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Investigating the role of tumor
cell heterogeneity and
angiogenesis genes in the
prognosis of multiple myeloma
Xue Qiao †, Zhengrong Song †, Li Geng †, Lina Xing*

and Ying Wang*

Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China
Background: Multiple myeloma (MM) is a common hematologic malignancy

characterized by high tumor cell heterogeneity, which significantly impacts the

clinical prognosis of patients. Angiogenesis and the molecular features of tumor

cells play a critical role in tumor progression and drug resistance. This study aims

to explore the impact of tumor cell heterogeneity and angiogenesis-related

genes on the prognosis of MM.

Methods:We collected transcriptomic data and single-cell RNA sequencing data

from MM patients through the Xena and GEO databases. The data were

processed and analyzed using bioinformatics methods, including differential

gene expression analysis, single-cell clustering, CNV analysis, transcription

factor analysis, screening of angiogenesis-related genes, cell communication

analysis, and immune infiltration analysis.

Results: Through integrative analysis of transcriptomic data and single-cell RNA

sequencing data, we identified significant genomic copy number variations in the

tumor cells of MM patients. Additionally, different tumor subgroups exhibited

differences in angiogenic activity, gene expression, and tumor progression.

Notably, high expression of the transcription factor cAMP-responsive element-

binding protein 3-like 2 (CREB3L2) in the C1 subgroup was associated with the

inhibition of angiogenesis and tumor cell proliferation and migration.

Furthermore, the prognostic model based on angiogenesis and transcription

factors demonstrated high accuracy in predicting the prognosis of MM patients.

Conclusion: This study highlights the critical roles of tumor cell heterogeneity

and angiogenesis-related genes in MM. By constructing a prognostic model, it

provides new theoretical insights for the precise diagnosis and personalized

treatment of MM.
KEYWORDS

multiple myeloma, tumor cell heterogeneity, angiogenesis genes, prognostic model,
single -cell analysis
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1 Introduction

Multiple myeloma (MM) is a common hematological malignancy

caused by the abnormal proliferation of bone marrow plasma cells.

The global incidence of MMhas been increasing year by year, posing a

serious threat to human health. Although there have been certain

advancements in current treatment methods (1–3), such as the use of

proteasome inhibitors and immunomodulatory drugs, which have

extended the survival period of some patients, there are still significant

differences in the prognosis of MM patients. This is related to the

heterogeneity of tumor cells.

Heterogeneity exists in the morphological, gene - expression,

metabolic activity of tumor cells, and their differential responses to

therapeutic drugs (4–6). In MM, heterogeneity leads to differences

in tumor cell growth, invasion, and tolerance, resulting in varying

treatment responses. Angiogenesis is one of the important

mechanisms promoting tumor proliferation and metastasis and is

of great significance in the development of MM. Tumor cells can

obtain more nutrients and oxygen by inducing angiogenesis in a

hypoxic environment, facilitating tumor cell growth and metastasis

(7–9). Therefore, exploring the impact of tumor cell heterogeneity

and angiogenesis genes on the prognosis of MM is a crucial step in

understanding the development mechanism of MM, optimizing

treatment plans, and improving patient prognosis.

Recent genomic and single-cell studies have demonstrated that

MM heterogeneity is largely driven by diverse alterations in key

oncogenic pathways. Activating mutations in the RAS/MAPK axis

(KRAS, NRAS, BRAF) and NF-kB regulators (e.g., TNFAIP3) occur

in up to 45–65% of relapsed/refractory cases and impart distinct

proliferative and survival advantages to subclones (10). Integrative

sequencing of 511 relapsed/refractory multiple myeloma (RRMM)

patients further revealed enrichment of IL6ST mutations alongside

RAS/MAPK and NF-kB aberrations, correlating with poor response

to proteasome inhibitors and immunomodulatory drugs. At the

single-cell level, rare drug-tolerant persister cells have been

identified that upregulate ABC transporters (ABCB1, ABCG2),

anti-apoptotic factors (BCL2, MCL1) and stress-responsive

transcription factors such as ATF4 and XBP1, enabling survival

under therapeutic pressure (11). Moreover, mutations in the

proteasome subunit gene PSMB5 and in the IMiD target cereblon

(CRBN) have been directly implicated in acquired resistance to

bortezomib and lenalidomide, respectively (12). Beyond genetic

lesions, reversible epigenetic plasticity—mediated by dysregulation

of histone demethylases (e.g., KDM5 family) and chromatin

remodelers—drives a slow-cycling, drug-tolerant state that

underlies minimal residual disease and eventual relapse (13).

Together, these findings underscore how the interplay of genetic

and epigenetic programs generates functionally distinct tumor cell

subpopulations that both fuel proliferation and thwart therapy

in MM.

This study integrates transcriptome and single - cell RNA

sequencing (scRNA - seq) data and uses multiple bioinformatics

analysis methods to comprehensively and systematically analyze the

characteristics of tumor cells in MM, the molecular regulatory

mechanism, and its correlation with clinical prognosis (14–16).
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The aim is to provide a theoretical basis and potential targets for the

precise diagnosis and individualized treatment of MM.
2 Materials and methods

2.1 Acquisition and processing of
transcriptome data

RNA expression profiles and clinical data of multiple myeloma

were collected from the UCSC Xena database (University of

California, Santa Cruz, CA, USA). The Xena database is a tumor

- related data repository that provides extensive data, facilitating the

design of research. During data analysis, samples with a generation

time of less than 10 days were excluded, and 851 samples with a

generation time greater than 10 days were selected to improve the

stability and reliability of the samples (17–19). The samples of MM

patients included those from different stages and with different

characteristics, which were highly representative.

The obtained data were converted into a measure of gene

expression at the transcriptome level - transcripts per million

(TPM) - which standardizes gene expression levels by converting

data into the number of transcripts. This eliminates the influence of

gene length and sequencing depth differences, facilitating the

comparison of gene expression levels among different samples (20–

22). Subsequently, the data were log2 - transformed to effectively

narrow the data range, improve data normality, and facilitate

subsequent statistical analysis and model construction. Part of the

data was used to construct the model, and the remaining data served

as the validation group to evaluate the robustness and reliability of the

model, ensuring the effectiveness and stability of the research results.
2.2 Acquisition and processing of scRNA-
seq data

The single-cell dataset was obtained from the GEO database,

and GSE271107 contained 4 MM tumor samples and 5 HD (healthy

control) samples, totaling 9 samples. R software (version 4.1.3), with

Seurat (version 4.0.6) as the core software, was used for analysis

(23–25).

During the cytoplasmic quality control stage, strict screening

criteria were set: mitochondrial gene content < 20% to exclude

dying or stressed cells; the unique molecular identifier (UMI) count

range 200-20000 to remove barcodes with too few transcripts

(ambient RNA) or potential multiplets; and gene number 200-

5000 to eliminate low-complexity or doublet cells. These thresholds

were chosen based on commonly used practices in cancer scRNA-

seq studies and our own data distributions. A 20% mitochondrial

cutoff is frequently applied to remove apoptotic cells while retaining

diverse tumor subpopulations. UMI and gene count bounds follow

10x Genomics and Seurat guidelines to ensure both sensitivity for

low-RNA cells and exclusion of doublets.

The Seurat package function NormalizeData was used to

normalize the data, eliminating the impact of different sequencing
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depths of different cells. The FindVariableFeatures function was

used to select 2000 highly variable genes (25–27). These genes have

significant expression differences among cells and can be used to

distinguish cell types. The ScaleData function was used for data

transformation, and the parameters vars.to.regress = c(“S.Score”,

“G2M.Score”) were set to remove the influence of the cell cycle,

making the data better represent the biological state of cells.

The harmony method was applied to remove batch effects.

Batch effects refer to differences between batches that can occur

during experimental processes such as sample preparation and

sequencing, affecting cell type identification and cell analysis

results. We ran Harmony (version 1.0) on the first 20 principal

components, specifying sample identity as the batch variable. We

set the diversity penalty parameter theta = 2 and ridge regression

penalty lambda = 0.1 (max.iter.harmony = 10), following the

recommendations for moderate-heterogeneity datasets to balance

integration and biological variance. After treatment with harmony,

the UMAP dimensionality reduction method (UMAP) and Louvain

clustering algorithm of Seurat were used to classify and cluster cells.

