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Background: Rheumatoid arthritis (RA) is a rheumatic disease charactered by 
severe bone destruction. Evidence suggests that fatty acid metabolism (FAM)­

related proteins can regulate inflammation of synoviocytes in RA. However, the 
fundamental roles of FAM regulators in RA remain to be elucidated. 

Methods: We selected the GSE93272 dataset sourced from the Gene Expression 
Omnibus (GEO) for the classification of FAM-associated molecular subtypes and 
immune microenvironments in RA. Subsequently, bone marrow-derived 
macrophages (BMMs) with or without receptor activator of nuclear factor 
kappa-B ligand (RANKL) intervention were harvested for RNA sequencing 
(RNA-seq) to verify FAM hub gene expressions. 

Results: Difference analysis between RA samples and controls screened 53 
significant FAM regulators. Random forest algorithm for RA risk prediction was 
utilized to identify ten diagnostic FAM regulators (hub genes). A nomogram 
incorporating hub genes was developed, and decision curve analysis suggested 
its potential utility in clinical practice. Additionally, consensus clustering analysis 
of these hub genes categorized RA patients to different FAM clusters (cluster A 
and cluster B). To quantify FAM clusters, principal component analysis (PCA) was 
adopted to count FAM score of every sample. ClusterB may be more linked with 
osteoclastogenesis in RA characterized by RXRA, IL17RA, and TBXA2R. 
Additionally, cases in cluster A were associated with the immunity of activated 
CD4 T cell, activated CD8 T cell, eosinophil, Gamma delta T cell, immature 
dendritic cell, MDSC, macrophage, regulatory T cell, and Type 2 T helper cell, 
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while cluster B was linked to CD56dim natural killer cell, Natural killer T cell, T 
follicular helper cell, Type 1 T helper cell immunity, which has a higher FAM score. 
Remarkably, RNA-seq analysis confirmed the expression trend of SREBF1, FASN, 
CD36, SCD1 and SCD2, consistent with bioinformatics predictions. 

Conclusions: This scoring system of FAM subtypes provided promising markers 
and immunotherapeutic strategies for future RA treatment. 
KEYWORDS 

rheumatoid arthritis, fatty acid metabolism, subtype classification, immune cell 
infiltration, RNA sequencing 
 

Introduction 

Rheumatoid arthritis (RA) is a rheumatic disease that is caused by 
autoimmune inflammatory factors, leading to increased susceptibility 
of joint swelling and stiffness, as well as pain, synovitis and cartilage 
damage (1). According to the current report, about 30% of RA patients 
develop osteoporosis in their spine or hip (2). Studies indicate that 
people  suffering from  RA account  for 0.5% to 1.0% in  the  general
population (3). To date, despite effective therapies, sustained remission 
in RA remains challenging, especially in difficult-to-treat cases, and 
approximately one-third of patients don’t respond to the 
recommended treatment for RA with existing medicinal products (4, 
5). RA significantly threatens patients’ health and quality of life, 
potentially leading to disability and decreased life expectancy, which 
raises healthcare costs and financial burdens on families and society (6). 
As research related to RA continues to be conducted in depth, there is 
increasing evidence that RA is a complicated disease featured by 
substantial heterogeneity and genetic variability (7). Thus, from a 
genetic perspective, preliminary identification of high-risk patients 
for developing RA is indispensable and of great importance, as it will 
profoundly influence the management of RA epidemiology. 

