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Malignant epithelial cell marker–
driven risk signature enables
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esophageal cancer
Hao Zhang1,2†, Shizhao Cheng1,2† and Yijun Xu1,2*

1Tianjin Chest Hospital, Tianjin University, Tianjin, China, 2Clinical School of Thoracic, Tianjin Medical
University, Tianjin, China
Background: Esophageal squamous cell carcinoma (ESCC) is a highly

heterogeneous malignancy. Traditional clinical staging systems have limited

value in prognostic evaluation and treatment guidance, often failing to capture

the profound impact of intratumoral diversity on patient outcomes. Single-cell

RNA sequencing (scRNA-seq) provides new perspectives on the cellular makeup

and conditions in tumor tissues, with promising implications for functional

classification and personalized therapeutic strategies in esophageal cancer.

Methods: In this study, we integrated scRNA-seq data with bulk RNA-seq profiles

from esophageal cancer tissues to construct a comprehensive cellular atlas,

focusing on the transcriptional characteristics of epithelial cells. Malignant

epithelial cells were identified based on copy number variation (CNV) features

using inferCNV analysis. Their developmental states and regulatory mechanisms

were further characterized via transcription factor activity inference (SCENIC)

and pseudotime trajectory analysis (Monocle). Based on marker genes of

malignant epithelial subpopulations, we developed a multi-gene risk scoring

model using data from the TCGA and GEO (GSE53624) cohorts. The model’s

predictive value for immune landscape, mutational features, and drug sensitivity

was also evaluated. Additionally, qRT-PCR was conducted to quantify the

expression levels of model genes in ESCC tissue samples, further evaluating

their biological relevance. Functional roles of the key gene HMGB3 were

validated in vitro through CCK-8 proliferation assays, Transwell invasion assays,

and colony formation assays following gene knockdown in ESCC cell lines.

Results: At the single-cell level, we identified ten major cell types and six distinct

malignant epithelial subclusters, which exhibited pronounced heterogeneity in

cell cycle states, transcriptional regulatory networks, and differentiation

trajectories. High CNV scores and the enrichment of specific transcription

factors (e.g., FOXC1, E2F1, RUNX1) suggested a proliferative and immune-

evasive phenotype. A six-gene prognostic model (HMGB3, CHORDC1, CTSD,

BTG2, MT1E, PHYHD1) showed strong predictive accuracy for overall survival in

the TCGA and GSE53624 cohorts. Furthermore, the risk score showed a

significant correlation with an immunosuppressive tumor microenvironment,

increased tumor purity, and the activation of certain immune-related pathways.

Analysis of drug sensitivity suggests that patients classified as low-risk could

respond better to various targeted therapies and chemotherapeutic agents,

underscoring their potential clinical relevance. Functional assays revealed that
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HMGB3 knockdown markedly suppressed ESCC cell proliferation, invasion, and

colony format ion, support ing its oncogenic role in esophageal

cancer progression.

Conclusion: This study systematically characterized epithelial cell heterogeneity

in esophageal cancer at single-cell resolution and established a risk model based

on malignant epithelial markers that effectively predicts prognosis, immune

status, and potential drug response. Combined with experimental validation,

our findings highlight the pivotal role of HMGB3 in ESCC progression and provide

a novel theoretical and practical framework for functional tumor classification

and individualized treatment strategies.
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1 Introduction

Esophageal cancer (EC) is a highly aggressive digestive tract

malignancy with poor clinical outcomes, accounting for more than

500,000 deaths annually worldwide and ranking among the top ten

causes of cancer-related mortality (1, 2). Esophageal squamous cell

carcinoma (ESCC), the predominant histological subtype in China

and other East Asian countries, exhibits notable geographic

distribution patterns (3). Over 70% of patients are diagnosed at

advanced stages due to the disease’s insidious onset and absence of

early symptoms, which greatly restricts treatment options and long-

term survival. Although surgical techniques, chemoradiotherapy,

and targeted therapies have advanced, the five-year survival rate for

EC remains under 30% (4, 5).

In current clinical practice, the TNM staging system serves as

the primary tool for risk assessment and treatment guidance in EC

(6). However, growing evidence indicates that patients with the

same clinical stage often exhibit substantial differences in prognosis,

immune landscape, and therapeutic responsiveness. This highlights

the limitations of traditional staging in capturing the underlying

biological behavior and molecular heterogeneity of tumors. Such

“clinical heterogeneity” represents a major obstacle to achieving

truly personalized cancer treatment (7, 8). Simultaneously, the

introduction of immune checkpoint inhibitors (ICIs) has

transformed cancer treatment, driving critical research into

biomarkers to identify EC patients who may respond to

immunotherapy (9).

Single-cell RNA sequencing (scRNA-seq) has become a crucial

method for analyzing the intricate cellular structure and diversity in

tumor tissues. scRNA-seq offers high-resolution insights into

individual cell types, cellular state transitions, and intercellular

communication networks, unlike bulk RNA sequencing, which only

provides averaged gene expression data across mixed cell populations

(10, 11). This is particularly valuable in exploring the intricacies of the

tumor microenvironment (TME) (12–14). Recent studies have shown
02
that malignant epithelial cells comprise transcriptionally and

functionally distinct subpopulations with diverse evolutionary

trajectories (15). These subpopulations are closely associated with

stemness, proliferative capacity, immune evasion, and potentially,

therapeutic resistance and clinical outcomes. However, a

comprehensive atlas of epithelial cell subpopulations in esophageal

cancer remains lacking. Moreover, studies leveraging single-cell

transcriptomic data to identify functional malignant subsets and

construct prognostic models are still scarce.