The FindAllMarkers function was used to calculate differential

genes between different clusters or cell types, with P < 0.05, log2

FC > 0.25, and expression proportion > 0.1 as thresholds (28–30).
2.3 Obtaining angiogenesis-related genes

Angiogenesis - related genes were obtained from the

CancerSEA database. The information on angiogenesis-related

genes in the CancerSEA database contains functional annotations

of many genes related to various cancers and can be used to explore

genes involved in tumor angiogenesis. These genes are important

targets for subsequent data analysis, enabling the exploration of

their roles in MM and their relationship with prognosis.
2.4 Cell annotation analysis

Cell types were annotated based on the expression of well‐

established marker genes curated from the literature and public

databases: epithelial cells (EPCAM, KRT8, KRT18) (31, 32);

fibroblasts (DCN, LUM, FAP) (32); endothelial cells (PECAM1,

VWF, CDH5) (33); T cells (CD3D, CD3E, CD8A for CD8+ T cells

and CD3D, CD3E, CD4 for CD4+ T cells) (4); natural killer (NK)

cells (NKG7, GNLY, KLRD1) (4); B cells (MS4A1, CD79A, CD19)

(9); plasma cells (SDC1, MZB1, IGKC) (34); and myeloid cells

(CD14, LYZ, FCGR3A) (35).

Using these markers, the cells in the single - cell data were

classified, annotated, and UMAP plots and violin plots of cell

markers were drawn. The UMAP plot intuitively reflects the

distribution of cells in low - dimensional space (31–33), clearly

showing the clustering characteristics of different cell types. The

violin plot reflects the expression distribution of marker genes in

each cell type, verifying the accuracy of cell classification and laying

a foundation for further in - depth analysis of the roles of different

cell types in MM.
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2.5 Sub-group analysis of tumor cell
populations

The cells corresponding to the tumor cell Cluster were

separately extracted, and topMarker was used for further cell

annotation analysis. topMarker refers to genes that are highly

expressed or specifically expressed in tumor cell sub -

populations. Through the analysis of TopMarker, a more in -

depth study of the characteristics and differences of tumor cell

sub - populations can be carried out, revealing the biological

characteristics of different tumor cell sub - groups and providing

more detailed information for the study of tumor cell heterogeneity.
2.6 Single - cell CNV analysis

The InferCNV software was used to perform CNV (Copy

Number Variation) analysis on each cell sub - population.

Normal plasma cells were used as a reference, and the genome of

normal plasma cells served as a stable reference standard for

comparing the genomic changes of tumor cell sub - populations.

This analysis can accurately identify malignant cells with

abnormal genomic copy numbers and evaluate the CNVscore of

each cell sub - population. The CNVscore quantifies the degree of

genomic copy number variation in cells (34–36). The magnitude of

its value represents the instability of the cell genome, providing

guidance for understanding the genomic variation characteristics of

tumor cells and evaluating the malignancy of tumor cells.
2.7 Single - cell pseudotime analysis

The monocle2 software (v2.18.0; Seattle, USA) was used to

perform pseudotime analysis on tumor cell sub - populations to

simulate the cell differentiation pathway. In the pseudotime analysis,

the dimensionality reduction algorithm was set as discriminative

dimensionality reduction via trees (DDRTree). The DDRTree

algorithm can effectively capture the high - dimensional non -

linear structure of cells and map it to a low - dimensional space,

more appropriately expressing the relationships and differentiation

order among cells. Other parameters were set by default to ensure the

standardization and repeatability of the analysis process.

Pseudotime analysis can present the kinetic changes of tumor

cells from the initial state to various differentiated states, determine

the positions and rules of each cell sub - population in the

differentiation trajectory, and understand the differentiation

mechanism and evolution rules of tumor cells, providing a

reference for tumor development.
2.8 Transcription factor analysis of MM
cells

The SCENIC software (v1.2.0; Seattle, USA) was used to analyze

the transcription factors of tumor cell sub - populations. The
frontiersin.org
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SCENIC software integrates transcription factor binding site data

and gene expression data and can directly infer the transcription

factor control network. The default parameters in the motif

databases of RcisTarget (v1.2.0; Seattle, USA) and GRNBoost

were used for SCENIC analysis.

The RcisTarget software package was used to identify

significantly over - expressed transcription factor binding motifs

in the gene list. These binding motifs are important components for

transcription factors to exert regulatory functions. By identifying

binding motifs, transcription factors with potential regulatory

activity in MM tumor cell sub - populations can be determined.

The activity of each regulator group for each cell type was scored

using the AUCell software (v1.12.0; Seattle, USA) package to

quantify the level of transcription factor activity, providing a

numerical quantification index for further exploring the

regulatory mechanism of transcription factors in MM cells.

Transcription factor regulatory network inference was

conducted using SCENIC (v1.2.0), integrating single‐cell

expression data with cis‐regulatory motif information. To tailor

the analysis for MM data, we optimized key SCENIC parameters

rather than relying solely on defaults. First, the GRNBoost2

algorithm (implemented in the pySCENIC pipeline) was run

with 1 000 trees (n_estimators = 1000) and a minimum gene–

gene co‐expression correlation threshold of 0.001, which we

determined by inspecting the distribution of pairwise gene

correlations in our MM dataset to balance sensitivity for weak

but biologically relevant co‐expression links against noise. Next,

putative regulons were refined using RcisTarget (v1.2.0) with the

hg38 motif rankings database (mm9 version 10 kb upstream, motif

ranking file “hg38‐500bp.owl”); we retained only those

transcription factor (TF)–target motif enrichments meeting an

FDR < 0.05 and an enrichment score (NES) > 3. Finally, regulator

activity was quantified per cell with AUCell (v1.12.0; USA) using

an AUC threshold of 0.05 (i.e., a gene set was considered “active” in

a cell if its AUC score exceeded the 95th percentile of background

AUC values for shuffled gene sets), which we selected by plotting

the bimodal distribution of AUC scores in our MM single‐cell data

and choosing the inflection point between low‐ and high‐

activity modes.

To validate the inferred regulons, we cross‐referenced our top

TF–target pairs against two independent resources: DoRothEA v2

regulon database (confidence levels A–C) and JASPAR 2022 (core

vertebrates collection). We found that > 80% of high‐confidence

TF–target interactions identified by SCENIC overlapped with

entries in DoRothEA or had corroborating evidence in JASPAR

(e.g., matching PWM hits within ± 10 kb of the transcription start

site), thereby confirming the biological relevance of our MM‐

specific regulons. In addition, we compared the activity patterns

of canonical MM‐related TFs (e.g., XBP1, IRF4) against published

single‐cell studies in plasma‐cell malignancies (37), observing

consistent enrichment in tumor subpopulations known to depend

on these regulators. All parameter settings and validation metrics

are provided here to enhance reproducibility and confidence in our

SCENIC‐based regulatory network inferences.
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2.9 Cell - to - cell communication analysis

The CellChat package (v1.4.0; Jinmiao Chen Lab, Shanghai,

China) was used to analyze the communication status between cells.

First, the normalized gene expression matrix was imported through

the CellChat function to obtain a cellchat object, providing raw data

for the next - step analysis.

Then, the functions identifyOverExpressedGenes, identifyOver

ExpressedInteraction, and ProjectData were used for data pre -

processing. The function identifyOverExpressedGenes is used to

find over - expressed genes, the function identifyOverExpressed

Interaction is used to identify over - expressed cell - to - cell

interactions, and the function ProjectData is used to project the

data for the next - step cell communication analysis.

Subsequently, potential ligand - receptor interactions were

identified by calculating communProb, filterCommunication, and

communProbPathway functions. The communProb function

calculates the cell - to - cell communication probability,

filterCommunication filters the communication probability to

remove low - confidence interactions, and the communProb

Pathway function further determines the communication pathway.

Finally, the aggregateNet function was used to visualize the

generated cell communication network, allowing for direct

observation of the communication relationships between different

cell types. This provides evidence for the study of information

transfer and collaborative regulation between cells and is conducive

to further clarifying the mutual regulatory effects among cells in the

MM tumor microenvironment.
2.10 Calculation of angiogenesis signature
score

Using angiogenesis - related genes, the single-sample gene set

enrichment analysis (ssGSEA) algorithm of the GSVA package

(v1.40.1; Seattle, USA) was used to calculate the functional score

of single - cell data. The ssGSEA (single - sample Gene Set

Enrichment Analysis) algorithm can calculate the gene - set

enrichment score of a single sample based on the expression of a

gene set in that sample, quantifying the activity of angiogenesis at

the single - cell level.

