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and their applications in
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Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
Osteoarthritis (OA) is a chronic, degenerative joint disease characterized by

progressive cartilage degradation and inflammation. Exosomes, small vesicles

released by various cell types, play a crucial role in mediating immune responses

and inflammation. In OA, exosomes from antigen-presenting cells (APCs)

promote synovial inflammation through antigen presentation and cytokine

signaling, while those from mesenchymal stem cells (MSCs) modulate

inflammation by reprogramming macrophages. Exosomal cargo has shown

potential in controlling inflammatory pathways and protecting cartilage from

degradation. MSC-derived exosomes have demonstrated therapeutic promise in

reducing OA-related inflammation and promoting cartilage regeneration.

Despite several reports have outlined the role of exosomes or immune

modulation in OA individually, comprehensive reviews integrating their roles in

both immune regulation and inflammation repair in OA are still lacking. This

knowledge gap hinders the translational application of exosome-based

interventions in clinical settings. This review aims to summarize the

immunoregulatory roles of exosomes in OA, emphasizing their impact on

inflammation and immune responses, and discusses their therapeutic potential

in OA treatment. By elucidating the roles of exosomes, the findings of this review

could facilitate the development of novel, minimally invasive strategies for

improving OA treatment and enhancing inflammation repair.
KEYWORDS
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1 Introduction

Osteoarthritis (OA) is a prevalent, chronic, age-related joint disease characterized by

progressive cartilage degeneration, synovial inflammation, and subchondral bone

remodeling (1, 2). Traditional therapies for OA are primarily palliative, focusing on

symptom relief rather than disease modification. Nonsteroidal anti-inflammatory drugs

(NSAIDs) and corticosteroids alleviate pain but are associated with significant adverse
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1611718/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1611718/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1611718/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1611718/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1611718&domain=pdf&date_stamp=2025-09-04
mailto:2645491781@qq.com
https://doi.org/10.3389/fimmu.2025.1611718
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1611718
https://www.frontiersin.org/journals/immunology


Lan and Zhang 10.3389/fimmu.2025.1611718
effects upon long-term use (3, 4). Intra-articular injections of

corticosteroids or hyaluronic acid offer only transient relief, while

physical therapy maintains mobility without halting cartilage loss

(5, 6). Surgical interventions such as joint arthroplasty are effective

in advanced cases but are invasive and costly (7).

In contrast, exosome-based therapies have emerged as a

promising regenerative strategy, targeting the immunological and

catabolic pathways central to OA pathogenesis (8, 9). MSC-derived

exosomes can modulate the inflammatory microenvironment by

promoting M2 macrophage polarization and inhibiting NF-kB
signaling, thereby promoting cartilage repair (10, 11). These

nano-vesicles can also deliver specific miRNAs to restore

chondrocyte homeostasis and extracellular matrix synthesis.

Although currently in preclinical or early clinical stages (12–14),

exosome-based approaches offer minimally invasive, repeatable,

and potentially disease-modifying treatment options. Existing

literature has predominantly examined either the effects of

exosomes or immune regulation in OA separately (15–17), with

seldom systematic evaluation of their combined impact on both

inflammatory suppression and structural repair. This lack of

integrated understanding poses a barrier to the clinical translation

of exosome-based therapies. This review aims to highlight recent

advances in understanding the immunoregulatory functions of

exosomes in OA and their therapeutic implications in

inflammation resolution and cartilage regeneration, providing a

timely and in-depth evaluation of exosome-based interventions for

inflammation resolution and cartilage regeneration in OA.
2 Properties of exosomes

