BV-2 cells 
were seeded into 96-well plates at a density of 5000 cells per well. 
After incubation for 24 hours to allow cell attachment, 10 mL of

CCK-8 reagent was added to each well, and the plates were 
incubated for an additional 2 hours at 37°C. The optical density 
(OD) at 450 nm was then measured using a microplate reader to 
determine cell viability. 
Cytotoxicity assay 

The cytotoxicity of BV2 cell line was assessed by a lactate 
dehydrogenase (LDH) assay kit (Beyotime, China). Briefly, when 
BV2 cells in 96-well plates reached the desired confluence, the 
supernatants were collected and incubated with the LDH detection 
reagent for 2 hours at 37°C. Absorbance was measured at 490 nm 
using a microplate reader. The percentage of LDH release was 
calculated using the formula: LDH release (%) = supernatant LDH 
release/total LDH release x 100. 
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Flow cytometry 

Apoptosis of BV2 microglia was assessed using an Annexin V­
FITC/Propidium Iodide (PI) Apoptosis Detection Kit (BD 
Biosciences, USA) according to the manufacturer’s instructions 
with minor modifications. BV2 cells were collected by 
trypsinization, rinsed with ice-cold PBS, and brought to a 
concentration of 1×106cells/mL in 100 mL of 1X Annexin Binding 
Buffer. The cell suspension was then co-incubated with 5 mL of

Annexin V-FITC and 5 mL of PI. After brief vortexing and a 15­
minute incubation at 37°C shielded from light, an additional 400 mL 
of binding buffer was introduced. Flow cytometric data acquisition 
was performed within an hour on a BD flow cytometer and 
analyzed using FlowJo software. 

Terminal deoxy nucleotide transferase-mediated nick-end 
labeling (TUNEL) assay Neuronal apoptosis in treated HT-22 
cells was quantified using the In Situ Cell Death Detection Kit 
(Roche, USA) according to manufacturer’s instructions. In brief, 
cell cultured on coverlips was fixed with 4% paraformaldehyde for 
15 min and subsequently permeabilized with permeabilized with 
0.1% Triton X-100 in 0.1% sodium citrate for 3 min on ice. Cells 
were then incubated with the TUNEL reaction mixture, containing 
terminal deoxynucleotidyl transferase (TdT) and a fluorescently 
labeled dUTP for 1h at 37°C in the datk. Images were acquired using 
a fluorescence microscope. The ratio of TUNEL-positive cells 
relative to the total number of DAPI positive cells was determined. 
Reactive oxygen species measurement 

The levels of intracellular ROS were quantified by a 2’,7’­
dichlorofluorescein diacetate (DCFH-DA, Sigma-Aldrich, USA) 
immunofluorescence probe following the manufacturer ’s 
instructions. Briefly, BV2 cells from each treatment group were 
incubated with 10 mM DCFH-DA for 30 minutes in the dark. 
Following incubation, the cells were washed with phosphate-
buffered saline (PBS) and visualized under a fluorescence 
microscope (Olympus, Japan). The DCFH-DA fluorescence 
intensity was quantified using ImageJ software. 
mitochondrial membrane potential 
detection 

MMP was assessed using a JC-1 fluorescent probe according to 
standardized protocols. BV2 microglial cells plated in 12-well 
culture dishes underwent designated treatments before exposure 
to JC-1 working solution (5 mM) for 20 minutes at 37°C under light-
protected conditions. Elevated MMP facilitates JC-1 aggregation 
within mitochondria, emitting red fluorescence, whereas 
diminished MMP results in cytoplasmic monomeric JC-1 
displaying green fluorescence. Post-staining, cells were rinsed with 
PBS, and fluorescence signals were quantified via fluorescence 
microscope (excitation 488 nm, emission 594 nm). 
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Immunofluorescence 

For Immunofluorescence, treated BV2 cells on coverslips were 
fixed in 4% paraformaldehyde, permeabilized with 0.25% Triton X­
100 for 10 minutes, and blocked with 3% bovine serum albumin 
(BSA) in PBS-Tween (0.05%) for 1 hour. Next, coverslips were 
incubated overnight at 4°C with the following primary antibodies: 
rabbit anti-CD86 (1:100; Abclonal, China), rabbit anti-CD206 
(1:100; Abclonal, China), mouse anti-IBA1 (1:200; Abclonal, 
China). After PBS washes, cells were incubated with Alexa Fluor 
488/594-conjugated secondary antibodies (Invitrogen, USA) for 2 
hours in darkness, counterstained with DAPI, and imaged using a 
fluorescence microscopy system. The average fluorescence intensity 
was measured using the ImageJ software. 
Statistical analyses 

Statistical analyses were conducted using GraphPad Prism 8.0 
(GraphPad Software, USA). Quantitative results of experimental 
data are expressed as mean ± standard deviation (SD), with group 
sample sizes detailed in corresponding figure legends. For 
comparisons involving two cohorts, significance was determined 
via two-tailed Student’s t-test. Multi-group comparisons employed 
one-way analysis of variance (ANOVA), with Bonferroni-adjusted 
pairwise analyses applied post hoc to mitigate type I error inflation. 
A probability threshold of p < 0.05 defined statistical significance. 
Results 

Distinct cell-specific distribution of PCD 
patterns in AD based on scRNA-seq atlas 