The differentiation of macrophages into osteoclasts induced by 
cytokines such as RANKL is the core pathological basis of bone 
destruction in RA, and cell metabolic reprogramming is a key link in 
the differentiation process of macrophages into osteoclasts (8). It has 
been reported that fatty acid metabolism (FAM) is an influential 
metabolic alteration in CD8 T cells from RA patients (9). Fatty acids 
act as a promising treatment choice for autoimmune disorders such as 
RA, which play an important role in regulating immune and non-
immune pathways, potentially slowing the development of RA 
autoimmunity both systemically and locally (10). The rheumatoid 
synovial cells have the ability to derive fatty acids from both 
intracellular and extracellular environments, and alters FAM in 
immune regulation and activation of macrophages (11). Moreover, 
FAM-related proteins have been reported to regulate inflammation of 
fibroblast-like synoviocytes in RA, suggesting that FAM-related proteins 
hold potential as targets for use of diagnosing and treating RA (12, 13). 
Therefore, FAM is integral to the pathological processes of RA through 
02 
the regulation of FAM-related gene expression. However, the precise 
functions of FAM modulators in RA remain inadequately elucidated. 

In this study, the GSE93272 dataset was utilized to investigate 
the involvement of FAM regulators in identifying molecular 
subtypes and uncovering potential diagnostic biomarkers of RA. 
We devised gene signature for RA susceptibility, incorporating 10 
key FAM regulators including SREBF1, SCD, PPARG, PPARA, 
INSR, FASN, CD36, ACADVL, ACADM, ACACA, and our 
findings revealed significant clinical benefits for patients utilizing 
this model. We uncovered two distinct FAM clusters strongly 
associated with significant immune cell infiltration, suggesting 
their potential diagnostic value in RA and guiding treatment 
decisions. Furthermore, we explored the relationships between 
FAM clusters and IL17RA, TBXA2R, and RXRA, which are 
closely related to osteoclast differentiation. The study’s design 
process flowchart is depicted in Figure 1. 
Methods 

Inclusion of eligible dataset 

We retrieved the GEO platform (http://www.ncbi.nlm.nih.gov/ 
geo/) for eligible RA data from whole blood. We used “Rheumatoid 
arthritis”, “Homo sapiens”, and “Expression profiling by array” as 
search keywords, and suitable datasets were screened based on the 
following criteria: the dataset includes a minimum of 80 samples 
comprised of downloadable raw data and series matrix files, with at 
least 40 samples each in the control and RA groups. After careful 
screening, we selected the dataset GSE93272 (14), which fully meet 
our criteria with 232 RA cases and 43 controls. 
Annotation and analysis for FAM-related 
expression profile 

We adopted annotation package (R4.1.2) from Bioconductor 
(http://bioconductor.org/) to transform microarray probes into 
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gene symbols. Then, the data was standardized through quantile 
normalization, including 232 RA samples and 43 controls. The 
FAM-related genes were retrieved and identified using the 
GeneCards database (https://www.genecards.org/) with “fatty acid 
metabolism” as a keyword. Totally 104 FAM-related genes (shown 
in Supplementary Table 1) were screened with a relevance score ≥50 
(15) for the subsequent analysis. We used Limma package to 
identify differentially expressed FAM regulators between controls 
and RA patients. We screened the significant FAM regulators 
according to screening thresholds of |log2 fold change (FC)|>0 
and P-Value<0.05 (16). Then, the R package “clusterProfiler” was 
used to perform GO and KEGG enrichment analysis to explore the 
underlying mechanism of the FAM regulators implicated in RA. 
Moreover, we constructed the protein-protein interaction (PPI) 
network of these FAM regulators by the STRING database (https:// 
string-db.org/), conducted network topology analysis and screened 
the top ten targets as FAM hub genes in terms of degree through 
Cytoscape software (v3.8.0). 
Model construction 

Two machine learning algorithms including random forest (RF) 
and support vector machine (SVM) models were adopted to predict 
the occurrence of RA. The vital FAM modulators were screened in 
virtue of the R package “RandomForest” when their significance 
scores (Mean Decrease Gini) were greater than 2. In the SVM 
Frontiers in Immunology 03 
model, the variable n signifies the count of FAM hub genes, with 
each data point depicted as a dot within an n-dimensional space. 
We then selected an optimal hyperplane that distinctly separated 
the control and RA groups (17). Subsequently, the “rms” R package 
was employed to develop a nomogram model for predicting the 
prevalence of RA patients based on the identified candidate FAM 
regulators. Calibration curves assessed the accuracy of the 
prediction values against actual outcomes. Decision curve analysis 
(DCA) was conducted to generate a clinical impact curve and 
evaluate whether model-based decisions were advantageous for 
patients (18). 
Subgroup classification 