Therefore, in this study, we systematically integrated scRNA-

seq data from ESCC patients with large-scale bulk RNA-seq datasets

to construct a detailed map of epithelial cell heterogeneity. Using

multi-dimensional analyses, including CNV inference, pseudotime

trajectory modeling, and transcription factor activity estimation, we

identified potential malignant subclusters. Based on key marker

genes derived from these subpopulations, we further developed a

multi-gene risk model and evaluated its performance in predicting

patient prognosis, immune microenvironment status, mutational

landscape, and anticancer drug sensitivity. Our findings aim to

provide novel cellular-level insights into ESCC heterogeneity and

offer a theoretical and biological foundation for the refinement of

precision therapeutic strategies
2 Methods

2.1 Data acquisition

Single-cell RNA sequencing data (PRJNA777911) were sourced

from the National Center for Biotechnology Information’s

Sequence Read Archive, as cited in a prior study (16).

Transcriptomic data and clinical details of esophageal cancer

patients were obtained from The Cancer Genome Atlas

(TCGA).An independent external validation dataset was sourced

from the Gene Expression Omnibus (GEO) database.
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2.2 Single-cell atlas construction

Raw scRNA-seq data were processed in a Linux environment

using CellRanger (17) for quality filtering, alignment, and

generation of gene expression matrices. Downstream analyses

were conducted with the Seurat (v4.0) R package (18–20). Seurat

objects were created from multiple samples (min.cells = 5,

min.features = 500), followed by data merging and calculation of

mitochondrial gene proportion (pMT), hemoglobin gene

proportion (pHB), and ribosomal gene proportion (pRP) for

quality assessment. Cells were filtered based on the following

criteria: 500 < nFeature_RNA < 9500, 1000 < nCount_RNA <

100000, pMT < 15%, and pHB < 3%. The data were normalized

using the NormalizeData function and 3,000 highly variable genes

were identified. Cell cycle effects were corrected using ScaleData

with variables “S.Score” and “G2M.Score” after performing cell

cycle scoring. Batch effects were removed via the Harmony

algorithm (RunHarmony). Dimensionality reduction was

performed using PCA, selecting the top 20 principal components

for UMAP embedding. KNN graph construction (FindNeighbors)

and clustering (FindClusters, resolution = 0.2) were used to identify

cell subtypes. UMAP plots were generated to visualize sample

distributions and clustering. Differential gene expression analysis

was performed with FindAllMarkers (logFC > 0.5, only.pos =

TRUE), and clusters were annotated based on published literature

and public databases.
2.3 Cell-cell communication analysis

Intercellular communication in tumor and normal tissues was

analyzed using the CellChat package (21). Expression matrices were

extracted from the Seurat object, and ligand-receptor interactions were

identified using the CellChatDB.human database. Communication

probabilities (computeCommunProb) and pathway-level

communication strengths (computeCommunProbPathway) were

calculated, and intercellular communication networks were aggregated

(aggregateNet). Differences between tumor and normal tissues were

compared by signaling pathway activity (netAnalysis_compute

Centrality) and visualized via network diagrams (netVisual_

diffInteraction) and heatmaps (netVisual_heatmap). Bubble plots

(netVisual_bubble) were used to display significantly altered

signaling pathways.
2.4 Transcription factor regulatory network
analysis

The SCENIC (22) workflowwas applied to infer transcription factor

(TF) activity. After gene filtering, co-expression networks were

constructed using GENIE3, and regulons were identified

(runSCENIC_1_coexNetwork2modules). Motif enrichment was

assessed using the cisTarget database (runSCENIC_2_createRegulons),

and TF activity was scored per cell (runSCENIC_3_scoreCells). UMAP

visualization and AUC scores (getAUC) were used to assess TF activity
Frontiers in Immunology 03
across cell types. Key TFs were identified by comparing activity across

clusters, followed by enrichment analysis. Heatmaps and violin plots

were generated to display the expression patterns of core TFs.
2.5 Pseudotime trajectory analysis

Monocle 2 (23)was used to perform pseudotime analysis to

infer the differentiation trajectories of epithelial cells. A CellDataSet

was constructed using highly variable genes, followed by

dimensionality reduction via DDRTree. A minimum spanning

tree (MST) was used to establish developmental trajectories. Cell

states and pseudotime distributions were visualized using

plot_cell_trajectory. BEAM analysis was performed to identify

branch-specific genes, and functional enrichment analyses were

conducted to explore biological functions along the trajectory.
2.6 InferCNV analysis

To assess copy number variation (CNV) in epithelial cells,

subsets were extracted from the Seurat object, normalized, and

batch-corrected using Harmony. The inferCNV package (24) was

applied with gene ordering based on the hg19 genome. Normal cells

were used as reference, with a cutoff of 0.1 and denoising enabled.

CNV heatmaps were generated, and malignant cells were identified

by calculating CNV scores and Pearson correlation with the top 5%

CNV-high cells (cor.estimate > 0.2). Malignant and normal

epithelial cells were visualized on the UMAP plot.
2.7 Association of malignant epithelial
subtypes with prognosis

Malignant epithelial cells identified by inferCNV were analyzed

for marker gene expression using FindAllMarkers. Subtype scores

were calculated in the TCGA cohort using ssGSEA. Kaplan-Meier

analysis was used to assess associations between subtype scores and

survival. Patients were stratified into high- and low-risk groups

based on optimal cut-off values, and survival curves were

plotted accordingly.
2.8 Feature gene selection and prognostic
model construction

Marker genes from prognostically relevant epithelial subtypes

were overlapped with differentially expressed genes from TCGA

and GSE53624 to identify candidate genes. Univariate Cox

regression was performed to identify prognostic genes (p < 0.05),

visualized by forest plots. LASSO regression was then applied to

avoid overfitting and select key variables, using 10-fold cross-

validation to determine the optimal penalty parameter. The

minimum mean cross-validation error corresponded to an

optimal lambda value of 0.0529. Genes with nonzero coefficients
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under this lambda were selected for subsequent modeling.