To estimate the cell-specific expression of programmed cell 
death (PCD) patterns in AD, we first performed scRNA-seq analysis 
on the GSE157827 dataset. Cells from 10 control individuals and 11 
AD patients were clustered into 15 distinct populations using the 
UMAP algorithm (Figure 1A). These clusters were annotated into 7 
main cell types based on known marker genes, including astrocytes, 
microglia, excitatory neurons, inhibitory neurons, endothelial cells, 
oligodendrocytes, and oligodendrocyte progenitor cells (Figure 1B). 
Distinct cellular markers within these classifications were visualized 
via a bubble plot (Figure 1C). We then evaluated the distribution 
and intensity of 17 PCD scores across different cell types using four 
common algorithms: AUCell, UCell, singscore, and viper 
(Figures 1D–G). Our analysis revealed that astrocytes exhibited 
higher levels of disulfidptosis, while microglia showed the highest 
levels of immunogenic cell death, alkaliptosis, lysosome-dependent 
cell death, NETotic cell death, entotic cell death, and cuproptosis. 
Endothelial cells demonstrated elevated levels of anoikis, 
parthanatos, and ferroptosis. Moreover, most PCD pattern scores 
in astrocytes and microglia were consistently higher in AD cortical 
tissue compared to normal tissue, with the exception of pyroptosis, 
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parthanatos, alkaliptosis, oxeiptosis, and paraptosis (Figures 1H, I). 
These findings suggest that altered PCD activity may significantly 
contribute to AD progression. 
Identification of pivotal PCD via 
comprehensive screening 

We initially investigated the differences between AD and control 
groups based on the GSE132903 dataset, identifying 3115 
differentially expressed genes (DEGs), of which 1569 were up-
regulated and 1546 were down-regulated (Supplementary Table S3). 
Subsequently, we performed WGCNA to identify modules associated 
with AD. A soft threshold power of 10 was selected, yielding a scale-
Frontiers in Immunology 07 
free index of 0.9 and favorable mean connectivity (Figure 2A). This 
resulted in the formation of five gene modules (Figure 2B, 
Supplementary Table S4). The MEblue module was significantly 
correlated with AD (R = -0.46, p < 0.0001) (Figure 2C), with a 
correlation coefficient between gene significance and module 
membership of 0.58 (Figure 2D). In addition, we further intersected 
1569 up-regulated genes from AD samples, 2325 genes from the 
MEblue module, and 1554 genes encompassing 17 PCD patterns, 
identifying 77 overlapping genes (Figure 2E). Afterward, we 
demonstrated the expression and PCD patterns of 77 PCD genes in 
control and AD cases. Expression analysis revealed that these 77 
PCD-related genes exhibited specific patterns, including apoptosis, 
anoikis, autophagy, and lysosome-dependent cell death (Figure 2F), 
suggesting their close association with AD pathology. 
FIGURE 1 

Cell-type-specific PCD dynamics in AD pathogenesis. (A) Uniform Manifold Approximation and Projection (UMAP) visualization of 44,120 single-cell 
transcriptomes following unsupervised clustering. (B) UMAP plots showing 44,120 cells with type annotation (astrocyte, microglia, excitatory neuron, 
inhibitory neuron, endothelial cell, oligodendrocyte, and oligodendrocyte progenitor cell). (C) Heatmap depicting cell type-specific marker gene 
expression. (D–G) Multivariate score distribution bubble plot evaluating PCD activation across diverse cell types via multiple computational metrics. 
(H, I) Comparative distribution analyses of PCD pathway enrichment in astrocyte and microglia between AD and controls. Significance thresholds: 
****p<0.0001, ***p<0.001, **p<0.01, *p<0.05, ns p>0.05. 
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Development of programmed cell death 
signature based on an integrated ML-based 
framework 

Through cross-dataset intersection analysis of five independent 
AD) cohorts (GSE132903, GSE33000, GSE36980, GSE48350, 
GSE5281), we derived a consensus set of 70 PCD-associated genes 
for signature development. GSE132903 was designated as the discovery 
cohort for model training, while GSE33000, GSE36980, GSE48350, and 
GSE5281 served as validation cohorts. Transcriptomic data from these 
genes were analyzed using a combinatorial ML framework 
incorporating 134 distinct model configurations derived from 12 ML 
algorithms. Cross-cohort validation identified the optimal model 
through maximum mean area-under-curve (AUC) performance. The 
Stepglm [backward] feature selection method paired with a Random 
Forest classifier demonstrated superior discriminative performance 
(mean AUC = 0.832 across all cohorts), as visualized in Figure 3A. 
Notably, a total of 9 PCDS (CFLAR, FYCO1, HDAC1, ITGB1, NFKB1, 
S100A4, SPAG9, TMEM150A, and WDR6) achieved AUC values 
exceeding 0.7 across all cohorts, underscoring the robust generalization 
ability of the PCDS. Using this model, we generated predicted 
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probabilities and labels, along with confusion matrices for both the 
training cohort (GSE132903) and the test cohort (GSE5281). Beyond 
AUC scores, we also evaluated accuracy, precision, recall, and F1 score, 
which collectively indicated high performance metrics, including 
precision (>0.8), recall (>0.75), and F1 score (>0.75), reaffirming the 
reliability and diagnostic efficacy of PCDS in distinguishing between 
AD and control samples (Figures 3B, C). The evaluation results of the 
model on other datasets were shown in Supplementary Figure S1. 
Furthermore, the expression patterns of PCDS between control and 
AD cases were investigated in GSE132903 and GSE5281 datasets. As 
illustrated in Figures 3D, E, the upregulated expression levels of all nine 
PCDS were observed in AD samples when compared to control group, 
highlighting their potential role in AD pathogenesis and their utility in 
early prediction and treatment. 
External validation of the predictive 
capability of PCDS 

To enhance the clinical generalization ability and optimize the 
predictive model of PCDS, we constructed a nomogram 
FIGURE 2 