Through consensus clustering with resampling, each member 
and its corresponding subcluster number were identified, 
demonstrating the validity of the clusters (18). Using the 
“ConsensusClusterPlus” R package, different FAM patterns were 
identified based on FAM hub genes (19). 
GO enrichment analyses of DEGs between 
different FAM subtypes 

Differentially expressed genes (DEGs) between different FAM 
clusters were identified using the Limma package, applying a 
FIGURE 1 

Flow chart of the study design. 
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threshold of adjusted P-Value <0.05 and |log2FC| >0.585. GO 
analysis was then conducted with the “clusterProfiler” R package 
to explore the involvement of DEGs in the process of RA (20). 
FAM score calculation 

To quantify the FAM clusters, principal component analysis 
(PCA) was adopted to assess the FAM score for each sample. This 
score was calculated using the following formula: FAM score = 
PC1i, where PC1 represents principal component 1, and i indicates 
distinct FAM gene expression (21). 
Immune infiltration analysis 

Single sample gene set enrichment analysis (ssGSEA) was used 
to quantify the levels of immune infiltration in RA group. Initially, 
the gene expression levels in the samples were ranked through 
sequencing using ssGSEA. Subsequently, we examined the input 
dataset for FAM hub genes and compiled their expression levels. 
From this analysis, we determined the quantity of immune cells 
present in each sample (22). 
Experimental animals 

The Ethics Committee of Laboratory Animals in Guangdong 
Provincial Hospital of Chinese Medicine approved all studies. 
Female Sprague–Dawley(SD) rats, aged 8 weeks and weighing 
200–220g, were purchased from the Experimental Animal Center 
of Guangzhou University of Chinese Medicine (Guangzhou, 
China). They were maintained under standard environmental 
conditions (22 ± 2°C, 50% humidity, and a 12-h light/dark cycle) 
with unrestricted access to food and water. The rats were euthanized 
under isoflurane anesthesia. 
Ethics statement 

All animal experiments were approved by the Ethics Committee 
of Laboratory Animals in Guangdong Provincial Hospital of 
Chinese Medicine (No. 2023081) and conducted in accordance 
with the relevant guidelines. The study was carried out in 
compliance with the ARRIVE guidelines. 
RNA-seq analysis of bone marrow-derived 
macrophages with or without RANKL 
induction to verify differential expression of 
FAM genes 

To isolate BMMs, we flushed long bones from 8-week-old rats 
using warm, serum-free alpha-minimum essential medium (a-
MEM). The isolated BMMs were cultured with M-CSF (100 ng/ 
Frontiers in Immunology 04
mL) for 2 days to recruit macrophages, followed by the addition of 
RANKL (50 ng/mL) to induce osteoclast differentiation. RNA-seq 
analysis was then performed to examine the differential expression 
of FAM-related genes between groups with and without RANKL 
induction during osteoclast differentiation. Libraries from different 
samples were pooled according to quantitative assessments, and the 
final data were used for sequencing. DEGs were identified by 
comparing control and RANKL-induced samples using the 
Limma R package. FAM modulators were subsequently identified, 
and their expression profiles were established based on the data. 
The criteria for detecting FAM DEGs were set at P < 0.05. 
Statistical analysis 

To evaluate the relationships among significant FAM genes, 
linear regression analyses were used. Group comparisons in the 
bioinformatics analysis were conducted with Kruskal-Wallis tests, 
and corrected t-tests were applied to assess RNA-seq data. All 
parametric tests were two-tailed, with P<0.05 deemed statistically 
significant. Results are shown as mean ± standard deviation. 
Results 