Multivariate Cox regression was subsequently conducted to

construct the final prognostic model, with the Akaike Information

Criterion (AIC) employed for further optimization. Risk scores

were calculated for each patient, and individuals were stratified into

high- and low-risk groups based on the median risk score. The

TCGA cohort served as the training set, and GSE53624 was used as

the independent validation cohort.
2.9 From cox regression to nomogram
construction

Univariate and multivariate Cox regression analyses (25) were

performed to evaluate the prognostic significance of clinical

variables (Stage, Gender, Age) and risk scores. A nomogram was

constructed to predict 1-, 3-, and 5-year survival probabilities based

on independent prognostic factors. Calibration curves assessed

model performance, and decision curve analysis (DCA) evaluated

clinical utility across different threshold probabilities.
2.10 Pathway analysis associated with risk
stratification

Gene Set Variation Analysis (GSVA) (26) and Gene Set

Enrichment Analysis (GSEA) (27) were performed to compare

pathway activities between risk groups. Hallmark gene sets from

MSigDB (28)were used to calculate GSVA scores, and limma was

used to identify significantly enriched pathways. GSEA was

conducted using GO gene sets, and enrichment plots were

generated. ssGSEA was applied to immune-related and cancer-

immunity cycle pathways, and Pearson correlation analyses were

performed between pathway activity and risk scores.
2.11 Tumor microenvironment infiltration
analysis

ssGSEA (29) was used to calculate immune function scores and

visualize group differences using heatmaps (ComplexHeatmap) and

radar plots (ggradar). ESTIMATE (30) scores (ImmuneScore,

StromalScore, TumorPurity) were calculated and correlated with

risk scores using Pearson correlation and scatter plots to investigate

associations with tumor progression.
2.12 Mutation landscape based on risk
scores

Somatic mutation data from the TCGA-ESCA cohort were

obtained via TCGAbiolinks (31). Samples were filtered and

processed using maftools. Oncoplots illustrated the mutational
Frontiers in Immunology 04
distribution between high- and low-risk groups. Tumor mutational

burden (TMB), mutation types, and co-occurrence or mutual

exclusivity between high-frequency mutated genes were analyzed.
2.13 Individualized drug sensitivity
prediction

Drug sensitivity was predicted using the oncoPredict (32)

package based on transcriptome data from TCGA-ESCA. Gene

expression data were preprocessed and matched to the GDSC2

reference dataset. Sensitivity scores were calculated for each patient.

Wilcoxon tests were used to compare high- and low-risk groups,

and significantly different drugs were visualized via boxplots, violin

plots, and scatter plots.
2.14 RNA extraction and qRT-PCR
validation

Total RNA was extracted with TRIzol reagent (Invitrogen) and

reverse-transcribed using the PrimeScript RT kit (Takara). qRT-

PCR was performed with SYBR Green Master Mix on an ABI 7500

system. GAPDH was used as an internal control, and relative

expression was calculated using the 2^–DDCt method.
2.15 Cell culture and transfection

Human ESCC cell lines (KYSE-150 and KYSE-410) were

cultured in RPMI-1640 medium supplemented with 10% FBS and

antibiotics. Gene knockdown was achieved using siRNAs (Obio

Technology) transfected with Lipofectamine™ 3000 (Invitrogen)

according to the manufacturer’s instructions. After 48 hours, cells

were collected for downstream analyses. Transfection efficiency was

confirmed by qRT-PCR and Western blot.
2.16 CCK-8 cell proliferation assay

KYSE-150 and KYSE-410 cells were seeded in 96-well plates

(2,000–3,000 cells/well) post-transfection. Cell proliferation was

assessed at 0 h, 24 h, 48 h, and 72 h using the CCK-8 assay

(Dojindo, Japan), and absorbance was measured at 450 nm. Each

group included five replicates.
2.17 Colony formation assay

Cells were seeded in 6-well plates (500–1,000 cells/well) and

cultured for 10–14 days. Colonies were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet. Colonies

were photographed and counted under a microscope (33).
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2.18 Transwell migration and invasion
assay

Migration and invasion assays were performed using Transwell

chambers with 8 mm pores. For invasion assays, upper chambers

were pre-coated with Matrigel. After 24–48 h incubation, non-

migrated cells were removed, and migrated cells were fixed, stained,

and counted in five random fields.
2.19 Statistical analysis

All statistical analyses were conducted using R (v4.1.2) and

GraphPad Prism 9. Data were presented as mean ± standard

deviation (SD). Group comparisons were performed using two-

tailed t-tests or one-way ANOVA as appropriate. Kaplan–Meier

survival curves and log-rank tests assessed survival differences. Cox

regression identified prognostic factors, and hazard ratios (HRs)

with 95% confidence intervals (CIs) were reported. Nomograms

and calibration curves were generated using the rms package (34),

and decision curve analysis (DCA) (35)was used to evaluate clinical

utility. A p-value < 0.05 was considered statistically significant.
3 Results

3.1 Construction of the single-cell atlas

After qual i ty control and batch effect correct ion

(Supplementary Figure 1), a total of 91,310 high-quality single

cells were obtained and clustered using UMAP dimensionality

reduction, resulting in the identification of 14 distinct cell clusters

(Figure 1A). Based on known marker genes, we annotated 10 major

cell types (Figure 1B), among which T/NK cells were the most

abundant, followed by fibroblasts and B cells. The origin of each

cluster was visualized by sample (Figure 1C), demonstrating that all

clusters included cells from multiple patients, indicating successful

data integration without significant batch effects. Cell type–specific

marker gene expression analysis (Figure 1D) showed expected

expression patterns across cell types, such as enrichment of

EPCAM in epithelial cells, CD79A in B cells, and CD68 in

myeloid cells. Finally, we profiled cell type composition across

individual patient samples (Figure 1E), revealing substantial inter-

patient heterogeneity. T/NK cells were dominant in most samples,

while other cell types varied in abundance among patients.
3.2 Cell–cell communication analysis