Identification of pivotal PCD-related genes. (A) Weighted Gene Co-expression Network Analysis (WGCNA) power threshold selection via scale-free 
topology metrics. (B) Hierarchical clustering dendrogram of co-expressed gene modules. (C) Module-trait correlation matrix linking gene clusters to 
clinical phenotypes. (D) Scatterplot correlating intramodular connectivity (kME) with AD association strength (GS) for the hub-enriched blue module. 
(E) Consensus PCD drivers identified through integrative analysis of differential expression (DEGs), WGCNA modules, and curated PCD-associated 
genes. (F) Heatmap showing the expression profiles of the identified 77 PCD-related genes 
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incorporating clinical features and PCDS using the external 
validation dataset GSE122063. The uppermost scale of the 
nomogram represents point assignments for each variable. The 
subsequent scales correspond to the variables included in the 
nomogram, including age, sex, and PCDS. By drawing a vertical 
line from each variable’s value to its corresponding point on the 
points scale, one can determine the assigned points. For each 
individual, the total score (fifth scale) is derived by summing 
these assigned points. Once the total score is calculated, the 
probability of AD (lowermost scale) can be predicted by locating 
the total score on the appropriate scale (Figure 4A). To evaluate the 
nomogram’s comprehensive performance, we utilized three 
commonly employed metrics: discrimination (AUC), calibration, 
and decision curve analysis (DCA). Notably, our nomogram 
demonstrated strong diagnostic ability in the GSE122063 cohort 
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(AUC = 0.938) (Figure 4B). The calibration curves revealed that the 
nomogram-predicted probabilities closely aligned with observed 
probabilities (Figure 4C), indicating high accuracy and reliability. 
Additionally, the DCA curve showed significant clinical net benefit 
at risk thresholds ranging from 0.4 to 1.0, suggesting its utility in 
guiding clinical decisions for intermediate- and high-risk AD 
patients (Figure 4D). Overall, the nomogram integrating age, sex, 
and PCDS performed excellently in predicting AD. 

To explore the correlation between PCDS score and key AD-
related clinicopathological features, we incorporated an 
independent dataset, GSE106241, which encompasses multiple 
clinical phenotypic data from brain tissue samples of AD patients. 
After removing samples with missing values, a total of 55 AD 
patients from this dataset was included in our correlation analysis. 
Our analysis revealed significant positive correlations between the 
FIGURE 3 

Machine learning-driven PCD signature (PCDS) construction. (A) Performance metrics (AUC) of 134 algorithmic models trained on 77 PCD genes 
across discovery/validation cohorts. (B, C) Predictive accuracy matrices for PCDS classification in training (B) and independent validation (C) datasets 
(GSE5281). (D, E) Violin plots contrasting expression profiles of nine PCDS hub genes between AD and controls in GSE132903 (D) and GSE5281 (E). 
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PCDS and several important indicators of AD progression and 
pathology, including braak stage (cor=0.47, p<0.001), Ab42 levels 
(cor=0.28, p=0.033), a-secretase (cor=0.35, p=0.0098), b-secretase 
(cor=0.59, p<0.001), and g-secretase (cor=0.45, p<0.001) 
(Supplementary Figure S2), suggesting a higher PCDS may 
contribute to AD progression. 
Complex relationship between PCDS and 
biological pathways and immune 
microenvironment 

AD patients were stratified into high-PCDS and low-PCDS 
groups based on the median PCDS score. To elucidate the 
underlying pathway mechanisms differentiating these groups, we 
conducted three enrichment analyses. GSVA using hallmark gene 
sets revealed that high-PCDS patients exhibited upregulation in 
various pathways related to immunology, inflammation, 
metabolism, signaling, and proliferation. In contrast, low-PCDS 
patients showed enrichment in pathways associated with MYC and 
E2F target genes, oxidative phosphorylation, KRAS signaling, 
protein secretion, hedgehog signaling, and DNA repair 
(Figure 5A). Moreover, high-PCDS patients exhibited elevated 
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levels of JAK-STAT, MAPK, TGFb, and  NF-kB signaling 
pathways compared to low-PCDS patients. Conversely, the PI3K 
signaling pathway was more pronounced in low-PCDS patients 
(Figure 5B). GSEA further demonstrated that high-PCDS patients 
were significantly associated with cytokine-cytokine receptor 
interaction, TGF-beta signaling, cell adhesion molecules (CAMs), 
adipocytokine signaling, ECM-receptor interaction, and insulin 
signaling pathways (Figures 5C, D). 

We subsequently analyzed the immune landscape of both high-
and low-PCDS groups using various algorithms (Figure 6A). The 
high-PCDS group exhibited significantly higher infiltration scores 
for immune cells, including macrophages, T cells, monocytes, 
neutrophils, pericytes, and dendritic cells. In contrast, the low-
PCDS group showed a preference for activating B cells, CD4+ 
memory T cells, myocytes, preadipocytes, TH1 cells, and regulatory 
T cells (Tregs). Given the critical role of immune checkpoint 
molecules in the immune microenvironment, we compared the 
relative expression levels of immune regulatory genes between 
distinct PCDS subgroups. High-PCDS patients demonstrated 
elevated expression of antigen presentation and receptor 
molecules (Figure 6B). These findings suggest that PCDS may 
influence the pathogenesis of AD by modulating multiple key 
pathways and immune functions. 
FIGURE 4


Clinical-translational utility of PCDS. (A) Construction of nomogram based on PCDS, gender, and age. (B) Receiver operating characteristic (ROC)

curve assessing nomogram discrimination capacity. (C) The calibration curve of nomogram. (D) Decision curve analysis (DCA) quantifying net clinical

benefit across risk thresholds to AD patients.
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Exploration of PCDS distribution and 
pseudotime dynamics across microglia 
transformation 