The angiogenesis signature score can be used to judge the

overall expression of angiogenesis - related genes in each single

cell, facilitating the quantitative study of the role of angiogenesis at

the single - cell level in MM and helping to understand the

differences in angiogenesis activity among cells and its association

with tumor cell heterogeneity.
2.11 Immune infiltration analysis

The ESTIMATE (v1.0.13; New York, USA), CIBERSORT

(v1.06; Stanford University, USA), and xCell (v1.1.0; Stanford

University, USA) algorithms were called through the IOBR
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package (v0.99.9; Beijing, China) to quantitatively evaluate the

immune infiltration level of each patient in the risk group. The

ESTIMATE algorithm evaluates the degree of tumor immune

infiltration based on the content of immune cells and stromal

cells in the tumor microenvironment. CIBERSORT can accurately

infer the content of 22 types of immune cells in tumor tissues using

gene expression profiles. xCell provides more comprehensive

annotation information of immune cells and stromal cells for

quantitative analysis of multiple cell types.

By comprehensively applying these three algorithms, a

comprehensive evaluation of the immune infiltration in the

tumor tissues of MM patients was carried out from multiple

dimensions, including the types, numbers, and proportions of

immune cells, and the relationship between the immune system

and tumors was explored in depth, providing a basis for guiding the

application of immunotherapy in MM.
2.12 Differential gene analysis and
enrichment analysis

The limma software was used to perform differential gene

analysis on the high - and low - Risk groups. The limma software

is widely used for gene expression data analysis and has powerful

statistical analysis functions. Strict differential screening conditions

were set in the limma program software: |logFC| > 1 and padj <

0.05. Here, |logFC| (log Fold Change) represents the multiple of

gene expression changes between the two groups, and padj

(adjusted P - value) is the p - value corrected by multiple tests,

used to control the false - positive rate. Genes that meet these two

conditions are considered to have differential expression between

the high - and low - Risk groups.

The clusterProfiler package (v4.2.2; Yu Lab, Guangzhou,

China), Kyoto Encyclopedia of Genes and Genomes (KEGG), and

Gene Ontology (GO) libraries were used for enrichment analysis.

The KEGG database contains rich biological pathway information,

and the GO database contains gene function annotations, cell

components, and biological process information. When the P -

value after BH (Benjamini - Hochberg) correction is less than 0.05,

the gene is determined to be enriched in that function. Finally, the

ggplot2 package was used for visualization, presenting the results of

the enrichment analysis in an intuitive chart form, facilitating the

intuitive observation and analysis of the enrichment of differential

genes in biological functions and signaling pathways and

discovering potential biological differences between the high - and

low - risk groups.
2.13 Comparison of genomic variation
landscapes between two groups

The R package “maftools” was used to manipulate mutation

data for mutation burden difference analysis between the two

groups. The “maftools” package can read and write mutation data

files (such as MAF - format files) and has multiple analysis and
Frontiers in Immunology 05
visualization functions. Using this package, the mutation frequency,

mutation type distribution, and genomic mutations of tumor cells

in the two groups of samples can be calculated.

At the same time, the “maftools” package was used to draw a

mutation waterfall plot. The waterfall plot can directly reflect the

mutated genes, mutation types, mutation sites in each sample, and

the distribution of mutations in the sample, clearly showing the

characteristics and differences of genomic variations. It is a

visualization tool for observing and intuitively indicating the

differences in genomic variation landscapes between the two

groups and can be used to search for important mutated genes

affecting the prognosis of MM.
2.14 Establishment of a LASSO - Cox
prognostic model based on transcription
factors and angiogenesis genes of C1
tumor cells

A total of 75 genes, including TARGET genes (importance > 10)

related to the specific transcription factor cAMP-responsive

element-binding protein 3-like 2 (CREB3L2) of C1 tumor cells

and angiogenesis genes, were extracted. First, a univariate Cox

analysis was performed. The Cox proportional - hazards model is

a commonly used survival analysis method used to evaluate the

relationship between a single gene and the survival outcome.

Through univariate Cox analysis, genes related to survival were

selected, and candidate genes with prognostic value were

initially selected.

Then, the Least Absolute Shrinkage and Selection Operator

(LASSO) + Cox algorithm was used to construct a prognostic model

with the glmnet (v4.1-3; Friedman Lab, Stanford University, USA)

software package. The LASSO algorithm can compress and select

regression coefficients during model construction, avoiding

overfitting and selecting the gene combination with the most

predictive value for prognosis. After final modeling, the risk score

of patients can be calculated based on their gene expression data to

predict their survival status.

Finally, the timeROC (v0.4; Blagus Lab, University of Ljubljana,

Slovenia) package was used to estimate the AUC (Area Under The

Curve) values at 1, 3, and 5 years. The AUC value is used to evaluate

the prediction accuracy of the model, with a value range of 0 - 1. The

closer the AUC value is to 1, the higher the prediction accuracy of

the model. By comparing the AUC values at different time points,

the prediction accuracy of the model at different follow - up time

points can be fully evaluated, which is helpful for the selection of the

model in clinical applications.
2.15 Statistical analysis

All data analysis and statistical mapping were performed using

R4.1.3 software. The Pearson correlation coefficient was used to test

the linear relationship between two continuous variables. The value

of the Pearson correlation coefficient ranges from - 1 to 1, and the
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closer it is to 1, the stronger the correlation. The chi - square test

was used to compare categorical variables, which is used to

determine whether there is an association between two or more

groups of categorical variables. The Wilcoxon rank - sum test or T -

test was used to compare continuous variables. The Wilcoxon rank

- sum test is applicable to continuous variables that do not follow a

normal distribution, and the T - test is applicable to continuous

variables that follow a normal distribution. The appropriate test

method was selected according to the characteristics of the research

data to ensure the accuracy of the statistical results. A P value < 0.05

was considered statistically significant. Data are presented as mean

± standard deviation (SD) unless stated otherwise.

The survminer (v0.4.9; Kassambara Lab, University of

Auckland, New Zealand) package was used to determine the

optimal cut - off value. In survival analysis, the optimal cut - off

value is used to divide continuous variables (such as risk scores) into

different categories to distinguish high - risk and low - risk groups.

Both Cox regression and Kaplan - Meier analysis were performed

using the survival package. Cox regression was used to establish a

multi - factor survival model to examine the comprehensive impact

of multiple factors on the survival outcome. Kaplan - Meier analysis

was used to create survival curves, intuitively observing the survival

status of patients in different groups and comparing whether there

are differences in survival rates between groups, providing a

comprehensive statistical analysis for studying the prognosis of

MM patients.
3 Results

3.1 Single - cell expression atlas of MM

After a series of analysis processes such as strict quality control

and fine - grained dimensionality reduction of single - cell data, a

total of 35621 high - quality cells were finally obtained. Based on

classical cell - classification markers, these cells were successfully

divided into 8 major categories: epithelial cells, fibroblasts,

endothelial cells, T cells, NK cells, B cells, plasma cells, and

myeloid cells (Figures 1A, B). This classification result laid the

foundation for subsequent studies on the roles of different cell types

in MM. In addition, the distribution proportions of cell types in the

cell cycle and sample types were shown (Figures 1C, D). In terms of

cell types, it can be seen from the cell cycle that different cell types

have different distributions in different stages of the cell cycle, that

is, their proliferative activities and metabolic states are different.

From the perspective of sample types, the proportions of each cell

category in MM tumor samples and HD samples also vary,

indicating that the tumor microenvironment can affect cell

type distribution.

The bubble plot (Figure 1E) and UMAP plot (Figure 1F) clearly

reflect the marker expression of different cell types. In the bubble

plot, the larger and darker the bubble, the higher the gene expression

level and the greater the proportion of cells expressing the gene. It

can be seen that the expression intensity and prevalence of marker
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genes in different cell types vary. The UMAP plot reflects the

expression of marker genes in different cells from the spatial

distribution, which can verify the correctness of cell classification

and ensure the accuracy of cell type division in the analysis. In

addition, the distributions of G2M.score, S.score, nFeatureRNA, and

nCountRNA in each cell were shown (Figure 1G). G2M.score and

S.score reflect the stages of the cell cycle. The distribution differences

of different cell types can help us understand the proliferative states

of different cell types. nFeatureRNA represents the number of genes

detected in each cell, and nCountRNA represents the number of

UMI in each cell. Their distributions reflect the richness of gene

expression in cells and the depth of sequencing. At the same time, the

KEGG enrichment analysis of the markers of each cell type was

presented (Figure 1H). Through enrichment analysis, we found that

the marker genes of different cell types are enriched in different

biological processes and signaling pathways.
3.2 Analysis of CNV

Supplementary Figure 1 shows the heat map of the results of

analyzing plasma cells using the inferCNV software (v1.9.1; MA,

USA). The abscissa represents the genomic region, and the ordinate

is not marked but should be related to sample classification. “HD”

represents healthy control samples, and “MM” represents multiple

myeloma samples. The color depth in the figure represents the

change in gene expression level. The more the color deviates from

the middle color (such as the deeper the red or blue), the more

significant the change in gene expression level. It can be seen that

there are differences in the gene expression corresponding to the

genomic copy number between MM samples and HD samples,

intuitively indicating that tumor cells (plasma cells in MM samples)

have very significant CNV changes compared with normal plasma

cells (HD samples). This change provides important clues for

subsequent studies on the malignant characteristics and related

mechanisms of tumor cells.