To investigate changes in intercellular communication within

the tumor microenvironment, we conducted a comparative analysis

between tumor and normal tissues. The number (1121 vs. 968) and

overall strength (22,911 vs. 23,012) of cell–cell interactions were

both elevated in tumor tissues compared to normal tissues

(Figure 2A), suggesting more active communication in the tumor
Frontiers in Immunology 05
microenvironment. Signaling flow analysis revealed that pathways

such as MHC-I, GALECTIN, and CD70 were more active in

tumors, while matrix-related signals like COLLAGEN and

LAMININ were more enriched in normal tissues (Figure 2B).

Network visualization (Figure 2C) illustrated complex interactions

among endothelial, epithelial, and fibroblast cells in tumors.

Communication strength analysis (Figure 2D) indicated that T/

NK cells in tumor tissues exhibited stronger inward interactions,

whereas those in normal t issues had more balanced

communication. Further comparison of communication networks

across cell types (Figure 2E) showed enhanced interactions between

fibroblasts and other cell types in tumors, while fibroblast–

endothelial cell interactions were more prominent in normal

tissues. These findings highlight dynamic alterations in

intercellular signaling within the tumor microenvironment,

offering insights into their role in cancer progression.
3.3 Re-clustering and copy number
variation analysis of epithelial cells

To further explore epithelial cell dynamics in tumor tissues, we

isolated epithelial cells and performed re-clustering using UMAP,

identifying multiple epithelial subpopulations (Figure 3A).

Stratification by tissue origin (tumor vs. normal) revealed distinct

spatial distributions (Figure 3B). CNV analysis using inferCNV

(Figure 3C) demonstrated prominent genomic alterations in tumor

epithelial cells, including amplification and deletion events in

specific chromosomal regions. Correlation analysis (Figure 3D)

indicated that certain epithelial subclusters exhibited high CNV

levels and were strongly associated with malignant phenotypes,

while others showed low CNV and resembled normal cells. Based

on inferCNV results, we classified epithelial cells as malignant or

normal (Figure 3E), identifying 3,998 malignant and 2,740 normal

cells. Malignant cells were further re-clustered (Figure 3F) to dissect

their internal heterogeneity and provide a basis for downstream

functional analysis.
3.4 Transcriptional regulation and
pseudotime trajectory analysis of
malignant epithelial cells

To investigate the transcriptional regulatory landscape of

malignant epithelial cells, we conducted differential expression

analysis of transcription factors (TFs) across subclusters. Distinct

TF expression patterns were observed in different malignant

subpopulations (Figure 4A), suggesting potential roles in defining

cellular function and fate. Key TFs highly expressed in specific

clusters (Figure 4B) showed unique spatial distributions on the

UMAP, indicative of divergent differentiation trajectories. For

example, FOXC1 and E2F1 were enriched in certain clusters and

may be linked to proliferation and cell cycle regulation, while

RUNX1 and GATA3 were upregulated in others, potentially

associated with lineage commitment. TF families such as DLX
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and IRX, known regulators of epithelial morphology and

differentiation, were also highly expressed in select clusters.

Subsequently, we applied pseudotime trajectory analysis to

reconstruct developmental progression within malignant epithelial

cells (Figure 4C). Cells followed a continuous trajectory with multiple

branches, reflecting diverse transitional states. Enrichment analysis of
Frontiers in Immunology 06
branch-specific genes (Figure 4D) revealed significant associations

with biological processes such as proliferation and metabolic

regulation, indicating dynamic transcriptional shifts during tumor

progression. These findings suggest that malignant epithelial subtypes

may represent distinct developmental or differentiation states shaped

by specific TF networks.
FIGURE 1

Clustering, annotation, and cell composition analysis of single-cell RNA sequencing data. (A) UMAP dimensionality reduction showing clustering
results of scRNA-seq data, identifying 14 cell clusters. (B) Annotation of cell clusters based on known marker genes, identifying 10 major cell types:
T/NK cells, fibroblasts, B cells, myeloid cells, epithelial cells, plasma cells, endothelial cells, mast cells, proliferating cells, and neurons. (C) Distribution
of cells from different samples in UMAP space. (D) Expression patterns of representative marker genes across cell clusters, aiding in cell type
identification. (E) Distribution of cell type abundance across individual patient samples, revealing inter-patient heterogeneity in cell composition.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1610991
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1610991
FIGURE 2

Analysis of cell–cell communication in tumor versus normal tissue microenvironments. (A) Comparison of the number and strength of intercellular
communications between tumor and normal tissues. The left panel shows more interactions in tumor (red) than in normal (blue) tissue; the right
panel shows greater interaction strength in tumors. (B) Information flow analysis of signaling pathways, displaying relative signal flow intensities in
tumor (red) and normal (blue) tissues. (C) Cell–cell communication networks between different cell types in tumor (top) and normal (bottom) tissues;
edge color and thickness indicate interaction strength. (D) Interaction strength of different cell types; x-axis represents outgoing interactions, y-axis
incoming interactions, and bubble size indicates the number of interactions. (E) Differential interaction analysis showing changes in the number and
strength of interactions across cell types between tumor and normal tissues; color intensity represents degree of change.
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FIGURE 3