To elucidate the role of PCDS in AD pathogenesis, we analyzed 
the distribution of PCDS across multiple cell types using scRNA 
transcriptome data from GSE157827. We identified higher PCDS 
scores in astrocytes, oligodendrocytes, endothelial cells, and 
microglia (Figures 7A, B). Given the critical role of microglia as 
immune cells in brain tissue, we focused on this cell type for further 
analysis. Microglia were clustered into eight distinct subtypes 
(MG1-8) (Figure 7C). Based on the 75th percentile of the PCDS 
score, we categorized microglia from AD patients into high- and 
low-PCDS groups. In the low-PCDS group, MG1 was the 
predominant subtype, comprising 46.2% of cells, followed by 
MG2 (21.2%), MG3 (12.2%), MG4 (9.2%), MG5 (7%), MG6 
(1.4%), MG7 (0.8%), and MG8 (1.9%). Conversely, in the high-
PCDS group, the proportions of MG3 (28.8%) and MG4 (28.8%) 
significantly increased, while MG1 (26.1%) and MG2 (13.9%) 
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decreased substantially. Notably, MG6 showed a modest increase 
(4.7%) and MG5 decreased to 4.3% (Figure 7D). The top six 
differentially expressed genes across all microglia subtypes are 
illustrated in Figure 7E. 

Additionally, we investigated the dynamics of PCDS expression 
patterns using Monocle analysis for trajectory inference. As 
anticipated, MG3 and MG4 predominantly appeared at the end 
of differentiation with higher pseudotime values, whereas microglia 
from MG5, MG1, and MG2 were mainly distributed at the 
beginning of differentiation (Figures 7F, G). Next, we explored 
whether PCDS undergoes dynamic changes during microglial 
transformation by clustering PCD-related genes that were 
differentially expressed along the trajectory. We identified four 
distinct kinetic patterns. Notably, some genes, including PRKCQ, 
DAPK2, TIMP1, FYN, CYP1B1, and ZEB1, exhibited a similar 
trend during the initial phase. In contrast, genes such as PRF1, LCK, 
NR4A3, IL1R1, ACSL4, CTSD, FTH1, and FOXO3 showed activity 
in intermediate and late stages (Figure 7H). Collectively, these 
results suggest that PCDS may drive the progression of AD. 
FIGURE 5


Molecular landscapes stratified by PCDS. (A) Gene Set Variation Analysis (GSVA) highlighting pathway activity disparities between PCDS subgroups.

(B) PROGENy-inferred specific pathway activities between the low- and high-PCDS groups. (C, D) Gene Set Enrichment Analysis (GSEA) of 
upregulated oxidative stress (C) and downregulated synaptic plasticity (D) pathways in high-PCDS cohorts. 
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Identification of crucial cellular 
communication affected by PCDS 

We conducted a comprehensive analysis of cell interactions 
across distinct cell types in low-PCDS and high-PCDS groups using 
the CellChat method. The high-PCDS group exhibited reduced 
interaction numbers and strengths compared to the low-PCDS 
group (Figure 8A). Specifically, the signals from excitatory neuron 
to inhibitory neuron, oligodendrocyte progenitor cell, and astrocyte 
were diminished, whereas those between astrocyte, microglia, 
endothelial cell, and oligodendrocyte were significantly increased 
in high-PCDS patients (Figure 8B). Based on the whole signaling 
patterns and relative information flow, we found that high-PCDS 
was likely associated with upregulation of several signaling 
pathways, including NOTCH, CD46, MIF, NECTIN, LAIR1, FN1, 
CypA, COLLAGEN, LAMININ, MHC-II, ANGPT, GPP1, CLDN, 
PECAM1, PSAP, THBS, PECAM2, PEPRM, CD45, MPZ, 
COMPLEMENT, TGFb, and MAG. Conversely, it inhibited 
ADGRB, CSF, L1CAM, 2-AG, SEMA5, EGF, TULP, DHEAS, and 
PARs signaling pathways (Figure 8C). Additionally, in the high-
PCDS group, FN1 signaling networks from endothelial cell to 
microglia, astrocyte, oligodendrocyte, and oligodendrocyte 
progenitor cell, as well as PTPRM signaling networks involving 
inhibitory neuron, endothelial cell, astrocyte, and oligodendrocyte 
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progenitor cell, were more pronounced. For instance, endothelial 
cell-secreted FN1 signaling was significantly sensed by astrocyte and 
oligodendrocyte progenitor cell in the high-PCDS group but less in 
the low-PCDS group (Figures 8D, E). Detailed analysis of cell–cell 
interactions revealed that SPP1, COL4A5, PTN, SEMA4D, and Glu­
dependent ligand-receptor pairs were activated by microglia in the 
high-PCDS group (Figures 8F, G). 
S100A4 knockdown improves microglia 
viability and exerts neuroprotection after 
AbetaO injury 

To translate our PCDS findings into functional insights, 
particularly concerning microglial contributions to AD, we firstly 
assessed the expression patterns of all nine PCDS genes across 
different cell types at single-cell level. We found S100A4 displayed a 
more restricted and prominent expression pattern, which was 
predominantly observed in microglia and, to some extent, in 
endothelial cells. In contrast, the other eight PCDS genes 
generally showed more widespread expression across various cell 
types, including neurons, astrocytes, oligodendrocytes, and 
endothelial cells. In addition, our prior bulk RNA-seq analyses 
have demonstrated that S100A4 was highly expressed in AD brain 
FIGURE 6


PCDS-associated neuroimmune remodeling. (A) Comprehensive analysis of immune infiltration differences (CIBERSORT/MCP-counter/xCell/EPIC/