Retrieval of the 53 RA-related FAM genes 

We totally screened 53 distinct FAM regulators through 
difference analysis of gene expression profiles between RA group 
and the controls (Figure 2A). Our analysis revealed that GO 
enrichment predominantly identified entries related to biological 
processes (notably fatty acid metabolic process), cellular 
components (specifically peroxisomal matrix), and molecular 
function (including lipid transporter activity) (Figure 2B). 
Moreover, KEGG pathway enrichment analysis uncovered that 
PPAR signaling pathway and fatty acid metabolism were notably 
significant pathways (Figure 2C). The PPI network of 53 distinct 
FAM regulators was plotted in Figure 2D. We ultimately screened 
10 FAM hub genes (SREBF1, SCD, PPARG, PPARA, INSR, FASN, 
CD36, ACADVL, ACADM, ACACA), which were shown in 
Figure 2E. We observed that the expressions of ACADM, CD36, 
PPARG were upregulated in RA samples in comparison with 
controls, but the other FAM hub genes showed opposite 
outcomes (Figures 2F–O). 
Correlation among FAM hub genes in RA 

To elucidate the potential correlations among significant FAM 
genes in RA patients, Pearson correlation analysis was conducted 
utilizing R statistical software. FAM hub genes in RA exhibited 
different relationships with each other (Figure 3A). Thereafter, the 
remarkable correlations with R>|0.25| were selected for 
visualization. Significantly positive relationships were observed 
between the gene expressions of ACACA-PPARA, ACADVL-
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INSR, ACADVL-PPARA in RA cases (Figures 3B–D), but gene 
expressions of ACADM-ACADVL, ACADM-INSR, ACADM­

SREBF1, CD36-FASN in RA cases showed significantly negative 
relationships (Figures 3E–H). 
Frontiers in Immunology 05 
RF and SVM model construction 

The RF model was validated to have the smaller residual according 
to reverse cumulative distribution of residual (Figure 4A) and boxplots 
FIGURE 2 

Identification of the 53 FAM modulators in RA. (A) Expression heat map of the 53 FAM modulators in controls and RA cases. (B, C) GO and KEGG 
enrichment analysis based on the 53 FAM modulators. (D) PPI network of 53 distinct FAM regulators. (E) The top 10 FAM hub genes in terms of 
degree. (F-O) Differential expression boxplot of 10 FAM hub genes between controls and RA cases. *p < 0.05, **p < 0.01, and ***p < 0.001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1611000
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1611000 
of residual (Figure 4B). Most of the model samples have relatively small 
residuals, which indicates that the RF model is superior to the SVM 
model. Moreover, we utilized ROC curves to evaluate the models, and 
according to their AUC values, we discovered that the RF model 
exhibited higher accuracy than the SVM model (Figure 4C). As a result, 
we came to the conclusion that the RF model is the best one for 
predicting  the occurrence of RA.  Finally, we presented  these 10 FAM  
hub genes based on their importance score (mean decrease Gini) and 
selected candidate genes with importance score>2, including SREBF1, 
SCD, PPARG, PPARA, INSR, FASN, CD36, ACADVL, ACADM, 
ACACA (Figure 4D). 
Construction of nomogram model 

To predict the prevalence of RA patients, a nomogram model was 
constructed using the “rms” package in R based on 10 candidate FAM 
regulators (Figure 5A). The calibration curves indicated high prediction 
accuracy of the nomogram model (Figure 5B), and the DCA curve 
suggested potential benefits  for RA patient  judgments using  this  model  
(Figure 5C). Furthermore, the clinical impact curve demonstrated 
remarkable predictive capacity of the nomogram model (Figure 5D). 
Identification of different FAM clusters 