Re-clustering and inferCNV analysis of epithelial cells. (A) UMAP visualization of re-clustered epithelial cells showing distinct subpopulations.
(B) Spatial distribution of epithelial cells stratified by tissue origin (tumor vs. normal). (C) inferCNV analysis showing copy number variations (CNVs)
across genomic regions; red indicates amplifications, blue indicates deletions. (D) Correlation between CNV levels and malignant status; x-axis
shows inferred CNV score, y-axis shows Pearson correlation with top 5% malignant cells. (E) Classification of cells into malignant (red) and normal
(blue) based on inferCNV results. (F) Re-clustering of malignant epithelial cells to explore their internal heterogeneity.
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FIGURE 4

Transcriptional regulation and pseudotime trajectory analysis of malignant epithelial cells. (A) Differentially expressed transcription factors (TFs)
enriched in each subpopulation, ranked by expression and significance. (B) Top five TFs in each cluster visualized in UMAP space to assess subtype-
specific expression patterns. (C) Pseudotime trajectory reconstruction showing cellular progression and potential differentiation branches; color
depth indicates cell state evolution. (D) Enrichment analysis of genes at key branching points in pseudotime, identifying related biological processes
and signaling pathways.
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3.5 Survival analysis of malignant epithelial
subpopulations

To assess the clinical relevance of malignant epithelial

subclusters, we calculated the enrichment of each subpopulation

in bulk RNA-seq samples using single-sample gene set enrichment

analysis (ssGSEA). Signature gene sets for each subcluster were

derived from the single-cell data and applied to TCGA samples.

Patients were stratified into high- and low-expression groups using

optimal cutoff values, and Kaplan–Meier survival analysis

was performed.

The results (Supplementary Figure 2) showed that high

expression of Cluster 1 (p = 0.014), Cluster 3 (p = 0.032), and

Cluster 4 (p = 0.0016) was significantly associated with worse

overall survival. In contrast, Clusters 0 (p = 0.09), 2 (p = 0.13),

and 5 (p = 0.14) showed no significant prognostic impact,

suggesting inter-subtype heterogeneity in clinical outcomes and
Frontiers in Immunology 10
indicating that certain malignant epithelial subpopulations may

serve as prognostic biomarkers.
3.6 Construction of the prognostic model

To develop a risk model based on malignant epithelial features,

we first identified differentially expressed genes (DEGs) in the

TCGA (Figure 5A) and GSE53624 (Figure 5B) cohorts.

Overlapping the DEGs with marker genes of prognostic epithelial

clusters (Figure 5C) yielded candidate genes. Gene Ontology (GO)

enrichment analysis (Figure 5D) revealed significant enrichment in

biological processes such as protein localization, extracellular

matrix structure, cell adhesion, and signaling transduction.

Univariate Cox regression identified survival-related genes

(Figure 5E), followed by LASSO regression (Figures 5F-G) for

dimensionality reduction and variable selection. Six genes were
FIGURE 5

Model construction. (A, B) Volcano plots showing differentially expressed genes (DEGs) in TCGA and GSE53624 cohorts, with upregulated genes in
red and downregulated genes in blue. (C) Venn diagram showing overlap between DEGs from TCGA, GEO, and marker genes from prognostic
malignant epithelial clusters. (D) GO enrichment analysis revealing biological functions associated with the intersecting genes. (E) Univariate Cox
regression analysis identifying survival-related genes; forest plot shows hazard ratios (HRs). (F, G) LASSO regression identifying six key genes; x-axis
represents log(lambda), y-axis shows regression coefficients.
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retained for model construction: HMGB3, CHORDC1, CTSD,

BTG2, MT1E, and PHYHD1, of which the first four were risk

factors (HR > 1) and the latter two were protective (HR < 1). A

multivariate Cox regression model was constructed using these

genes. The risk score was calculated as: RiskScore = (0.0276 ×

HMGB3) + (0.1461 × CHORDC1) + (0.0151 × CTSD) + (0.0046 ×

BTG2) − (0.0042 × MT1E) − (0.1389 × PHYHD1). This model was

used to stratify patients into high- and low-risk groups for

prognostic evaluation.
3.7 Model validation and prognostic
performance assessment

In the TCGA cohort, Kaplan–Meier analysis (Figure 6A) revealed

significantly poorer survival in the high-risk group (log-rank p <

0.0001). Time-dependent ROC analysis (Figure 6B) showed AUCs of

0.812, 0.823, and 0.812 at 1, 3, and 5 years, respectively. In the

independent GSE53624 validation cohort, similar trends were

observed: high-risk patients had significantly worse survival

(Figure 6C; log-rank p = 0.00029), and ROC curves (Figure 6D)

showed AUCs of 0.612, 0.659, and 0.589 at 1, 3, and 5 years. Risk

score distributions, survival status, and gene expression patterns

(Figure 6E) further confirmed the model’s predictive ability. Patients
Frontiers in Immunology 11
with higher risk scores exhibited shorter survival and distinct gene

expression profiles. These results support the robustness and clinical

utility of the model for stratifying patients by prognosis.
3.8 Independence and clinical applicability
of the risk model

Univariate and multivariate Cox regression analyses were

conducted to assess the independent prognostic value of the risk

score in the TCGA cohort (Figures 7A, B). Univariate analysis

showed that risk score (HR = 2.09, 95% CI: 1.283–4.448, p < 0.01)

and clinical stage (HR = 2.154, 95% CI: 1.822–2.545, p < 0.001) were

significantly associated with survival, whereas age and gender were not.

Multivariate analysis confirmed that risk score remained an

independent prognostic factor (HR = 1.654, 95% CI: 1.154–4.403, p

< 0.01) after adjusting for clinical covariates. A nomogram (Figure 7C)

integrating the risk score and stage was developed to predict 1-, 2-, and

3-year survival probabilities. Decision curve analysis (Figure 7D)

demonstrated superior net benefit for the risk model and combined

model compared to staging alone, particularly at lower risk thresholds.