Quantiseq) across PCDS subgroups. (B) Differential immune checkpoint between PCDS subgroups.
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samples compared with normal brain tissues. Furthermore, limited 
literature is available to clarify the pathological role of S100A4 in 
AD. Therefore, we focused on the S100A4, a critical model gene in 
this context. In vitro experiments revealed that both S100A4 protein 
and mRNA levels were significantly elevated in AbetaO-induced 
BV2 microglia (Figures 9A–C). To investigate the functional role of 
S100A4 in AD, we knocked down its expression in BV2 cells using 
specific siRNA. The western-blot and qRT-PCR experiments were 
performed to confirm the efficacy of S100A4 silencing, and the 
significant reduction in the protein and mRNA expression levels of 
S100A4 were observed (Figures 9D–F). Our findings indicate that 
inhibiting S100A4 significantly increased cell viability, as measured 
by CCK-8 assays, and reduced LDH release in AbetaO-treated BV2 
cells (Figures 9G, H). Additionally, flow cytometry analysis showed 
that S100A4 knockdown partially alleviated AbetaO-induced 
apoptosis in BV2 cells (Figures 9I, J). We next investigated the 
neuroprotective effects of S100A4 in vitro. BV2 cells were co­
cultured with AbetaO for 24 hours, and the conditioned medium 
was then collected to stimulate normal HT-22 hippocampal 
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neuronal cells. As shown in Supplementary Figure S4, the

percentage of TUNEL+ cells significantly increased in HT-22 
neuronal cells treated with BV2 conditioned medium containing 
AbetaO (AbetaO-CM), but was significantly reduced after S100A4 
knockdown treatment (AbetaO+si-S100A4-CM) (Supplementary 
Figure S3). These results suggest that S100A4 plays a crucial role 
in improving microglia viability and prevented neuron from 
apoptosis in the context of AD. 
S100A4 knockdown suppresses AbetaO­
induced pro-inflammatory microglial 
activation 

To investigate the effects of S100A4 on the phenotype and 
function of microglia following AbetaO treatment, we examined 
inflammatory cytokine secretion and microglial phenotypes in vitro. 
RT-qPCR results demonstrated that S100A4 knockdown markedly 
reduced the expression of genes typically associated with pro-
FIGURE 7 

Single-cell resolution of PCDS trajectories. (A) UMAP projection of PCDS computed via AUCell scoring. (B) Cell-type-specific PCDS enrichment 
profiles. (C) Microglial subpopulation clustering. (D) Microglial subtype proportion shifts between PCDS subgroups. (E) Top differentially expressed 
markers across microglial states. (F–H) Pseudotemporal ordering of microglial activation trajectories with branch-specific gene dynamics. 
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inflammatory responses (IL-6, iNOS, and TNF-a) and enhanced 
the expression of anti-inflammatory genes (IL-10, ARG1, and YM1/ 
2) in AbetaO-induced BV2 cells (Figures 10A–F). Additionally, 
immunofluorescence analysis revealed that AbetaO stimulation 
significantly increased the fluorescence intensity of the cell surface 
marker CD86, which is often upregulated during pro-inflammatory 
microglial activation. Conversely, a reduced fluorescence intensity 
was observed for CD206, a marker frequently associated with 
alternative activation states and phagocytosis. Knockdown of 
S100A4 attenuated CD86 expression and elevated CD206 
expression in BV2 cells exposed to AbetaO (Figures 10G–J). 
These findings suggest that inhibiting S100A4 promotes a shift in 
Frontiers in Immunology 14 
microglial activation from a predominantly pro-inflammatory state 
towards one characterized by increased expression of anti­
inflammatory markers in AbetaO-exposed BV2 cells. 
S100A4 knockdown inhibits AbetaO­
induced oxidative stress 

To investigate the impact of S100A4 on AbetaO-induced 
oxidative stress and mitochondrial integrity, we measured key 
oxidative markers and mitochondrial membrane potential (MMP). 
As shown in Figures 11A–C, AbetaO stimulation led to a significant 
FIGURE 8 

Cell-cell communication networks modulated by PCDS. (A) Quantitative comparison of intercellular interaction frequency/strength. (B) Ligand-receptor 
network topology alterations between subgroups. (C) Pathway-centric information flux disparities. Red represents pathways enriched in high-PCDS 
group, while green represents pathways enriched in low-PCDS group. (D, E) The inferred FN1 (D) and PTPRM (E) signaling networks. (F, G) Dotplots of 
significant cytokine ligand (source) -receptor (target) interactions between microglia and other cells discovered using CellChat. Color represents 
communication probabilities, and the bubble size represents p-value of the ligand-receptor pairs between microglia and other cells. 
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imbalance in redox homeostasis, evidenced by reduced activities of 
the antioxidant enzymes SOD and GSH-Px, alongside a marked 
increase in the lipid peroxidation product MDA. Concurrently, 
AbetaO exposure triggered a substantial elevation in intracellular 
reactive oxygen species (ROS) levels (Figures 11F, G). This 
heightened oxidative stress state is known to directly compromise 
mitochondrial health. Indeed, we observed a significant decrease in 
MMP (indicated by a reduced red/green JC-1 fluorescence ratio) in 
AbetaO-treated cells, reflecting mitochondrial dysfunction 
(Figures 11D, E). Importantly, knockdown of S100A4 effectively 
counteracted these detrimental effects. Inhibition of S100A4 not 
only suppressed the AbetaO-induced surge in ROS levels but also 
partially restored SOD and GSH-Px activities and reduced MDA 
accumulation (Figures 11A–C, F–G). Crucially, this alleviation of 
oxidative stress by S100A4 knockdown was associated with a 
significant restoration of MMP (Figures 11D, E). These results 
strongly suggest that S100A4 contributes to AbetaO-induced 
mitochondrial dysfunction by exacerbating oxidative stress, and its 
inhibition protects mitochondria, at least in part, by mitigating this 
oxidative damage. 
Discussion 

Despite advancements in diagnosis and treatment, the 
improvement in Alzheimer’s disease (AD) prognosis remains 
limited, therefore bringing significant medical burdens globally. 
Many patients receive diagnoses at advanced stages, which can 
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hinder treatment efficacy. Consequently, early diagnosis and 
intervention are crucial for enhancing outcomes. However, 
current biomarkers—such as the Ab42/Ab40 ratio, pTau181, 
pTau217, and NFL levels in blood (38, 39) are still far from the 
standard of ideal biomarkers diagnosed by AD diagnosis and 
deserve to be further explored. 