2.1 Structural features

Although exosome molecular composition varies with the cell

of origin, microenvironment, developmental stage, epigenetic

landscape, and precise biogenetic pathway, exosomes share

several conserved features. An exosome comprises an external

“shell” and an internal “cargo.” The limiting membrane displays a

lipid-raft-like architecture enriched in cholesterol, sphingomyelin,

and ceramide, which facilitates vesicular trafficking within the

cytosol (18). Canonical surface markers include heat-shock

proteins, tetraspanins (CD82, CD81, CD63, and CD9), and major

histocompatibility complex (MHC) molecules (19). TSG101, which

binds ubiquitinated cargo proteins, serves as a hallmark of

endosomal sorting. Initially regarded as metabolic waste, exosome

contents are now known to encompass abundant nucleic acids,

lipids, and proteins, including long non-coding RNA, microRNA,

and mRNA, that play critical roles in intercellular communication

and immune regulation.
2.2 Biogenesis and release

Exosome biogenesis and secretion constitute a tightly regulated,

multi-step process initiated by the inward budding of the plasma
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membrane to form early endosomes. These compartments

subsequently mature into multivesicular bodies (MVBs) through

a secondary invagination process that requires coordinated action

of key molecular machinery, including the endosomal sorting

complex required for transport (ESCRT), particularly ESCRT-III,

which mediates vesicle budding and scission (20). While ESCRT-

dependent mechanisms predominate in most cell types, alternative

ESCRT-independent pathways involving sphingomyelinase-

mediated ceramide generation can also facilitate exosome

formation. Following their biogenesis, exosomes are secreted

through three primary mechanisms: (i) fusion of MVBs packed

with exosomes to the plasma membrane; (ii) direct budding

outward from the plasma membrane; (iii) discharge from

intracellular plasma-membrane-connected compartments

(IPMCs) after relief of export restrictions (21, 22). Sustained

mTORC1 activation inhibits exosome secretion, while mTORC1

blockade promotes it, with both processes being linked to

autophagy (23).
2.3 Exosomes and immunomodulation

In 1996, immunologists first observed that B lymphocytes

transformed by the Epstein-Barr virus could produce exosomes

via fusion between MVBs and the plasma membrane (24).

Subsequent studies revealed that numerous immune and non-

immune cells, including T cells, B cells, dendritic cells (DCs), and

macrophages, release exosomes capable of mediating immune

activation or suppression (25). Exosomal immunoactivity affects

both innate and adaptive immunity by modulating antigen

presentation, T cell activation, regulatory T cell polarization,

immunosuppression, and anti-inflammatory pathways. Exosomes

play a vital role in activating and enhancing immune responses via

antigen presentation. Professional antigen-presenting cells,

including macrophages, B cells, and dendritic cells, release

exosomes containing abundant costimulatory signals and MHC

class I/II molecules. These exosome-associated peptide antigens are

essential for regulating immune function (26).
3 Synovial inflammation and immune
dysregulation in OA

OA is a complex degenerative joint disease involving multiple

pathological factors. It progressively destroys articular cartilage,

leading to persistent pain and gradual loss of joint function (27).

Emerging evidence indicates that low-grade synovial inflammation

plays a crucial role in both the initiation and advancement of

osteoarthritis (28). The healthy synovium comprises two distinct

layers: an outer vascular (sub-intimal) layer and an inner cellular

(intimal) layer. Together, these layers secrete synovial fluid, thereby

minimizing the coefficient of friction across the articular surface

(29). The sub-intimal layer is comparatively thick and consists of

adipose tissue interspersed with lymphatic vessels, nerve fibers,

dense fibrous tissue, type-I collagen, and microvasculature. The
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intimal layer is thinner and populated by synovial fibroblasts and