Calibration curves (Figure 7E) confirmed excellent concordance

between predicted and observed survival, supporting the model’s

reliability for personalized prognostic assessment.
FIGURE 6

Model validation and prognostic performance evaluation. (A) Kaplan–Meier survival analysis in the TCGA cohort showing significantly worse survival
in the high-risk group. (B) Time-dependent ROC curves in the TCGA cohort assessing model performance at 1, 3, and 5 years. (C) Kaplan–Meier
survival analysis in the GSE53624 validation cohort. (D) Time-dependent ROC analysis in the GSE53624 cohort. (E) Distributions of risk score, survival
status, and heatmap of key gene expression, illustrating differences between risk groups.
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3.9 Pathway enrichment analysis

GSVA and GSEA were used to explore pathway differences

between high- and low-risk groups. GSVA results (Figure 8A)

revealed enrichment of TGF-b, IL2–STAT5, G2M checkpoint,
Frontiers in Immunology 12
MYC targets, and immune-related pathways (e.g., allograft

rejection, IFN-g response) in the high-risk group, suggesting

enhanced proliferation and immune dysregulation. Conversely,

the low-risk group was enriched for Wnt/b-catenin, lipid

metabolism, and DNA repair pathways, indicating a more stable
FIGURE 7

Independence and clinical utility of the risk model. (A) Univariate Cox regression analysis of clinical variables and risk score in the TCGA cohort. (B)
Multivariate Cox regression analysis assessing whether risk score is an independent prognostic factor. (C) Nomogram combining risk score and
clinical stage to predict 1-, 2-, and 3-year survival probabilities. (D) Decision curve analysis (DCA) evaluating the net clinical benefit of risk score,
staging, and combined models. (E) Calibration curves comparing predicted and observed survival at 1, 2, and 3 years.
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phenotype. GSEA (Figures 8B, C) confirmed enrichment of cell

cycle and immune suppression–related pathways in the high-risk

group, while Glycerolipid metabolism, Axon guidance, and Amino

sugar metabolism were prominent in the low-risk group. Although

GSVA showed EMT-related pathway activation, EMT was not
Frontiers in Immunology 13
significantly enriched by GSEA, suggesting that EMT may occur

in specific subpopulations rather than the entire high-risk cohort.

ssGSEA-based correlation analysis (Figure 8D) showed that T cell

function, inflammatory response, and cell cycle pathways were

more active in the high-risk group, while metabolic pathways
FIGURE 8

Enrichment analysis reveals biological differences between risk groups. (A) GSVA results showing significantly enriched pathways in high-risk (blue)
and low-risk (green) groups; x-axis indicates t-value. (B, C) GSEA of pathways enriched in high- and low-risk groups, with enrichment score on the
y-axis and ranked genes on the x-axis. (D) ssGSEA of immune-related pathways; left panel shows correlations between pathways, right panel shows
associations with immune infiltration and risk score.
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were enriched in the low-risk group, highlighting differences in

tumor biology and potential therapeutic responses.
3.10 Tumor microenvironment
characterization and immune infiltration
evaluation

Immune cell infiltration, ESTIMATE scores, and immune

functions were compared between risk groups. No significant

differences in immune cell composition were found (Figure 9A).

However, ESTIMATE analysis (Figure 9B) showed that

StromalScore, ImmuneScore, and ESTIMATEScore were

negatively correlated with risk score (StromalScore: r = −0.28, p <

0.05; ImmuneScore: r = −0.29, p < 0.05; ESTIMATEScore: r = −0.28,

p < 0.05), whereas TumorPurity was positively correlated (r = 0.27,

p = 0.0002), suggesting reduced stromal/immune content and

increased tumor cell dominance in the high-risk group.

Radar plots (Figure 9C) demonstrated higher immune activity in

the low-r i sk group , support ing the presence of an

immunosuppressive microenvironment in high-risk patients, which

may contribute to worse outcomes and altered treatment response.
3.11 Somatic mutation landscape and
model gene mutations

We analyzed mutations in 159 samples to characterize the

mutational landscape and model gene alterations. Mutation

profiling (Supplementary Figure 3A) revealed high mutation

frequencies in TTN, MUC16, SYNE1, and TP53, predominantly

missense mutations. No significant differences in mutation patterns

were observed across clinical subgroups. Summary plots

(Supplementary Figure 3B) indicated dominant SNV types were

C>T and C>A transitions, with variable TMB across patients.

Mutation analysis of model genes (Supplementary Figure 3C)

showed low mutation frequencies, with CHORDC1 and HMGB3

mutated in ~1% of samples and no mutations in BTG2 or CTSD,

suggesting their roles may lie more in transcriptional regulation

than genetic alterations. Co-mutation analysis (Supplementary

Figure 3D) revealed significant co-occurrence between TP53 and

TTN, while other gene pairs showed no significant associations.

These results provide insights into mutation-driven heterogeneity

and potential combinatorial mechanisms.
3.12 Drug sensitivity prediction

To evaluate treatment responsiveness, drug IC50 values were

predicted using the GDSC database. Patients in the low-risk group

exhibited significantly increased sensitivity to multiple agents,

including AZD1480 (JAK2 inhibitor), SB-505124 (TGF-bR
inhibitor), Bortezomib, and Erlotinib (EGFR inhibitor)

(Supplementary Figure 4A). Targeted agents such as KRAS

(G12C) inhibitors, ERK inhibitors, PRIMA-MET, and
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Osimertinib also showed lower IC50s in low-risk patients,

suggest ing potentia l benefi t . Conversely, some drugs

(Supplementary Figure 4B), including ADZ4547 (FGFR inhibitor)

and CGP-60474 (CDK inhibitor), had higher IC50s in low-risk

patients, indicating possible selective efficacy in the high-risk group.