Given the crucial role of PCD in in various disease progressions 
(40–42), we utilized a scRNA-seq dataset (comprising nine controls 
and twelve AD cases) to investigate pan-cell death patterns. Results 
indicated higher levels of PCD in microglia cells, with eleven 
distinct PCD patterns, excluding pyroptosis, parthanatos, 
alkaliptosis, oxeiptosis, and paraptosis, significantly activated in 
AD-affected microglia. Recent studies have reported that multiple 
signal transduction pathways, including p53, KRAS, NOTCH 
signaling, hypoxia, and metabolic reprogramming, regulate the 
initiation of certain types of PCD (43). The potential effects and 
mechanisms of these distinct PCD forms in AD have been 
elucidated. For instance, ferroptosis has been implicated in 
abnormal  microglia  activation,  a  hallmark  of  chronic  
neuroinflammation in AD (44). Abnormal activation of microglia 
leads to the release of pro-inflammatory cytokines and reactive 
oxygen species (ROS), contributing to neurodegeneration (45). The 
metal ion chelator deferoxamine (DFO) is shown to inhibit the 
accumulation of iron in the brain tissues of AD animals, followed by 
the reduction of Ab plaque formation (46), suggesting that targeting 
ferroptosis-related pathways, such as iron metabolism, lipid 
metabolism, and the GPX4 antioxidant system, could be a 
promising therapeutic breakthrough for AD (19). Necroptosis has 
FIGURE 9 

S100A4 knockdown improves microglia viability and exerts neuroprotection after AbetaO injury. (A-C) Expression profiles of S100A4 were evaluated by 
western blot (A, B) and qRT-PCR (C) (n=3). (D-F) The knockdown efficiency of S100A4 was evaluated by western blot (D, E) and qRT-PCR (F) (n=3). 
(G) CCK-8 viability assay of AbetaO-exposed microglia (n=3). (H) LDH cytotoxicity quantification after AbetaO damage (n=3). (I-J) Annexin V/PI flow 
cytometry quantifying apoptosis rates (n=3). Data are presented as mean ± SD. ***p<0.001 vs. Control+si-NC; ###p< 0.001 vs. AbetaO+ si-NC. 
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been identified as a key player in AD pathogenesis. Ab aggregates 
promote neuronal necroptosis via the RIPK1-MLKL axis, forming a 
cascade effect (47). Additionally, tau activates the RIPK1/RIPK3/ 
MLKL and NF-kB signaling pathways, mediating necrotic apoptosis 
and inflammation, which drives cell death (48). Pharmacological 
and genetic inhibition of RIPK1/3 and MLKL have effectively 
ameliorated pathological changes and cognitive deficits in AD 
animal models (49). Cuproptosis, a novel form of PCD, has been 
shown to promote AD development. Bioinformatics analysis has 
identified cuproptosis-related genes and developed predictive 
models for AD (50). In addition, cuproptosis can promote the 
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activation of the NF-kB signaling pathway and the release of 
inflammatory factors, thereby driving AD progression (51). 
Increased copper exporters (APP7A/B), GSH, and antioxidants 
may serve as anti-cuproptosis strategies targeting AD (52). 
However, limited information is available on the roles of anoikis, 
NETotic cell death, entotic cell death, and disulfidoptosis in AD. 
Using WGCNA and upregulated differentially expressed genes 
(DEGs), we identified 77 PCD-related genes significantly 
upregulated in AD, suggesting their crucial role in driving AD. 

Machine learning techniques have been widely employed for 
the early diagnosis of various cardiovascular and cerebrovascular 
FIGURE 10


S100A4 knockdown modulates AbetaO-induced microglial activation. (A–F) Quantitative RT-PCR analysis of IL6 (A), iNOS (B),TNFa (C), IL10 (D),

ARG1 (E), and YM1/2 (F) (n=4). (G–J) Immunofluorescence staining and quantitative results of CD86 (pro-inflammatory marker, red) and CD206

(anti-inflammatory marker, red) in BV2 microglia (N=4). Data are presented as mean ± SD. ***p<0.001 vs. Control+si-NC; ##p< 0.01, ###p< 0.001 vs.

AbetaO+ si-NC. 
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diseases (24–26). These methods have demonstrated promising 
results in improving diagnostic accuracy and efficiency. However, 
effectively implementing these models while maintaining high 
performance remains challenging. Additionally, selecting the most 
appropriate ML algorithm is a critical decision influenced by 
various factors such as the problem’s characteristics and 
researcher preferences. In this study, we curated expression 
profiles from hundreds of controls and AD case brain tissues 
across five multicenter cohorts worldwide. and developed a PCDS 
using an integrative machine learning framework that combines 
multiple model predictions to achieve higher accuracy. A total of 
134 ML integrations were benchmarked and optimized via 10-fold 
cross-validation, leading to the selection of more effective features 
and the generation of robust prediction models. Ultimately, the 
best-performing model, termed PCDS, was derived from the 
expression of nine genes (CFLAR, FYCO1, HDAC1, ITGB1, 
NFKB1, S100A4, SPAG9, TMEM150A, and WDR6), combining 
Stepglm [backward] and RF. This model exhibited the highest 
average Area Under the Curve (AUC) score of 0.832 across five 
Frontiers in Immunology 17 
independent cohorts. We further developed a nomogram based on 
the PCDS model, demonstrating its strong predictive ability and 
clinical utility through rigorous evaluation criteria, including AUC, 
calibration curves, and DCA. Our findings suggest that PCDS can 
serve as a valuable tool for guiding therapeutic decisions and 
early diagnosis. 