Supplementary Figure 2 shows the analysis results of plasma cell

subsets. Supplementary Figures 2A, B are UMAP dimensionality -

reduction plots, involving a total of 4906 cells. In Supplementary

Figure 2A, cells are marked with different colors according to

different “seurat_cluster” (clusters 0 - 8), and it can be seen that

the cells are divided into multiple subsets. In Supplementary

Figure 2B, cells are marked according to sample groups. Light

blue represents healthy control samples (HD, a total of 1986 cells),

and dark blue represents multiple myeloma samples (MM, a total of

2911 cells). It can be clearly seen that the cells from MM and HD

samples have obvious clustering boundaries on the UMAP plot.

Supplementary Figures 2C, D are violin plots used to show the

relationship between CNVscore (copy number variation score) and

gene expression level. Supplementary Figure 2C shows the

distribution of CNVscore in different cell subsets according to

“seurat_cluster”, and the distribution of CNVscore in each subset

is clear at a glance. Supplementary Figure 2D shows the distribution

of CNVscore in MM samples (dark blue) and HD samples (light
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blue) according to sample groups. It can be seen that there are

differences in the CNVscore distribution between MM samples and

HD samples. Combining the UMAP plot and CNVscore analysis,

the left - hand cluster shows different CNVscore characteristics
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from other subsets and HD samples. Therefore, it can be judged that

the left - hand cluster is tumor/malignant cells, providing intuitive

data support for further in - depth study of the malignant

characteristics and mechanisms of plasma cells.
FIGURE 1

Single-cell expression atlas of MM. (A) UMAP analysis of single cells. (B) Proportional distribution of different cell types in MM samples.
(C) Distribution of different cell types across cell cycle stages. (D) Proportional differences in cell types between MM and healthy donor samples.
(E) Bubble plot of marker gene expression in different cell types, where bubble size and color intensity reflect gene expression levels. (F) UMAP
spatial distribution of marker genes in different cell types. (G) Distribution of G2M.score, S.score, nFeatureRNA, and nCountRNA in different cell
types. (H) KEGG enrichment analysis of marker genes for each cell type.
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3.3 Tumor subtype-specific characteristics
and heterogeneity of malignant cell
populations

The malignant cells were isolated separately, subjected to

dimensionality - reduction clustering, and the four malignant cell

populations obtained by clustering were named according to

topMarker. According to tumor subtypes, the cells were divided

into Immunoglobulin A (IgA), Immunoglobulin G (IgG), and

Immunoglobulin D (IgD), and their UMAP plots and

composition results were shown respectively (Figures 2A–E). The

distribution characteristics and differences of different subtypes of

malignant cell populations in the low - dimensional space can be

seen from the UMAP plot. The compositions of each subtype cell

population are also different, reflecting the heterogeneity at the

tumor cell subtype level.

The heat map of ro-ro e - value (Figure 2F) shows that there are

obvious differences in the tumor subtype attribution of different

malignant cell populations. The ro-ro e - value heat map can reflect

the preferential distribution of cell populations in different tumor

subtypes, providing a quantitative basis for further clarifying the

relationship between malignant cell populations and tumor

subtypes. Then, the marker expressions of different cell

populations were shown (Figure 2G). The marker gene

expressions of different cell populations are different, which can

not only distinguish different cell populations but also imply

differences in their biological functions.

The differential genes of each cell population were shown

through volcano plots (Figure 2H), intuitively showing the gene

expression changes among different cell populations. In the figure,

red dots represent up - regulated genes, blue dots represent down -

regulated genes, and the larger and darker the dots, the greater the

gene expression difference. Through the comparison of CNVscore

and other indicators of each cell population in different subtypes

(Figures 2I–K), it was obtained that C1 has the largest CNVscore,

indicating that the genomic variation degree of the C1 cell

population is the highest and may have greater malignant

potential. The GOBP enrichment results of the markers of each

cell population (Figures 2J–K) can show the differential enrichment

results of the marker genes of different cell populations in biological

processes (GOBP).

The common enrichment results among cell populations were

presented using a bubble plot (Figure 2L), and it can be seen that

many cell populations have common enrichments in some cell

metabolism and signal transduction pathways, which may be the

common mechanism for tumor cells to survive or maintain their

basic survival functions. The unique enrichment results of each cell

population were presented using an arrow plot (Figure 2M), visually

showing the unique biological processes and functions of each cell

population and emphasizing the differences among cell populations.

Finally, the ssGSEA scores of metabolic pathways in KEGG were

calculated and their distributions in each cell population were

presented (Figure 2N). It can be seen that there are differences in

metabolic activities and the utilization of metabolic pathways

among different cell populations.
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3.4 Trajectory analysis of tumor cells

The trajectory analysis of tumor cells was performed using

monocle2, and a clear trajectory plot was obtained (Figures 3A–C).

The results showed that C1 was in the early stage, and C2 and C3

were in the late stage. All cells were divided into 5 States. From the

trajectory plot, it can be directly seen that the tumor cells differentiate

from the initial form to endpoints with different degrees of

differentiation and development over time, as well as the positions

of tumor cells in the cell population and the differentiation trajectory.

The cell compositions of each State were shown (Figures 3D, E), and

it can be seen that there are differences in the subtype and percentage

of cell populations among different States, indicating the

heterogeneity of the tumor cell differentiation process.

The CytoTRACE software (v0.3.3; Boston, USA) was used to

accurately measure the differentiation stages of each cell population

(Figure 3F), confirming the accuracy of C1 being in the starting/

early stage. The CytoTRACE software provides supporting evidence

for determining the starting position of cells in the differentiation

trajectory by measuring the differentiation potential of cells. The

slingshot software (v2.2.0; Cambridge, UK) was used to analyze the

trajectory, and two clear trajectories were obtained (Figures 3G–I).

These two trajectories may represent different differentiation

directions or development paths of tumor cells, providing new

clues for studying the differentiation mechanism of tumor cells

from a new perspective.

Finally, the expression of topMarker of each cell population

over pseudotime was shown (Figure 3J). The expression of

topMarker of different cell populations changes dynamically with

the progress of pseudotime, indicating the change of gene

expression regulation during cell differentiation. Genes correlated

with pseudotime were calculated and their expression was shown in

a heat map (Figure 3K). The color depth in the heat map represents

the level of gene expression. From the heat map, the change trends

of different genes at different time points can be clearly and

intuitively seen, which is helpful for screening key regulatory

genes and molecular mechanisms during the differentiation

process of tumor cells.
3.5 Cell communication analysis

CellChat was used to analyze the communication status of each

cell subtype, and the communication network diagrams of each cell

subtype were shown (Figures 4A–C). In the communication

network diagram, the thickness of the lines represents the

communication intensity between cells. It can be seen from the

figure that the communication pattern of C1 malignant cells (with

high CNVscore and in the initial stage of trajectory analysis) is

different from that of other cells. C1 malignant cells have strong

communication connections with some cells, indicating that they

can interact with other cells in the tumor microenvironment and

affect tumor progression. Normal plasma cells have a special

communication pattern with other cells, including immune cells,

and may play a role in immune regulation.
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FIGURE 2