Two FAM clusters (clusterA and clusterB) were identified on 
the basis of the ten FAM hub genes in virtue of the R package 
Frontiers in Immunology 06
“ConsensusClusterPlus” (Figures 6A–D). Cluster A consisted of 159 
samples, while cluster B included 73 samples. Subsequently, the heat 
map and boxplot clearly showed the differential expression levels of 
the 10 important FAM regulators between the two clusters. We 
observed that clusterA exhibited higher expression levels of CD36 
and ACADM compared to clusterB, whereas SREBF1, PPARA, 
FASN, and ACADVL showed higher expression levels in clusterB 
than in clusterA. The expression levels of SCD, PPARG, INSR, and 
ACACA did not exhibit any noticeable variances between the two 
clusters (Figures 6E, F). The 10 FAM regulators were able to 
distinguish between the two FAM clusters based on the PCA 
results (Figure 6G). We identified 74 DEGs associated with FAM 
between the two FAM patterns. To gain further insight into the role 
of these DEGs in RA, we conducted GO enrichment analysis 
(Figure 6H). We observed that GO:0002181 (cytoplasmic 
translation), GO:0003735 (structural constituent of ribosome) and 
GO:0005840 (ribosome) were the mainly enriched entries. 

We then explored the relationship between immune cells and 10 
important FAM regulators by using ssGSEA to assess the 
abundance of immune cells in RA samples. We observed a 
positive association between INSR and multiple immune cells 
(Figure 7A). We compared the differences in immune cell 
infiltration between patients with high and low INSR expressions. 
Our results showed that patients with high INSR expression had 
significantly increased immune cell infiltration compared to those 
with low INSR expression (Figure 7B). Furthermore, we found that 
clusterA cases were associated with activated CD4 T cell, activated 
CD8 T cell, eosinophil, Gamma delta T cell, immature dendritic cell, 
FIGURE 3 

Correlation among FAM modulators in RA. (A) Correlation circos plot of different correlations between different FAM hub genes. There existed 
significantly positive correlations in the gene expression levels of ACACA-PPARA, ACADVL-INSR, ACADVL-PPARA in RA cases (B-D), while the gene 
expression levels of ACADM-ACADVL, ACADM-INSR, ACADM-SREBF1, CD36-FASN in RA cases exhibited significantly negative correlation (E-H). 
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MDSC, macrophage, regulatory T cell, and Type 2 T helper cell 
immunity; while clusterB was linked to CD56dim natural killer cell, 
Natural killer T cell, T follicular helper cell, Type 1 T helper cell 
immunity (Figure 7C). 
FAM gene signature construction with two 
gene clusters 

Based on the 74 FAM-associated DEGs, we used a consensus 
clustering technique to classify RA cases into different genomic 
subtypes in order to understand FAM patterns. We identified two 
distinct FAM gene clusters (gene clusters A and B) that aligned with 
the sectionalization of FAM patterns (Figures 8A–D). The 
expression levels of the 74 FAM-related DEGs in gene cluster A 
and gene cluster B were depicted in Figure 8E. Similarities in 
immune cell infiltration levels and expressions of 10 significant 
FAM modulators between gene clusterA and gene clusterB also 
mirrored those in the FAM clusters (Figures 8F, G). These results 
Frontiers in Immunology 07 
once again confirmed the accuracy of our sectionalization using the 
consensus clustering method. 
Role of specific genes from FAM clusters 
for RA identification 

The Sankey diagram (Figure 9A) illustrated the connection between 
FAM scores, FAM clusters, and FAM gene clusters. PCA methods were 
employed to measure the FAM clusters by determining the FAM scores 
for each sample across the two distinct FAM clusters. In comparison to 
clusterA, we observed that clusterB showed a higher FAM score 
(Figure 9B). To explore the associations between FAM clusters and 
RA, we assessed the relationships between FAM clusters and three 
specific genes including IL17RA, TBXA2R, and RXRA, which have close 
association with osteoclast differentiation. We found that clusterB 
exhibited higher levels of IL17RA, TBXA2R, and RXRA expression 
than clusterA, indicating that clusterB may be strongly connected with 
RA defined by osteoclast differentiation (Figure 9C). 
FIGURE 4 