synovial macrophages (30). During OA development, the synovium

undergoes intimal hyperplasia, stromal fibrosis, and neovascularization,

accompanied by marked infiltration of NK cells, plasma cells, B cells,

mast cells, T cells, and macrophages (31). Notably, macrophage

infiltration is already evident at the earliest stages of disease (32). This

inflammatory cascade is initiated by localized chondrocyte injury,

increased vascularization, and damage-associated molecular pattern

(DAMP) release, which collectively activate synovial macrophages and

lymphocytes. The resulting immunocyte activation triggers a feed-

forward inflammatory loop characterized by elevated chemokine and

cytokine production (33). Concomitantly, dysregulated chondrocytes

secrete matrix metalloproteinases, pro-inflammatory cytokines, and

prostaglandins, thereby creating a self-perpetuating cycle of cartilage

destruction (34).
4 Exosomes in the immunoregulation
of OA

Both exosomes and OA are intimately linked to immune

homeostasis; exploiting this nexus offers new therapeutic avenues

(35). Following uptake by target cells, distinct exosome populations

elicit discrete functional outcomes. Exosomes may interact directly

with the immune system by presenting antigens or, alternatively,

modulate cellular behavior via cargo microRNAs (miRNAs) (36).

Moreover, exosomes can fuse with endosomes within recipient cells,

undergoing self-degradation or being re-secreted extracellularly.
4.1 APC-derived exosomes and OA

4.1.1 Lymphocyte-derived exosomes
Upon T-cell-receptor engagement, murine CD4+CD25+Foxp3+

Tregs release exosomes (37). Treg-derived vesicles carrying

miRNAs suppress T helper cell type 1 (Th1) responses via non-

cell-autonomous gene silencing (38). Activated CD8+CD25+Foxp3+

T cells likewise secrete exosomes that inhibit CD8+ cytotoxic T-

lymphocyte activity, representing an intrinsic negative-feedback

mechanism to forestall excessive inflammation. In OA, this

pathway manifests as the slow evolution of synovitis: despite

strong activation signals from APC-derived exosomes, T-cell

hyper-responsiveness is restrained, preventing precipitous

inflammatory escalation (39). Compared to DC-derived

exosomes, B cell-derived exosomes have been less extensively

studied. B-cell exosomes are detectable very early after antigenic

challenge—even earlier than DC exosomes—and can activate APCs.

These vesicles are enriched in B7-1/B7-2, MHC class I and II

molecules, and intercellular adhesion molecule 1 (ICAM-1),

facilitating CD4+ T-cell activation and antigen presentation (40).

In early OA, B cell-derived exosomes contribute to synovitis.

Functional studies show that integrins expressed on these vesicles

mediate adhesion to extracellular matrix components and cytokine-
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primed fibroblasts, suggesting a novel long-distance conduit for

adhesive signaling during inflammation. B-cell exosomes also

enhance C3 deposition and T-cell reactivity, thereby intensifying

synovitis and fueling OA progression (41).

4.1.2 Dendritic cell-derived exosomes
Investigations into exosomal immunomodulation were initiated

with DC exosomes, which are now well characterized. Exosomes from

mature DCs display MHC class II molecules and co-stimulatory

ligands such as B7-2 and ICAM-1, enabling direct T-cell activation

(42). In contrast to their mature counterparts, immature DC-derived

exosomes exhibit distinct immunomodulatory properties. Rather than

directly activating T cells, these vesicles primarily facilitate antigen

distribution to other antigen-presenting cells (43, 44) or mediate the

transfer of MHC/antigen complexes to DC surface receptors, thereby

indirectly promoting CD8+ T cell polarization (45). Mechanistically,

immature DC exosomes are characterized by reduced expression of co-

stimulatory and adhesion molecules, while displaying up-regulated

immunosuppressive factors (TGF-b, NKG2D ligands, Galectin-9) and

CD95L, features that collectively induce T cell apoptosis and suppress

immune activation (46, 47). Within the osteoarthritic joint, while both

DC subsets contribute to T cell-mediated inflammation, immature DC

exosomes demonstrate a paradoxical protective capacity by attenuating

synovial inflammatory cell infiltration and potentially slowing cartilage

degeneration (48).

4.1.3 Monocyte macrophage-derived exosomes
Macrophage-derived exosomes play a pivotal role in propagating

inflammation in osteoarthritis through their immunomodulatory

effects on innate and adaptive immune cells. Following bacterial

infection, these exosomes exert pro-inflammatory effects by

activating naïve macrophages, promoting dendritic cell maturation,

and stimulating CD4+ and CD8+ T cell responses. This occurs via the

presentation of bacterial antigens, such as immunogenic proteins,

which trigger DC activation and subsequent cytokine release (49).