These findings offer valuable guidance for individualized therapy

and highlight the potential of risk score–guided treatment selection.
3.13 Functional validation of HMGB3

We performed PCR to detect the expression levels of six model

genes (The primer sequences are shown in Supplementary Table 1)

in ESCC samples surgically resected from Tianjin Chest Hospital

(Supplementary Figure 5). Among these six genes, HMGB3 was

selected for further validation in cellular experiments. The PCR

results indicated that the expression level of HMGB3 was consistent

with the bioinformatics analysis (Figures 10A, B). Survival analysis

showed that patients with high HMGB3 expression had

significantly poorer prognosis, suggesting a potential association

with adverse outcomes (Figure 10C). ROC curve analysis further

validated the prognostic potential of HMGB3, demonstrating good

performance in predicting 1-, 3-, and 5-year survival (Figure 10D).

Experimental results in cell lines revealed that HMGB3

expression was significantly higher in esophageal cancer cells

compared to normal esophageal epithelial cells (Figure 10E). To

further explore the functional role of HMGB3, we silenced HMGB3

expression in two esophageal cancer cell lines using siRNA and

confirmed successful knockdown by PCR (Figures 10F–G).

Transwell invasion assays showed that silencing HMGB3

significantly inhibited the invasive ability of both cell lines

(Figure 10H). Additionally, colony formation assays demonstrated

that silencing HMGB3 suppressed cell proliferation (Figure 10I).

Finally, CCK-8 assays revealed that HMGB3 knockdown

significantly inhibited cell proliferation in both KYSE-150 and

KYSE-410 cell lines, with statistically significant differences in OD

values over the course of 6 days (Figures 10J, K).
4 Discussion

In this study, we performed a high-resolution single-cell

transcriptomic analysis of esophageal cancer, revealing substantial

intratumoral heterogeneity within epithelial cell populations. We

identified multiple subpopulations exhibiting putative malignant

features and, based on these findings, developed a multi-gene risk

score model strongly associated with patient prognosis. Unlike

previous models derived from bulk RNA-seq data that rely on

differentially expressed genes at the tissue level (36), our study

innovatively leveraged single-cell resolution to screen model genes

at the cellular subpopulation level. This approach enabled the

precise identification of malignant programs hidden within tumor

epithelial subsets, which are otherwise masked in bulk data, thereby

significantly enhancing the biological specificity and interpretability

of the prognostic model.
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By applying the inferCNV algorithm, we were able to identify

epithelial cell subpopulations with distinct genomic instability

features within the single-cell atlas of esophageal cancer.

Pseudotime trajectory analysis further reconstructed their

potential evolutionary paths, and the distribution of malignant

subsets along different branches suggested that these clusters may
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represent diverse functional states or developmental stages of

malignant transformation. Moreover, transcription factor activity

inference revealed the subcluster-specific expression of regulators

such as FOXC1 and E2F1, highlighting the central role of

transcriptional regulatory networks in shaping tumor phenotypes.

Notably, FOXC1 has been implicated in the regulation of stemness,
FIGURE 9

Tumor microenvironment (TME) characteristics and immune infiltration. (A) Immune cell infiltration levels across risk groups. (B) Correlation analysis
using ESTIMATE scores. (C) Radar chart showing immune function scores in high- and low-risk groups.
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EMT, and immune evasion (37–39), while E2F1 is widely known for

its involvement in cell cycle activation and DNA replication, serving

as a hallmark regulator of proliferative potential in various cancers

(40–42). The enrichment of these transcription factors in malignant
Frontiers in Immunology 16
subclusters underscores their role in driving heterogeneity and

promoting aggressive cellular states.

Among the six genes incorporated into our prognostic model,

each plays a key role in tumor-related biological processes,
FIGURE 10

Validation of model gene HMGB3 through cell experiments. (A) HMGB3 expression levels in the TCGA-ESCA dataset. (B) HMGB3 expression levels in
samples from Tianjin Chest Hospital, validated by PCR. (C) Survival analysis comparing high and low HMGB3 expression groups. (D) ROC curve
analysis of HMGB3 gene expression for 1-, 3-, and 5-year survival prediction. (E) HMGB3 expression levels in three cell lines (T24, KYSE-150, KYSE-
410). (F, G) Silencing effects of HMGB3 in KYSE-150 and KYSE-410 cell lines, showing relative expression levels after siRNA treatment. (H) Transwell
invasion assays in KYSE-150 and KYSE-410 cells with HMGB3 knockdown, with statistical analysis on invasion rate. (I) Colony formation assays in
KYSE-150 and KYSE-410 cells with HMGB3 silencing, showing colony count comparisons. (J, K) CCK-8 assays measuring cell proliferation in KYSE-
150 (J) and KYSE-410 (K) cells after HMGB3 knockdown, with statistical analysis of OD values over 6 days. Data are presented as mean ± SD. *p <
0.05, **p < 0.01, ***p < 0.001, ****P < 0.0001 by Student’s t-test unless otherwise indicated.
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reflecting the multi-layered regulation of epithelial cell

heterogeneity in ESCC. HMGB3, a member of the high mobility

group box family, regulates chromatin remodeling and

transcription. It has been reported to be upregulated in several

solid tumors and is associated with enhanced proliferation, EMT,

and resistance to radiotherapy or chemotherapy (43–45). To further

explore the biological relevance of the identified risk signature and

validate its functional impact, we performed a series of in vitro

experiments focusing on key model genes. These functional assays

aimed to confirm the role of critical regulators uncovered through

computational analysis and to provide mechanistic insights into

their contributions to tumor progression. In our study, HMGB3 was

significantly upregulated in malignant epithelial subpopulations,

and was identified as a high-risk gene in the prognostic model. To

further validate its function, we performed a series of in vitro

experiments. qRT-PCR assays confirmed elevated HMGB3

expression in ESCC tissues compared to adjacent normal tissues.