Tumor subtype-specific characteristics and heterogeneity of malignant cell populations. (A) UMAP plot of four malignant cell populations (C0, C1,
C2, C3). (B) UMAP plot of tumor subtypes (HD, IgA, IgD, IgG). (C) Proportional distribution of malignant cell populations across tumor subtypes.
(D) Malignant cell population distribution within IgA, IgD, and IgG subtypes. (E) Ro-Ro E-value heatmap showing preferential distribution of cell
populations across subtypes. Each cell shows the ro-ro e-value, defined as –log10 of the reciprocal BLAST E-value between receptor pairs. Higher
values (red) indicate stronger reciprocal best-hit similarity; lower values (blue) indicate weaker or non-significant alignments. (F) Marker gene
expression heatmap of malignant cell populations. (G) Volcano plots of differential gene expression across cell populations. (H) CNVscore
distribution across cell populations. (I-K) GOBP enrichment analysis of marker genes. (L) Bubble plot of common enrichments in cell metabolism
and signaling pathways. (M) Arrow plot of unique biological processes in each malignant cell population. (N) ssGSEA scores for metabolic pathways.
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FIGURE 3

Trajectory analysis of tumor cells. (A) Trajectory plot showing differentiation from C1 (early stage) to C2 and C3 (later stages). (B) Expanded trajectory
plot showing tumor cell progression from C0 to C3. (C) Pseudotime distribution of tumor cells along the differentiation path. (D) Cell composition
analysis across states (1–5), highlighting differences in tumor cell populations. (E) CytoTRACE analysis confirming C1 as the early differentiation stage.
(F) Slingshot analysis showing two distinct tumor cell differentiation trajectories. (G) UMAP plot of tumor cells along two differentiation lineages.
(H) UMAP plot showing tumor cells in different differentiation states (1–5). (I) TopMarker gene expression changes over pseudotime. (J) Gene
expression of IGHD, IGHG3, CCL5, and IGKV1−16 across pseudotime. (K) Heatmap of genes correlated with pseudotime.
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Bubble plots of incoming and outgoing signals of each cell

group in each pathway were shown (Figure 4D). The size and color

of the bubbles represent the intensity of the communication signal.

From the bubble plot, the communication strengths of different cell
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groups in different signal pathways can be directly and

intuitively analyzed.

The PTN pathway (with more communication between C1

malignant and normal plasma cells) was selected, and its
FIGURE 4

Cell communication analysis. (A) Communication network diagrams for C1, C2, and C3 malignant cells. (B) Communication patterns between
malignant cells and immune/non-immune cells. (C) Comparison of communication networks across different malignant cell subtypes. (D) Bubble
plots showing the incoming and outgoing signals of each cell group in various pathways. (E) Communication heatmap of the PTN pathway. (F) MK
signaling pathway network depicting communication between cell types across malignant groups. (G) Bubble plot of communication from C1
malignant cells to other cells. (H) Ligand gene expression in C1 cells, shown through single-cell data. (I) MDK-NCL ligand-receptor network.
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communication heat map (Figure 4E) and the communication

situation diagram of each cell (Figure 4F) were shown. The

darker the color in the communication heat map, the stronger the

ligand - receptor interaction. It can be seen from the figure that

there is a specific communication pattern between C1 malignant

cells and normal plasma cells in the PTN pathway. The

communication situation diagram of each cell directly reflects the

specific communication situation between different cells on

this pathway.

A bubble plot of the communication from C1 malignant cells to

other cells was given (Figure 4G). It was observed that C1 malignant

cells communicate with many other types of cells, and the

communication intensities on different types of cells are different.

The ligand genes appearing in the above figures were observed

through a bubble plot for their expression in single - cell data

(Figure 4H), and it was found that MDK - NCL was involved in the

communication situation in Figure 4G. Finally, the cell

communication network diagram of the MDK - NCL ligand -

receptor was given (Figure 4I). The communication network

diagram of the MDK - NCL ligand - receptor provides the

specific communication pattern and potential regulatory

mechanism between cells, providing clues for understanding the

information transfer between tumor cells and other cells.
3.6 Transcription factor analysis

After calculating the CSI matrix of each transcription factor, a

clustering algorithm was used to cluster the transcription factors

into 3 groups: M1, M2, and M3 (Figure 5A). Clustering analysis can

classify transcription factors into different categories according to

their similarities, facilitating the study of the functions and

regulatory mechanisms of different transcription factor groups.

The distribution of tumor cell subsets and different tumor

subtypes was shown (Figures 5B, C). It was found that there are

differences in the distribution of tumor cell subsets and tumor

subtypes among different transcription factor groups.

The AUC values of transcription factors in each module were

shown (Figures 5D, E). AUC is used to quantitatively measure the

regulatory activity of transcription factors. The results showed that

C1 malignant cells had a higher AUC in M1, indicating that the

transcription factors in group M1 had a higher regulatory activity in

C1 malignant cells and may play an important role in maintaining

and developing the malignant phenotype of C1 cells. The RSS scores

of transcription factors in each tumor cell subtype and tumor

subtype were calculated and visualized (Figures 5F, G). The RSS

score can express the specific regulatory degree of transcription

factors in different cell subtypes. Through visualization, it can be

seen that the RSS scores of different transcription factors in different

tumor cell subtypes are different, further confirming the cell -

subtype specificity of transcription factor regulation.

Finally, 4 transcription factors with advantages in C1 malignant

cells (such as CREB3L2) were selected for AUC visualization

(Figures 5H, I). Based on AUC visualization, the differences in

the transcriptional regulatory activities of these 4 transcription
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factors in each sample cell group were intuitively shown. The

AUC of CREB3L2 in C1 malignant cells was significantly higher

than that in other cell types, indicating that it plays an important

role in the transcriptional regulation of C1 malignant cells and

providing an important target for further studying the molecular

regulatory mechanism of C1 malignant cells.
3.7 Exploring the association between
CREB3L2 and angiogenesis

The ssGSEA algorithm was used to calculate the angiogenesis

score in single - cell data, and the distributions of CREB3L2 and the

angiogenesis score on the UMAP plot were shown respectively

(Figures 6A, B). From the UMAP plot, the distribution patterns of

CREB3L2 and the angiogenesis score at the single - cell level can be

directly observed, and there are certain differences in their

distributions. The distribution of the angiogenesis score in each

malignant subtype cell was shown (Figure 6C). C2 and C3 (at the

end of the differentiation trajectory) had high scores, while C0 and

C1 had low scores, suggesting that the angiogenesis activity of

tumor cells may gradually increase with differentiation.

A correlation analysis was performed with the expression level

of CREB3L2, and the result showed a significant negative

correlation (Figure 6D). This suggests that CREB3L2 may inhibit

angiogenesis. Changes in its level may affect the angiogenesis ability

of tumor cells and indirectly affect tumor growth and metastasis,

providing a clue for a deeper understanding of the regulatory

mechanism of tumor angiogenesis.
3.8 Role of CREB3L2 in proliferation,
apoptosis, and migration of myeloma cells
and its mechanisms

Further functional experiments revealed that CREB3L2 is not

only associated with angiogenesis, but also directly affects the

proliferation, apoptosis, and migration of myeloma cells, as

shown in Figures 7, 8. Figure 7A shows the expression

characteristics of CREB3L2 gene in myeloma through three sets

of histograms: the left histogram shows that the expression of

CREB3L2 mRNA in the cancer tissue is significantly increased

compared with the adjacent normal tissue (P < 0.001); the middle

histogram detects different cell lines, showing that the expression of

CREB3L2 in myeloma cell lines (MOLP-2, SK-MM-2) is

significantly higher than that in normal PBMC cells (majority

group, P < 0.001); the right histogram verifies that the gene

expression of the si-CREB3L2 interference group is significantly

down-regulated compared with that of the control group (si-NC) (P

< 0.001), indicating that the interference efficiency is effective.

Figure 7B shows the line graph of cell proliferation experiment.

The results show that in MOLP-2 and SK-MM-2 cells, the OD value

(450 nm) of the si-CREB3L2 group increased significantly lower

than that of the si-NC group with time (P < 0.001), suggesting that

the expression level of CREB3L2 is positively correlated with the
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proliferation ability of myeloma cells. Knocking down this gene can

significantly inhibit cell proliferation.