Although initially characterized in infectious contexts, such antigen

presentation constitutes a broader mode of inter-immune-cell

communication. In OA, persistent cartilage damage and osteophyte

formation sustain a chronic inflammatory microenvironment, where

macrophage-derived exosomes contribute significantly. Exosomes

isolated from OA synovial fluid polarize macrophages toward an M1

phenotype, driving the production of pro-inflammatory mediators,

including chemokines (CCL20, CCL15, CXCL1), cytokines, and matrix

metalloproteinases (MMP-12, MMP-7) (50, 51) (Figure 1A).
4.2 Exosomal cargos in osteoarthritis
pathogenesis

To contextualize the roles of exosomal cargos in OA

pathogenesis, it is essential to examine how epigenetic alterations

mediated by these molecules drive disease progression. The

molecular payload enclosed within exosomes is intimately
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involved in the immunomodulation of osteoarthritis. Throughout

disease onset and progression, epigenetic alterations, including

miRNA repression, histone modification and DNA methylation

(52), perturb multiple transcriptional programs and the synthesis of

proteolytic factors that govern the anabolic–catabolic equilibrium,
Frontiers in Immunology 04
such as ADAMTS5, MMP-13 and RUNX2. Among these epigenetic

regulators, miRNAs have attracted particular attention in OA

pathobiology (53).

Within the joint, miRNAs exert their effects by targeting key

mediators of cartilage homeostasis. Current evidence shows that
FIGURE 1

Immune cell-derived exosomes in osteoarthritis progression. (A) Exosomes derived from immune cells, including dendritic cells, B cells, and
macrophages, mediate immune communication and synovial inflammation in osteoarthritis. (B) APC-derived exosomes contribute to osteoarthritis
progression. In contrast, MSC-derived exosomes exert therapeutic effects by reprogramming macrophages toward an anti-inflammatory phenotype,
thereby protecting cartilage and alleviating inflammation. APC, antigen-presenting cell; MSC, mesenchymal stem cell.
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miR-140 is down-regulated in osteoarthritis cartilage and in

chondrocytes stimulated with IL-1b , underscoring its

chondroprotective function (54). Mice lacking miR-140 exhibit

proteoglycan loss and cartilage fibrillation, whereas transgenic over-

expression confers resistance to experimental arthritis (55). This

regulatory role is further emphasized by the inverse relationship

between miR-140 and catabolic enzymes. In osteoarthritis tissues,

low level of miR-140 expression is typically accompanied by

increased MMP-13 and ADAMTS5, thereby accelerating disease

progression (56, 57). Mechanistically, miR-140 exerts its protective

effects primarily by directly targeting the 3′-UTR of ADAMTS5 and

MMP-13 mRNA, suppressing their translation and thus attenuating

matrix degradation (58). Furthermore, miR-140 negatively regulates

RALA and SMAD3, which concurrently modulates chondrocyte

hypertrophy and reduces catabolic gene expression (59). Exosomal

delivery of miR−140 to chondrocytes enhances COL2A1 expression

while simultaneously inhibiting IL−1b-induced activation of the NF-

kB pathway, leading to reduced synthesis of pro-inflammatory

mediators such as inducible nitric oxide synthase (iNOS) and cyclo

−oxygenase−2 (COX-2) (60, 61). Moreover, miR−140-containing

exosomes prevent oxidative stress-induced apoptosis by targeting P38

MAPK signaling in articular cartilage (62). Together, these multifaceted

mechanisms underscore the central role of exosomal miR−140 in

restoring the anabolic-catabolic balance within the joint

microenvironment and protecting against OA-associated cartilage

erosion. Additional miRNAs, including miR-139 and miR-9,

similarly disrupt the anabolic–catabolic balance, precipitating

extracellular-matrix breakdown and chondrocyte injury (63).