Given the substantial treatment challenges associated with AD, 
we aim to explore the pathological role and potential mechanisms of 
PCDS in AD, which may provide novel insights for therapeutic 
strategies. We stratified AD patients into two distinct risk 
subgroups to examine the molecular signatures associated with 
different risk levels. Pathway enrichment analyses revealed that high 
PCDS correlates with disease progression, characterized by 
significant enrichment of hypoxia, apoptosis, inflammatory 
response, p53 signaling, TNFa signaling, interferon response, and 
other pathways previously implicated in AD pathogenesis (53–56). 
Conversely, low PCDS patients exhibited involvement in protective 
pathways such as oxidative phosphorylation, protein secretion, and 
DNA repair. Consistent with these findings, Gene Set Enrichment 
FIGURE 11 

S100A4 knockdown inhibits AbetaO-triggered redox imbalance. (A–C) Inhibition of S100A4 significantly modulated redox homeostasis in AbetaO­
exposed BV2 microglia, evidenced by reduced MDA concentrations (A), enhanced SOD activity (B), and elevated GSH-Px enzymatic function 
(C) (n = 3) (D, E) The effects of S100A4 knockdown on the MMP of BV2 microglia with AbetaO stimulation were assessed using the 
Immunofluorescence microscopy. Fluorescence imaging revealed JC-1 aggregates (red, polarized mitochondria) and monomers (green, depolarized 
mitochondria) (scale bar: 20 mm), with quantitative analysis reflecting the red/green intensity ratio (n = 3). Data are presented as mean ± SD. 
***p<0.001 vs. Control+si-NC; ##p< 0.01, ###p< 0.001 vs. AbetaO+ si-NC. 
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Analysis (GSEA) demonstrated increased activity of the JAK/STAT, 
TGFb, TNFa, and  NFkB pathways in the high PCDS group 
compared to the low PCDS samples. Single-cell RNA sequencing 
(scRNA-seq) analysis highlighted elevated PCDS activity in 
microglia. Subsequent analysis identified eight critical microglial 
subpopulations, with MG1 and MG2, associated with homeostatic 
and stress functions, significantly augmented in the low-PCDS 
group. Meanwhile, MG3, MG4, and MG6 subtypes, linked to 
phagocytic, lipid-processing, and pro-inflammatory functions, 
were more prevalent in high-PCDS patients. These characteristics 
show a striking resemblance to the well-documented “Disease-
Associated Microglia” (DAM) phenotype, a specific microglial 
state observed in proximity to amyloid plaques in Alzheimer’s 
disease and other neurodegenerative conditions (57). The DAM 
program involves the downregulation of homeostatic genes and the 
upregulation of a specific transcriptional signature, including genes 
involved in lipid metabolism and phagocytosis, which aligns closely 
with the profile of our identified MG3/MG4 subtypes. Recent 
studies suggest that lipid accumulation and peroxidation can 
activate inflammatory signaling pathways in microglia, promoting 
the release of inflammatory factors such as IL-1b and TNF-a, 
thereby contributing to Ab plaque accumulation (58–60). In the 
early stages of AD, microglia effectively remove Ab plaques via the 
complement system and the release of C1Q and other factors. 
However, their phagocytic ability diminishes as the disease 
progresses (61, 62). Furthermore, the transition from homeostatic 
microglia to this DAM state is critically dependent on the TREM2 
(Triggering Receptor Expressed on Myeloid cells 2) signaling 
pathway (63, 64). TREM2 is a key genetic risk factor for late-
onset AD, and it functions as a sensor for pathological changes, 
including binding to lipids and amyloid-beta, thereby triggering the 
protective activation of microglia (65, 66). Therefore, our finding 
that a high PCDS score correlates with an expansion of these DAM-

like subtypes (MG3/MG4) suggests that our signature may capture 
the activation of this crucial TREM2-DAM axis. This contextualizes 
the PCDS within a core pathogenic mechanism of AD and 
reinforces the link between programmed cell death pathways and 
the neuroinflammatory response mediated by microglia. 

While previous studies have successfully developed prognostic 
and diagnostic models for Alzheimer’s disease by focusing on 
individual PCD pathways—such as cuproptosis (50), ferroptosis 
(67), pyroptosis (68), autophagy (69), and PANoptosis (70)—our 
study introduces several significant advancements. Firstly, our 
PCDS was not limited to a single or several PCD modality but 
was derived from a comprehensive set of 17 different PCD patterns, 
providing a more holistic view of the cell death landscape in AD. 
Secondly, the robustness of our PCDS is underscored by its rigorous 
validation across five independent cohorts, a more extensive 
validation than is often reported in initial signature-development 
studies. A key methodological innovation of our work is the 
application of an integrated machine learning framework that 
benchmarked 134 model permutations to identify the optimal 
algorithm, rather than relying on a single pre-selected method. 
This data-driven approach enhances confidence in the predictive 
Frontiers in Immunology 18 
power and stability of the resulting 9-gene signature. Crucially, we 
have bridged the gap between a transcriptomic signature and its 
cellular basis by linking the PCDS score directly to microglial 
subtype shifts at the single-cell level, a layer of mechanistic detail 
not present in previous models. Finally, by proceeding to the 
functional validation of a key signature gene, S100A4, we provide 
tangible experimental evidence for the signature’s biological

relevance, demonstrating its role in microglial viability, 
neuroinflammation, and oxidative stress. This multi-layered 
approach: from a broad, multi-cohort signature development to 
single-cell analysis and specific gene validation, collectively 
enhances the robustness and mechanistic insight of our model 
compared to prior work in the field. 