Figure 8A shows that the percentage of apoptotic cells in the si-

CREB3L2 group was significantly higher than that in the si-NC
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group (P < 0.001), indicating that knockdown of CREB3L2 can

induce apoptosis of myeloma cells. Figure 8B By Transwell

experiments, it was found that the number of migrating and

invading cells in the si-CREB3L2 group was significantly lower
FIGURE 5

Transcription factor analysis. (A) Clustering of transcription factors into three groups (M1, M2, M3) based on the CSI matrix. (B) UMAP plot showing
distribution of tumor cell subsets across transcription factor groups. (C) UMAP plot of tumor subtypes across transcription factor groups. (D) AUC
values of transcription factors in each module, reflecting their regulatory activity. (E) AUC values of transcription factors in tumor subtypes. (F) RSS
scores of transcription factors across tumor cell subtypes. (G) RSS scores of transcription factors in tumor subtypes. (H) AUC visualization of key
transcription factors (e.g., CREB3L2) in C1 malignant cells. (I) AUC visualization of CREB3L2 in C1 malignant cells, highlighting its regulatory role.
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than that in the control group, suggesting that knockdown of this

gene can inhibit the motility of cells. The Western blot results in

Figure 8C showed that the expression of pro-apoptotic protein c-

caspase3 and epithelial marker protein E-cadherin was up-regulated

in the si-CREB3L2 group, while the expression of anti-apoptotic

protein Bcl-2 and interstitial marker protein Vimentin was down-

regulated, suggesting that CREB3L2 may be involved in the

regulation of epithelial-mesenchymal transition (EMT). The

quantitative analysis of Figure 8D further verified the above

results, and the differences in apoptosis rate, number of migrating/

invading cells, and protein expression between groups reached

extremely significant levels (P < 0.001). In summary, knocking

down CREB3L2 can play an anti-tumor role by promoting

apoptosis, inhibiting EMT, and cell migration and invasion.
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Previous studies indicate that in triple-negative breast cancer,

CREB3L2 cleavage produces an active fragment that promotes

Hedgehog signaling via GLI1, which not only enhances tumor

proliferation and stress survival but also induces EMT by

repressing E-cadherin and upregulating vimentin (38); CREB3L2

interacts with ATF6 to regulate EMT-TFs SNAI1/ZEB1 through

CHOP and XBP1, correlating with decreased E-cadherin and

increased vimentin in epithelial tumors (39); FUS-CREB3L2

fusions bind promoters of anti-apoptotic BCL2L1 and MCL1, and

CREB3L2 knockdown increases Annexin V positivity, mirroring

our apoptosis data (40); and CREB3L2 occupies promoters of ER-

homeostasis genes (HSPA5, EIF2a) and apoptosis regulators (BAX,

BAK), with its silencing upregulating pro-apoptotic transcripts and

downregulating CCND1 and CDK4 (41). These findings support
FIGURE 6

CREB3L2 expression and angiogenesis score in MM single cells. (A) UMAP plot of CREB3L2 expression in single cells. (B) UMAP plot of angiogenesis
scores in single cells. (C) Violin plot of angiogenesis scores across malignant subtypes (C0–C3). Boxes represent median and interquartile range;
whiskers indicate min–max. (D) Scatter plot showing a negative correlation between CREB3L2 log2 (TPM + 1) and angiogenesis score; Pearson’s
r = -0.32, P < 0.001.
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our observations that CREB3L2 knockdown in myeloma cells

increases E-cadherin, decreases vimentin, upregulates Bax, and

downregulates Bcl-2, indicating suppression of EMT-like and

anti-apoptotic programs. Future RNA-seq and ChIP-seq analyses

will confirm these direct targets.
3.9 Construction of a prognostic model
with the CREB3L2 regulatory network and
angiogenesis genes

A total of 75 genes, including TARGET genes (importance > 10)

related to the specific transcription factor CREB3L2 of C1 tumor

cells and angiogenesis genes, were used for univariate Cox analysis

to screen out genes related to survival (Figure 9A). Univariate Cox

analysis preliminarily judged the relationship between these genes

and the survival outcome of patients, providing important

candidate genes for the next - step construction of the

prognostic model.

A prognostic model was successfully constructed using the

LASSO + Cox algorithm (Figure 9B). The LASSO algorithm

compresses and selects regression coefficients during model

construction to avoid overfitting and selects the gene combination

with the most predictive value for prognosis. The forest plot of each

prognostic gene was shown by multivariate COX analysis
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(Figure 9C). In the forest plot, the hazard ratio and confidence

interval of each prognostic gene are clearly shown, which can

directly reflect the degree of risk impact of each gene on the

survival of patients. The model coef values of each gene were

shown (Figure 9D). The coef value indicates the weight of each

gene in the model, and its magnitude and positive/negative sign

reflect the direction and degree of contribution to the risk score.

Scatter plots of risk scores and survival times (Figure 9E) and

heat maps of the expression levels of prognostic genes (Figure 9F)

were given. From the scatter plot, the relationship between the risk

score and survival time can be seen. It can be found that patients

with higher risk scores have shorter survival times. The heat map

shows the expression of prognostic genes in different samples.

Different colors represent high and low gene expression levels,

and the expression differences of prognostic genes among different

patients can be seen through the heat map. The principal

component analysis (PCA) results of reducing the dimensionality

of prognostic gene expression levels (Figure 9G) were shown. PCA

analysis can reduce the dimensionality of high - dimensional gene

expression data and show the distribution of samples in low -

dimensional space. Differences between samples in different risk

groups can also be seen from PCAT.

The high - and low - risk groups were stratified by the median

value, and further survival analysis (Figure 9H) and timeROC

results (Figure 9I) were shown. From the survival analysis
FIGURE 7

Role of CREB3L2 in myeloma cell proliferation. (A) Bar graphs showing relative CREB3L2 mRNA expression in paired MM cancer tissue versus
adjacent normal bone marrow (left), myeloma cell lines (MOLP‐2, SK‐MM‐2) versus normal PBMCs (middle), and si‐CREB3L2 versus si‐NC groups
(right). Data are mean ± SD from three independent experiments. **P < 0.01, ***P < 0.001 (Student’s two‐tailed t‐test). (B) Cell proliferation curves
(CCK‐8 assay; OD450) in MOLP‐2 and SK‐MM‐2 cells transfected with si‐CREB3L2 or si‐NC over 1, 2, 3, and 4 day. Data are mean ± SD (n = 4).
Two‐way ANOVA with Bonferroni’s post hoc: ***P < 0.001 for si‐CREB3L2 versus si‐NC at each time point.
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diagram, the survival rate of high - risk group patients was lower

than that of low - risk group patients, and the difference was

statistically significant (P < 0.0001). From the timeROC diagram,

it can be seen that the AUC values of this model at 1 year, 3 years,

and 5 years were 0.69, 0.74, and 0.79 respectively. This model has

good prediction performance and can effectively predict the

prognosis of MM patients.
3.10 Functional analysis of High - and Low
- risk groups

The limma software (v3.48.3; Australia) was used to analyze the

differential genes between the high - and low - risk groups. The top 30

genes ranked by logFC were selected, and the expression heat map of

differential genes was shown (Figure 10A). Different colors in the heat

map represent different gene expression levels, and the pattern of

gene expression differences between the high - and low - risk groups

can be intuitively observed through the heat map. The results of

differential genes were visualized by a volcano plot (Figure 10B). In

the volcano plot, red dots represent up - regulated genes, blue dots

represent down - regulated genes, and the size and color depth of the

dots represent the significance of gene expression differences, clearly

showing the distribution of differentially expressed genes between the

high - and low - risk groups.
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KEGG and GOBP enrichment analyses were performed on the

up - regulated genes in the high - risk group, and the KEGG

enrichment result (Figure 10C) and GOBP enrichment result

(Figure 10D) were shown respectively. KEGG enrichment analysis

showed that the up - regulated genes in the high - risk group were

highly enriched in tumor - related pathways such as the cell cycle,

DNA replication, and PI3K - Akt signaling pathway. The GOBP

enrichment analysis result showed that these genes were highly

enriched in biological processes such as mitotic cell cycle

progression and spindle assembly, suggesting that the tumor cells

of high - risk group patients have higher proliferative ability and

abnormal cell cycle progression.

The scores of functional pathways in each msigdb were counted,

and the pathways with significant differences between the high - and

low - risk groups were selected to draw a heat map (Figure 10E).

The heat map shows the activity differences of these pathways

between the high - and low - risk groups, verifying the biological

function differences between the high - and low - risk groups again.