Establishment of the RF and SVM models. (A) Reverse cumulative distribution of residual was constructed to display the residual distribution of RF 
and SVM models. (B) Boxplots of residual was constructed to display the residual distribution of RF and SVM models. (C) ROC curves indicated the 
accuracy of the RF and SVM models. (D) The importance score of the 10 FAM hub genes on the basis of the RF model. 
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RNA-seq validation of FAM hub genes 

The expression heat map (Figure 10A) showed the differential 
expression profiles during osteoclast differentiation. Specifically, the 
FAM modulator CD36 exhibited increased expression levels in 
RANKL-induced group compared with controls, while the FAM 
modulators SREBF1, FASN, SCD1 and SCD2 exhibited decreased 
expression levels in RANKL-induced group compared with controls 
(Figure 10B), which verified the bioinformatics results. 
Discussion 

RA is a common autoimmune disorder characterized by 
polyarticular stiffness, synovitis, and progressive bone destruction, 
which may lead to irreversible disability if not managed early and 
effectively (23). Therefore, optimistic prognosis is strongly 
attributed to prompt diagnosis and effective management of RA 
(24). Recent studies suggest that FAM plays a key regulatory role in 
Frontiers in Immunology 08
the inflammatory process of fibroblast-like synoviocytes, a critical 
cell type in RA pathogenesis (25). However, the function and 
importance of FAM regulators in RA remains largely unclear. 

In this study, we systematically explored the expression and 
functional significance of FAM regulators in RA. Through 
differential expression analysis between RA and healthy samples, 
we identified 53 differentially expressed FAM-related genes and 
further screened 10 hub FAM regulators based on network degree 
values. These genes (SREBF1, SCD, PPARG, PPARA, INSR, FASN, 
CD36, ACADVL, ACADM, ACACA) were integrated into a 
predictive nomogram model based on a constructed RF model for 
forecasting RA occurrence, which demonstrated favorable 
performance in risk assessment and clinical decision-making 
through DCA evaluation. 

More importantly, previous studies have revealed that these 
FAM hub genes are intricately involved in regulating bone 
metabolism balance in RA. For instance, sterol regulatory element 
binding protein 1 (SREBP1) and stearoyl-CoA desaturase (SCD), 
peroxisome proliferator activated receptor gamma (PPARG), 
FIGURE 5 

Establishment of the nomogram model. (A) The nomogram model was established on the basis of the 10 FAM hub genes. (B) The calibration curve 
was utilized to evaluate the predictive accuracy of the nomogram model. (C) Decisions on the basis of this nomogram model may be beneficial to 
RA patients. (D) The clinical impact curve was used to assess clinical impact of the nomogram model. 
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peroxisome proliferator activated receptor alpha (PPARA) serving 
as lipogenic genes have been reported to regulate FAM progress in 
RA (26, 27). SREBF1 participates in reducing the activation of 
PI3K/AKT/NF-kB signaling pathway, which alleviates joint 
inflammation and bone destruction in RA model mice (28). Since 
increased energy consumption triggered by inflammation in RA 
leads to deficient FAM-related anabolic metabolism, the regulations 
of PPARG and SCD1 could rescue FAM homeostasis (29). PPARA 
agonist has been used to enhance anti-inflammatory activity in RA 
(30). Medium-chain acyl-CoA dehydrogenase (ACADM) has been 
reported to regulate fatty acid oxidation and promote lipolysis (31). 
Our present study indicated that acetyl-CoA carboxylase 1 
(ACACA) and very long-chain specific acyl-CoA dehydrogenase 
Frontiers in Immunology 09
(ACADVL), as the enzymes of fatty acid oxidation, were down-
regulated in RA patients, as reported previously (32). High 
expression of cluster of differentiation 36 (CD36) has been 
reported to trigger inflammatory response in RA (33). 
Importantly, our present study has confirmed that CD36 as FAM 
regulators exhibited higher expression levels both in bioinformatics 
and in vitro transcriptomic validation, which in turn promote 
inflammatory process in RA. Abnormal expression of fatty acid 
synthase (FASN) results in lipid overaccumulation, which 
stimulates reactive oxygen species production and activates PI3K/ 
mTOR/NF-kB signaling pathway, thereby facilitating the 
progression of inflammatory responses and bone erosion in RA 
(34). The limited fatty acid synthesis contributes to affecting RA by 
FIGURE 6 