In functional assays, HMGB3 knockdown in ESCC cell lines led to a

marked reduction in cell proliferation (CCK-8 assay), invasive

capacity (Transwell assay), and colony-forming ability

(clonogenic assay). These findings provide direct experimental

evidence supporting HMGB3 as a critical driver of ESCC

malignancy, and reinforce its potential as a therapeutic target.

CHORDC1, another model gene, encodes a co-chaperone of

heat shock protein 90 (HSP90). Although its role in cancer remains

underexplored, it has been implicated in stress adaptation via

maintaining proteostasis and protein folding, which may

contribute to tumor cell survival and immune evasion in the

tumor microenvironment (46–48). CTSD, a lysosomal protease, is

involved in extracellular matrix degradation and tumor invasion,

and its overexpression has been associated with increased

aggressiveness in multiple cancer types (49–51). In our analysis,

CTSD also emerged as a high-risk gene linked to poor prognosis.

In contrast, BTG2, MT1E, and PHYHD1 were identified as

protective factors in our model, potentially functioning as

suppressors of tumor progression. BTG2 is a well-known anti-

proliferative gene that mediates p53-dependent cell cycle arrest and

DNA damage repair. It is frequently downregulated in digestive

tract malignancies and may contribute to tumor suppression in

ESCC. MT1E, a member of the metallothionein family, regulates

oxidative stress responses and metal ion homeostasis, and has been

linked to reduced invasiveness and improved immune infiltration

(52–54). PHYHD1, though rarely studied in cancer, may be

involved in lipid metabolism and redox balance. In our study, its

low expression was associated with high-risk scores, suggesting a

potential role in metabolic reprogramming and tumor

microenvironment adaptation (55–57).

Collectively, the six-gene risk model integrates diverse

mechanisms of tumor promotion and suppression and exhibits

strong prognostic value. Beyond survival prediction, it reflects the

molecular underpinnings of chromatin remodeling, proteostasis,

extracellular matrix interaction, immune evasion, oxidative stress

resistance, and metabolic adaptation—key hallmarks of

cancer biology.
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Importantly, our model demonstrated robust predictive

performance in two independent cohorts and remained an

independent prognostic factor in multivariate Cox regression

analysis. Moreover, it effectively stratified patients based on the

immune contexture . High-r isk pat ients displayed an

immunosuppressive tumor microenvironment characterized by

reduced stromal and immune cell infiltration, increased tumor

purity, and activation of immunosuppressive pathways, in line

with their unfavorable prognosis. Given the strong association

between the risk model and the immune microenvironment

observed in our study, it is important to recognize that TME

plays a central role in shaping immunotherapy outcomes. The

TME consists of immune cells, stromal components, cytokines,

and tumor-associated factors, whose dynamic interactions can

either promote antitumor immunity or facilitate immune escape.

Recent evidence suggests that functional states and spatial

distribution of T cells, tumor-associated macrophages, and

cancer-associated fibroblasts critically influence immune

responses to therapy (58). Furthermore, cytokines such as TGF-b
and IL-10 modulate immune cell recruitment and polarization,

contributing to treatment resistance (33). These findings

underscore the importance of TME heterogeneity in interpreting

risk stratification and predicting immunotherapy efficacy in

esophageal cancer.

These features were also accompanied by differential enrichment

of immune signaling, cell cycle progression, and interferon response

pathways, suggesting complex interactions between tumor cells and

the immunemilieu. Compared to conventional models built from bulk

datasets such as TCGA or GEO, our single-cell-based approach

provides a biologically grounded foundation for prognostic

modeling, capturing the intrinsic malignant programs at the cellular

origin. This enhances model interpretability and offers a framework for

linking specific cell subpopulations to clinical outcomes and

immune responsiveness.

Notably, the majority of model genes had low mutation

frequencies, suggesting that their oncogenic effects are likely

driven by transcriptional dysregulation or epigenetic alterations

rather than direct genomic mutations. This highlights the

importance of integrating expression-level features rather than

relying solely on mutational data when modeling tumor behavior.

Drug sensitivity analysis further showed that the risk model could

predict differential responses to chemotherapy and targeted

therapies, indicating its potential clinical utility in guiding

individualized treatment decisions.

Despite these strengths, our study has some limitations. The

model requires validation in large, prospective, multi-center

cohorts. Additionally, while we confirmed the functional role of

HMGB3 through in vitro experiments, further mechanistic studies

at the protein level and in vivo models are necessary to clarify the

downstream pathways involved. Future work will include

subcutaneous xenograft assays to evaluate tumorigenic capacity

and lung metastasis models to assess invasive potential.

Furthermore, pathway-specific in vivo experiments, such as

modulation of the HIPPO and EMT pathways, will be conducted
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to validate the regulatory networks identified. Moreover, the roles of

other model genes such as CHORDC1 and PHYHD1 warrant

further experimental exploration, particularly in the context of

tumor metabolism and immune escape.

In conclusion, our study provides a single-cell–based

framework for dissecting epithelial cell heterogeneity in ESCC

and demonstrates how integrating scRNA-seq with functional

and clinical data can yield robust prognostic models. The six-gene

risk score model not only predicts patient outcomes but also reflects

key biological processes such as chromatin remodeling, cell

proliferation, immune modulation, oxidative stress response, and

metabolic reprogramming. These findings offer new insights into

the molecular landscape of esophageal cancer and provide a

valuable foundation for future efforts in precision oncology and

therapeutic stratification.
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