Five GSEA results of up - regulated genes in the high - risk group

were presented (Figure 10F), showing that these genes were

significantly related to the cell cycle and mitosis, such as

enrichment in pathways like the G2M checkpoint and E2F

targets. This is consistent with the KEGG and GOBP enrichment

results and further explores the biological characteristics and

malignant progression mechanisms of high - risk group tumor cells.
FIGURE 8

Role of CREB3L2 in apoptosis, migration, and EMT of myeloma cells. (A) Representative flow cytometry histograms and quantification of apoptotic
rates in MOLP‐2 and SK‐MM‐2 cells of si‐CREB3L2 or si‐NC transfection. Data are mean ± SD (n = 3). ***P < 0.001 (Student’s two‐tailed t‐test).
(B) Transwell migration and invasion assays for MOLP‐2 and SK‐MM‐2 cells. Left: representative images (×200); right: quantification of migrated/
invaded cells per field. Data are mean ± SD (n = 3). **P < 0.01, ***P < 0.001 (Student’s two‐tailed t‐test). (C) Western blot showing expression of
pro‐apoptotic (cleaved caspase‐3) and anti‐apoptotic (BCL‐2) proteins plus EMT markers (E‐cadherin, vimentin) in si‐CREB3L2 and si‐NC groups.
(D) Quantitative analysis comparing apoptosis rates, migration/invasion cell numbers, and protein expression between groups. Data are mean ± SD
(n = 3). **P < 0.01, ***P < 0.001 versus si‐NC (Student’s two‐tailed t‐test).
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FIGURE 9

Prognostic model based on CREB3L2 and angiogenesis genes. (A) Forest plot of univariate Cox regression analysis for 75 candidate genes. P values
and hazard ratios (HR) with 95% confidence intervals (CI) are shown. (B) LASSO‐Cox model construction: coefficient profiles and cross‐validation
(10‐fold) error curves. (C) Forest plot of multivariate Cox regression for final prognostic signature (n = 6 genes). HR (95% CI) and P values are
indicated. (D) Coefficient values for each gene in the risk score formula. (E) Scatter plot of risk score versus overall survival time; correlation
assessed. (F) Heatmap of expression levels for prognostic genes in low‐ versus high‐risk groups. (G) PCA plot demonstrating separation of low‐ and
high‐risk groups (PC1 = 27.6%, PC2 = 10.7%). (H) Time‐dependent ROC curves: AUC = 0.69 (1 year), 0.74 (3 years), 0.79 (5 years).
(I) Kaplan–Meier survival curves: median cutoff stratifies patients into low‐ and high‐risk. Log‐rank P < 0.0001.
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FIGURE 10

Functional analysis of high- and low-risk groups. (A) Heatmap of the top 30 differentially expressed genes between high‐risk and low‐risk patients
(|log2 FC| > 1, adj P < 0.05). (B) Volcano plot: red dots, upregulated; blue dots, downregulated (adj P < 0.05). (C) KEGG enrichment analysis of
upregulated genes in high‐risk group; dot size reflects gene count, color indicates –log10 (adj P). (D) GOBP enrichment showing significantly
overrepresented biological processes (adj P < 0.05). (E) Heatmap of ssGSEA pathway scores (|NES| > 1, adj P < 0.05). (F) GSEA plots for hallmark
pathways (G2/M checkpoint, E2F targets); nominal P < 0.01, FDR < 0.05. ****p < 0.0001.
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3.11 Immune infiltration, mutation, tumor
immune dysfunction and exclusion, and
drug sensitivity analysis

Bar charts (Figure 11A) and box plots (Figure 11B) of the

proportions of immune cells predicted by CIBERSORT in the two

groups were made. Through these visual charts, the changes in the

proportions of immune cells in the high - and low - risk groups can

be seen. A bar - graph of the correlation analysis between the

immune cells predicted by CIBERSORT and the risk score was

drawn (Figure 11C). Through the bar - graph, it was found that the

proportions of some immune cells were significantly correlated with

the risk score, further verifying the important position of immune

cells in the prognosis of MM.

A heat map of the correlation between immune cells and

prognostic genes was drawn (Figure 11D). The color depth in the

figure represents the strength of the correlation. From the heat map,

the complex relationships between different immune cells and

prognostic genes can be seen, indicating that immune cells may

affect the prognosis of patients by acting on the expression of

prognostic genes. The TIDE was used to calculate the

immunotherapy situation, and it was found that there were

significant differences in TIDE scores between the two groups

(Figure 11E). The TIDE score can be used to evaluate the

responsiveness of tumors to immunotherapy. The high - risk

group had a higher TIDE score, indicating that it may respond

poorly to immunotherapy, providing a reference for the selection of

immunotherapy regimens in clinical practice.

A heat map showing the expression levels of prognostic genes

and the immune infiltration levels predicted by Estimation of

Stromal and Immune cells in Malignant Tumor tissues using

Expression data (ESTIMATE), Cell type Identification By

Estimating Relative Subsets Of RNA Transcripts (CIBERSORT),

and cell type enrichment analysis (xCell) was presented

(Figure 11F), integrating multiple datasets to fully display the

correlation between prognostic gene expression and immune

infiltration levels and helping to gain a deeper understanding of

the relationship between the tumor microenvironment and

prognosis. The top 20 gene mutation waterfall plots of the high -

and low - risk groups were shown (Figure 11G), showing the

mutation types, sites, etc. of each mutated gene. It was found that

the gene mutation spectra of the high - and low - risk groups were

different, and the mutations of some genes were related to the poor

prognosis of the high - risk group.

The correlations between immune checkpoint genes, prognostic

genes, and risk scores were calculated and presented using a bubble

plot (Figure 11H). The size and color of the bubbles in the bubble

plot represent the strength of the correlation. From the figure, it can

be seen that some immune checkpoint genes have certain

correlations with prognostic genes and risk scores, providing

potential directions for the selection of immunotherapy targets.

Finally, the differences in the sensitivity of 15 drugs between the two

groups of patients were shown (Figure 11I). The box plot shows the

sensitivity distribution of different drugs in the high - and low - risk
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groups. It was found that high - risk group patients had lower

sensitivity to some drugs (such as some chemotherapy drugs), while

they may have differential sensitivity to other drugs (such as

targeted drugs), providing a reference for personalized drug use

in clinical practice for different patients.
4 Discussion

We systematically analyzed bulk transcriptome and scRNA‐seq

data fromMM patients to elucidate how tumor‐cell heterogeneity and

angiogenesis‐related genes influence prognosis. By subsetting

malignant cells, we identified distinct tumor‐cell subpopulations.

InferCNV revealed extensive genomic copy‐number alterations, with

CNV scores differing significantly among subgroups—reflecting

variation in malignancy and developmental state. Pseudotime

analysis reconstructed differentiation trajectories, pinpointing

dynamic transitions of tumor‐cell clusters. SCENIC‐based TF

analysis uncovered TF regulatory‐network differences across

subpopulations, highlighting core regulators in specific clusters.

In the research on the correlation between angiogenesis genes

and prognosis, it was found that angiogenesis genes are involved in

the pathogenesis and progression of MM. The prognostic model

based on angiogenesis genes and transcription factors can effectively

predict the prognosis of patients. The model integrates multiple

gene information and has a good prognostic effect, providing data

reference for clinical treatment. In addition, through the functional

analysis of high - and low - risk groups, it was found that high - risk

groups had high expression of related genes, which were related to

biological processes such as the cell cycle and mitosis. That is, the

tumor cells of high - risk group patients have high proliferative

ability and malignancy, which is the reason for the poor prognosis

of high - risk group patients.

This study found that through immune infiltration, mutation,

TIDE, and drug sensitivity analyses, the characteristics of the immune

microenvironment, gene mutation status, and differences in

sensitivity to immunotherapy and drug therapy of MM patients

were obtained. From the immune infiltration analysis, significant

differences were found in the composition and proportion of immune

cell types between high - and low - risk groups. There are complex

correlations between immune cells, prognostic genes, and risk scores,

indicating that the immune microenvironment plays an important

role in the occurrence, development, and prognosis of MM. The

increase in immunosuppressive cells in the high - risk group may

inhibit the body’s anti - tumor immune response and promote tumor

development, while the relatively large number of immune -

activating cells in the low - risk group is conducive to the body’s

immune surveillance and clearance of tumors. The results of gene

mutation analysis suggest that high - and low - risk groups have

different gene mutation spectra. Some gene mutations may affect the

biological behavior changes (proliferation, apoptosis, drug resistance)

of tumor cells, thus affecting the prognosis of patients.

The results of TIDE analysis suggest that there are significant

differences in the immunotherapy responsiveness between high -
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and low - risk groups. Since a higher TIDE score indicates a high

enrichment of immunosuppressive cells and high expression of

immune checkpoint molecules in the microenvironment, the high -

risk group has a poor response to immunotherapy. In contrast, the
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low - risk group may have a better response to immunotherapy.