Consensus clustering of the 10 FAM hub genes in RA. (A-D) Consensus matrices of the 10 FAM hub genes for k = 2–5. (E) Expression heat map of 
the 10 FAM hub genes in clusterA and clusterB. (F) Differential expression boxplots of the 10 FAM hub genes in clusterA and clusterB. (G) Principal 
component analysis for the expression profiles of the 10 FAM hub genes that shows a remarkable difference in transcriptomes between the two FAM 
patterns. (H) GO enrichment analysis that explores the potential mechanism underlying the effect of the 74 FAM-related DEGs on the occurrence 
and development of RA. **p < 0.01, and ***p < 0.001. 
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regulating FASN transcription subsequent to PPARG activation 
(35). Growing evidence has confirmed that insulin receptor (INSR) 
participates in regulating immune response implicated in RA (36). 
Above all, the dysregulations reflect the disrupted balance between 
fatty acid synthesis and inflammation in RA, and these mentioned 
FAM regulators may play a crucial role in the onset and progression 
of RA. 

Beyond molecular alterations, we identified FAM patterns based 
on these hub genes that were significantly relative to abundant 
macrophage infiltration, which was strongly associated with 
osteoclastogenesis (Figure 7C). Numerous studies have highlighted 
the critical role of FAM in regulating osteoclast formation and 
function, primarily through interaction with specific receptors on 
osteoclasts, thereby affecting intracellular signaling pathways and 
gene expression associated with osteoclast activity (37–39). Existing 
study illustrates that the osteoclastogenesis of monocyte/macrophage 
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lineage is crucial in the pathological development of RA (40). Cells of 
monocyte/macrophage lineage have a critical function in regulating 
immune balance and the development of RA (41). Monocyte/ 
macrophage lineage differentiates into multinucleate osteoclasts, 
modulating osteoclastogenesis in bone metabolism (42). RXRA, 
IL17RA,  and  TBXA2R  are  s t rong ly  assoc ia ted  with  
osteoclastogenesis. RXRA plays a vital role in vitamin D pathway, 
which is involved in regulating osteoclastogenesis in bone 
homeostasis (43). The immunological and skeletal systems share 
numerous regulatory components, including the IL-17a receptor 
(IL17RA), whose deletion reduces the amount of osteoclast 
precursors and enhances bone mass (44). Existing study has 
confirmed that thromboxane A2 (TxA2) can directly induce 
osteoclastic differentiation (45). Our previous study has confirmed 
that TxA2 plays an important role in RA pathology through 
regulating synovial cell proliferation; TBXA2R, as the receptor of 
FIGURE 7 

Single sample gene set enrichment analysis. (A) Correlation between immune cell infiltration and the 10 FAM hub genes. (B) Difference in the 
abundance of infiltrating immune cells between high and low INSR protein expression groups. (C) Differential immune cell infiltration between 
clusterA and clusterB. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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TxA2, could bind to TxA2 to activate the NF-kB signaling pathway 
and positively regulate osteoclastogenesis, whose blockage might 
prevent the inflammatory process from causing bone loss and bone 
deterioration (46). In the present study, we classified two different 
FAM clusters (clusterA and clusterB) on the basis of the 10 significant 
FAM regulators. ClusterB showed higher expressions of RXRA, 
IL17RA, and TBXA2R, indicating that clusterB may be associated 
with osteoclastogenesis characterized by RXRA, IL17RA, and 
TBXA2R. Furthermore, PCA techniques were employed to 
ascertain the FAM scores of individual samples between the two 
different FAM clusters in order to quantify the FAM signatures. We 
observed that compared with clusterA, clusterB displayed a higher 
FAM score. 