Of the nine genes involved in developing PCDS, S100A4, a 
member of the S100 protein family, has been implicated in 
regulating various cellular processes, including proliferation, 
migration, apoptosis, calcium homeostasis, metabolism, and 
inflammation (71). S100A4 has been shown to be significantly 
upregulated in idiopathic pulmonary fibrosis (72). In multiple 
sclerosis, S100A4 overexpression promotes microglial polarization 
of pro-inflammatory type via the TLR4/NF-kB pathway, initiating 
neuroinflammation (73). Notably, increased S100A4 expression is 
observed in kidney fibrosis, and its pharmacological inhibition 
markedly reduces fibroblast activation. Conversely, another study 
found that S100A4 overexpression exerts anti-apoptotic effects by 
upregulating the AKT signaling pathway in mice with retinal 
ischemia-reperfusion injury (74), highlighting the complex roles 
of S100A4 in different diseases. Therefore, we aim to investigate the 
specific effects of S100A4 in Alzheimer’s disease. 

Oxidative stress and consistent neuroinflammation are 
established as critical pathological factors in the development of 
AD (53, 75–77). Emerging studies indicate that microglia, the 
resident macrophages of the central nervous system, play a 
pivotal role in maintaining brain homeostasis by regulating 
oxidative stress and neuroinflammation (78–80). Microglial 
activation is a complex response to stress or injury. Activated 
microglia can release pro-inflammatory cytokines and peroxides, 
potentially promoting neurodegeneration, or they can exhibit 
functions associated with anti-inflammatory properties and 
immune homeostasis (81, 82). Therefore, we mainly focus on the 
effect of S100A4 on the function of microglia following AD. In our 
study, we investigated the impact of S100A4 on microglial function 
in AD, demonstrating that S100A4 knockdown facilitated a shift in 
the microglial activation profile, reducing the expression of pro-
inflammatory mediators and enhancing markers associated with 
anti-inflammatory in BV2 cells following AbetaO treatment. While 
our results demonstrate a clear shift away from the AbetaO-induced 
pro-inflammatory phenotype upon S100A4 knockdown, we 
acknowledge that the inclusion of classical M1/M2 polarizing 
agents as positive controls would further strengthen these 
findings. In addition, our in vitro experiments further elucidated 
the mechanisms by which S100A4 influences microglial responses 
to AbetaO. We found that S100A4 knockdown significantly 
attenuated AbetaO-induced oxidative stress, as evidenced by 
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reduced ROS production and lipid peroxidation (MDA), alongside 
enhanced antioxidant enzyme (SOD, GSH-Px) activities. It is well 
established that excessive oxidative stress is a primary driver of 
mitochondrial damage (83–85). Mitochondria are both major 
producers of ROS and primary targets of ROS-mediated injury, 
creating a vicious cycle that can lead to the collapse of the 
mitochondrial membrane potential (MMP) -a critical indicator of 
mitochondrial integrity and function. In line with this, our study 
demonstrated that the AbetaO-induced oxidative stress was directly 
linked to a significant loss of MMP in microglia. Notably, the 
protective effect of S100A4 knockdown against oxidative stress 
translated directly into a significant preservation of MMP. This 
finding emphasizes a key mechanistic link: S100A4 exacerbates 
AbetaO-induced microglial injury by promoting an oxidative 
environment that impairs mitochondrial function. Conversely, 
inhibiting S100A4 confers protection by restoring redox balance, 
thereby maintaining mitochondrial integrity and MMP, which is 
crucial for cell survival and function. This mitochondrial protection 
likely contributes to the observed improvements in cell viability and 
reduced apoptosis in S100A4-deficient microglia exposed 
to AbetaO. 

Although the potential impact of PCDS on predicting and 
treating AD has been confirmed, several limitations must be 
acknowledged. First, the retrospective nature of the sample set 
and its relatively small size necessitate further validation through 
prospective, large-scale multicenter studies to ensure the 
generalizability of PCDS. Second, the relatively small sample size 
of the GSE106241 cohort is a limitation for the correlation analyses. 
The correlation between PCDS score and clinicopathological 
features should be interpreted with caution and warrant 
validation in larger, independent cohorts. Third, Future studies 
would be strengthened by the inclusion of these standard positive 
controls (LPS/IL-4) to better contextualize the magnitude of the 
phenotypic shift we observed. Finally, the specific biological

mechanisms by which S100A4 influences microglial function 
require further exploration through additional in vivo and in 
vitro experiments. 
Conclusion 

Our study identified a novel PCDS comprising nine genes 
(CFLAR, FYCO1, HDAC1, ITGB1, NFKB1, S100A4, SPAG9, 
TMEM150A, WDR6) that robustly predicts and classifies 
Alzheimer’s disease (AD). The PCDS demonstrated high accuracy 
across multiple cohorts, with an average AUC of 0.832. Functional 
analyses revealed that S100A4 knockdown improved microglial 
viability, reduced apoptosis, suppressed M1 polarization, and 
mitigated oxidative stress induced by amyloid-beta oligomers. 
These findings highlight the potential of PCDS as a biomarker for 
early AD diagnosis and suggest S100A4 as a therapeutic target. 
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SUPPLEMENTARY FIGURE 1 

Model evaluation on other datasets. (A–C) The prediction accuracy matrix of 
PCDS classification and the expression profiles of nine PCDS hub genes in 
GSE33000, GSE36980, and GSE48350. 

SUPPLEMENTARY FIGURE 2 

The PCDS score predicts the progression of AD. (A–E) The correlation 
between PCDS score and key AD-related clinicopathological features, 
including braak stage, Ab42 levels, a-secretase, b-secretase, and g ­
secretase levels. 

SUPPLEMENTARY FIGURE 3 

Knockdown of S100A4 inhibits neuronal apoptosis. (G–J) TUNEL staining and 
quantitative results of the cell apoptosis in HT-22 neuronal cells (N=4). Data 
are presented as mean ± SD. ***p<0.001 vs. Ctrl-CM; ###p< 0.001 vs. 
AbetaO-CM. 
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