This has great application value in the selection of clinical

immunotherapy regimens and can achieve the goal of precise

immunotherapy for MM patients.
FIGURE 11

Immune infiltration, mutation, TIDE, and drug sensitivity analysis. (A) Bar chart of relative proportions of 22 immune cell types (CIBERSORT) in high‐
versus low‐risk groups. (B) Box plot comparing proportions of selected immune cells; *P < 0.05, **P < 0.01, ***P < 0.001 (Wilcoxon rank‐sum test).
(C) Bar graph of Pearson’s correlation between risk score and immune cell fractions: r and P values are indicated for each cell type. (D) Heatmap of
correlations between immune cells and prognostic gene expression (Pearson’s r; *P < 0.05, **P < 0.01, ***P < 0.001). (E) TIDE scores in low‐ versus
high‐risk groups; ***P < 0.001 (Student’s two‐tailed t‐test). (F) Heatmap showing combined prognostic gene expression and immune/stromal scores
(ESTIMATE, CIBERSORT, xCell). (G) Waterfall plots of top 20 somatic mutations in high‐ and low‐risk groups. (H) Bubble plot of Pearson’s correlation
between immune checkpoint genes, prognostic genes, and risk scores. (I) Box plot of predicted drug IC50 for 15 agents. ****p < 0.0001.
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Drug sensitivity analysis shows that there are obvious

differences in the sensitivity of 15 drugs between the two groups

of patients. High - risk group patients have low sensitivity to some

chemotherapy drugs, which is related to the drug - resistance

mechanism of tumor cells. For targeted drugs, the sensitivities

between risk groups vary, providing a basis for personalized drug

treatment in clinical practice. The study of drug sensitivity can

analyze the risk grouping of patients and their gene characteristics,

and based on the evidence of potential drug effectiveness, more

targeted drugs can be given to patients, improving the treatment

effect and avoiding unnecessary therapeutic side - effects.

The prognostic model presented in this study was developed

and internally validated using cohorts derived from the UCSC Xena

and GEO databases, but it has not yet been evaluated on an

independent, external dataset. As a consequence, its robustness

and generalizability remain uncertain when applied to patient

populations beyond those originally analyzed. Without external

validation, there is a risk of overfitting to specific cohort

characteristics (e.g., demographic or technical batch effects) that

may not generalize to other clinical settings. Therefore, caution is

warranted before implementing this model in routine clinical

practice: prospective validation in geographically and ethnically

diverse cohorts—as well as across multiple sequencing platforms—

is necessary to confirm its predictive accuracy and stability. In

addition, the lack of external benchmarking may limit the model’s

ability to account for heterogeneity in sample collection procedures,

treatment regimens, and follow-up durations that are common in

real-world settings. Future studies should prioritize obtaining

independent validation datasets—ideally from multi-center

clinical trials or publicly available consortia such as MMRF

CoMMpass or other international miRNA/RNA-seq repositories

—to assess the model’s performance under diverse conditions. Only

with such external validation can the true clinical translation

potential of our angiogenesis- and transcription factor-based

prognostic signature be fully established.

Compared with earlier reports on tumor-associated endothelial

heterogeneity—Zhao et al, who characterized endothelial cell diversity

and plasticity in solid tumors at single-cell resolution (4)—our work

extends these observations into the MM microenvironment by

integrating single-cell pseudotime trajectory analysis with a

comprehensive TF regulatory‐network framework. Our study (1)

applies single-cell trajectory reconstruction to delineate the dynamic

evolution of MM malignant subpopulations (C0–C3) with divergent

angiogenic signatures; (2) directly link CREB3L2 TF activity to

angiogenesis at the single-cell level by leveraging SCENIC‐inferred

regulons; and (3) construct a prognostic signature that combines

CREB3L2‐mediated transcriptional control with angiogenesis‐related

gene expression. This dual‐layered approach not only reveals that high

CREB3L2 activity in C1 cells correlates with suppressed angiogenic

potential, but also demonstrates the utility of TF‐target network

inferences for pinpointing drivers of MM vascular remodeling. Thus,

while prior studies have described endothelial heterogeneity in the

tumor milieu, our work uniquely (i) captures the trajectory‐dependent
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orchestration of TF‐driven angiogenic programs in MM tumor cells,

(ii) provides experimental validation that CREB3L2 knockdown

modulates both angiogenesis and EMT‐related targets (e.g., increased

E-cadherin, reduced vimentin), and (iii) delivers a prognostic model

rooted in both single‐cell regulatory logic and bulk transcriptomic data.

Consequently, these innovations establish a novel conceptual

framework for understanding how transcriptional regulators such as

CREB3L2 dynamically repress angiogenesis during myeloma

progression—insights that were not addressed by existing single-cell

endothelial atlases.

Despite leveraging large-scale bulk transcriptomic and single-

cell RNA-sequencing data, our study has several important

limitations. First, although we analyzed 851 bulk MM samples

from UCSC Xena and performed single-cell profiling on 4 MM

tumor samples (with 5 healthy controls), this sample size remains

modest given the well-known heterogeneity of multiple myeloma.

Consequently, our findings may not be fully generalizable to all

clinical subgroups, particularly rare cytogenetic or high-risk

patients. Second, reliance on publicly available databases (e.g.,

UCSC Xena, GEO) potentially introduces selection biases.

Variability in sample procurement, processing protocols, and

clinical annotation across centers may affect data quality and

compromise the uniformity of patient cohorts. Third, while we

conducted extensive in vitro functional assays to validate the role of

CREB3L2 in regulating angiogenesis, proliferation, apoptosis, and

EMT markers, no in vivo experiments (e.g., xenograft or transgenic

mouse models) were performed to confirm these mechanisms under

physiological conditions. Finally, the retrospective nature of our

analysis precludes assessment of longitudinal changes in CREB3L2

expression or angiogenesis signatures over the course of therapy. To

address these limitations, future studies should incorporate larger,

multi-center cohorts—preferably with prospective clinical sampling

—and employ in vivo models to validate the prognostic model and

mechanistic insights. Such efforts will be critical to confirm the

translational relevance of CREB3L2-mediated pathways in MM and

to refine personalized therapeutic strategies.
5 Conclusion

In this study, we performed an integrative analysis combining

bulk transcriptomic data and single‐cell RNA sequencing to

characterize tumor‐cell heterogeneity and investigate the prognostic

significance of angiogenesis‐related genes in MM. We identified four

distinct malignant cell subpopulations (C0–C3) with divergent copy

number variation profiles, differentiation trajectories, and

transcriptional regulatory patterns. Notably, high CREB3L2 activity

in the C1 subpopulation was associated with suppressed angiogenic

signaling, decreased proliferative and migratory capacity, and

enhanced apoptotic propensity—findings corroborated by both in

silico regulon inference and in vitro functional assays. By integrating

CREB3L2‐target networks with a curated angiogenesis gene set, we

constructed and internally validated a robust LASSO–Cox prognostic
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signature that accurately stratifies MM patients into high‐risk and

low‐risk cohorts. Patients classified as high risk exhibited elevated

expression of pro‐angiogenic and cell‐cycle‐related genes, increased

immune‐suppressive cell infiltration, a higher tumor mutation

burden, and reduced sensitivity to standard chemotherapeutics and

immunotherapy. Conversely, the low‐risk group demonstrated a

more favorable immune microenvironment and drug response

profile. These results extend our understanding of MM biology by

delineating the dynamic interplay between transcription factor–

driven regulatory networks (particularly CREB3L2) and angiogenic

programs at single‐cell resolution, highlighting the prognostic utility

of combining single‐cell regulatory features with bulk gene‐

expression signatures, and revealing potential therapeutic targets—

for example, CREB3L2‐mediated pathways—that may be exploited to

inhibit aberrant angiogenesis and overcome treatment resistance.

Despite the retrospective design, modest sample size, and absence

of in vivo validation, our findings provide a solid theoretical

foundation for future translational research. Prospective, multicenter

studies involving larger, ethnically diverse MM cohorts are warranted

to externally validate the prognostic model, and functional studies

employing in vivo MM models (e.g., patient‐derived xenografts)

should confirm the causal role of CREB3L2 and its downstream

effectors in regulating angiogenesis, proliferation, and apoptosis.

Moreover, given the observed correlations between angiogenic

activity, immune‐suppressive cell infiltration, and drug sensitivity,

follow‐on investigations should explore combination strategies that

concurrently target CREB3L2‐driven transcriptional programs and

immune checkpoint pathways in preclinical and clinical trial settings.

In summary, our work elucidates critical mechanisms underlying MM

progression, provides a novel prognostic signature grounded in both

transcriptional regulation and angiogenesis, and identifies promising

avenues for personalized therapeutic interventions aimed at

improving outcomes for patients with MM.
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