To experimentally validate our bioinformatics findings, we 
uti l ized  RANKL-induced  BMMs  to  tr igger  osteoclast  
differentiation. Our RNA-seq-based validation showed that FAM 
gene CD36 showed upregulated expression levels in RANKL-

induced group compared with controls, while the FAM 
modulators SREBF1, FASN, SCD1 and SCD2 exhibited decreased 
expression levels in RANKL-induced group compared with 
controls, which validated the bioinformatics results and previous 
studies. This in vitro validation not only supports our model but 
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also confirms the functional relevance of these FAM regulators in 
osteoclastogenesis. Our research findings provide strong evidence 
for the involvement of FAM regulators in RA and shed new light on 
their role in the development of RA. This reinforces the notion that 
FAM modulators play a critical role in the progression of RA. In 
other words, focusing on these FAM-related targets could be a 
promising treatment strategy for managing the equilibrium between 
bone formation and resorption in RA. To the best of our knowledge, 
this study is the first to systematically characterize the immune 
landscape and identify molecular subtypes of RA based on FAM-

related signatures. 
However, several limitations should be acknowledged in this 

study. Although we systematically analyzed the association between 
FAM regulators and immune cell infiltration, and preliminarily 
validated the expression of key FAM-related genes through in vitro 
transcriptomic validation, the precise molecular mechanisms by 
which these regulators modulate RA progression remain to be 
elucidated. Moreover, the current findings are largely based on 
bioinformatics analyses; thus, in-depth in vivo, in vitro, and clinical 
investigations including additional disease cohorts with systemic 
inflammatory profiles are required to further evaluate the specificity 
of the FAM scoring model. 
FIGURE 8 

Consensus clustering of the 74 FAM-associated DEGs in RA. (A-D) Consensus matrices of the 74 FAM-associated DEGs for k = 2–5. (E) Expression 
heat map of the 74 FAM-associated DEGs in gene clusterA and gene clusterB. (F) Differential expression boxplots of the 10 FAM hub genes in 
gene clusterA and gene clusterB. (G) Differential immune cell infiltration between gene clusterA and gene clusterB. *p < 0.05, **p < 0.01, and 
***p < 0.001. 
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Conclusion 

Our present study generally identified 53 distinct FAM regulators 
and established a nomogram model of 10 FAM hub genes that 
accurately  predicted the  occurrence of  RA.  Then, using  the 10 FAM  
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regulators, we verified two FAM signatures and discovered that 
clusterB may be more linked with osteoclastogenesis in RA 
characterized by RXRA, IL17RA, and TBXA2R. Importantly, this 
study firstly displays immune landscapes and diagnostic subtypes 
associated with FAM progress in RA. 
FIGURE 10 

RNA-seq validation of significant FAM modulators. (A) Expression heat map of RANKL-induced samples and controls, assessed by RNA-seq. (B) The 
FAM modulator CD36 exhibited increased expression levels in RANKL-induced samples compared with controls, while the FAM modulators SREBF1, 
FASN, SCD1 and SCD2 exhibited decreased expression levels in RANKL-induced samples compared with controls. All results are expressed as means 
± standard deviations. **p < 0.01, ****p < 0.0001. 
FIGURE 9 

Role of FAM patterns in distinguishing RA. (A) Sankey diagram showing the relationship between FAM patterns, FAM gene patterns, and FAM scores. 
(B) Differences in FAM score between clusterA and clusterB. (C) Differential expression levels of osteoclast differentiation-related genes IL17RA, 
TBXA2R, and RXRA between clusterA and clusterB. **p < 0.01, and ***p < 0.001. 
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