The dysregulation of exosomal miRNAs in OA is not merely a

bystander phenomenon but actively contributes to disease pathology.

The miRNA composition of exosomes differs markedly between

patients with OA and healthy individuals (64). miRNA profiling of

synovial-fluid–derived exosomes reveal the miR-200c overexpression

in OA, which suppresses ZEB1 and consequently diminishes type II

collagen synthesis (65). Further evidence of exosomal miRNA

dysregulation comes from inflammatory stimulation experiments: IL-

1b stimulation of normal synovial fibroblasts up-regulates 340 and

down-regulates 24 distinct miRNAs relative to unstimulated controls,

whereas exosomes released by OA chondrocytes contain 22 up-

regulated and 29 down-regulated miRNAs compared with those

from normal chondrocytes (66). Collectively, these findings highlight

the bidirectional relationship between exosomal cargos and OA

progression. Such changes reflect both an altered joint

microenvironment and the host’s immunoregulatory response; they,

in turn, feed back into disease control—for example, elevated miR-140

dampens local inflammatory cytokine release and mitigates immune

activation (67). Exosomes thus occupy a pivotal position in the

immunological circuitry of OA.
4.3 Additional links between exosomes and
OA

Beyond immunoregulation, exosomes intersect with several

other facets of OA pathogenesis, notably synovial angiogenesis.
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Exosomes released by synovial fibroblasts augment vascular

endothelial growth factor (VEGF) secretion, thereby stimulating

angiogenesis and driving pathological progression (68, 69). Human

umbilical-vein endothelial cells cultured with these exosomes

display enhanced migration, tube formation and overall

angiogenic capacity. Chondrocyte-derived exosomes are also

implicated in osteophyte formation (68). Vesicles 20 – 200 nm in

diameter, present within nascent cartilage and bone outgrowths,

share exosomal features and carry mediators such as bone

morphogenetic proteins (BMPs) that are indispensable for

calcification and osteophyte development (70). Exosomes further

influence chondrocyte metabolism. Reduced mitochondrial mass in

human OA chondrocytes relative to healthy controls, whereas

elevated reactive oxygen species (ROS), signifying concurrent

mitochondrial dysfunction and ROS accumulation (71–73).

Exosome treatment restores mitochondrial integrity, evidenced by

increased intracellular ATP, while lowering ROS levels. Intra-

articular administration of exosomes can therefore attenuate OA

progression by rectifying chondrocyte metabolic defects (74).
5 MSC−derived exosomes and OA

5.1 Anti−inflammatory mechanisms of MSC
−derived exosomes

The therapeutic potential of MSC-derived exosomes in OA

hinges on their ability to reprogram the inflammatory

microenvironment. MSC-derived exosomes contain bioactive

components, including trophic factors and apoptosis inhibitors,

that modulate the injury microenvironment by shifting the balance

from pro-inflammatory to anti-inflammatory responses (75). This

shift is particularly relevant in OA, where synovial macrophages

play a central role in disease progression (76, 77). In OA

pathogenesis, both clinical observations and experimental models

demonstrate significant inflammatory cell accumulation within the

synovial tissue, particularly highlighting the crucial role of synovial

macrophages (78). Notably, macrophage polarization dictates their

functional impact: during inflammatory processes, macrophages

undergo functional polarization into two distinct subsets: the pro-

inflammatory M1 phenotype and the anti-inflammatory M2

phenotype, which play counterregulatory roles in disease

progression (79).

MSC-derived exosomes directly influence macrophage

polarization to attenuate inflammation. Exosomes derived from

MSCs, particularly those containing elevated levels of miR-135b,

inhibit MAPK6 expression, which facilitates the polarization of

synovial macrophages toward the M2 phenotype and subsequently

reduces cartilage degeneration (80, 81). Another key mechanism

involves the suppression of NF-kB signaling, a master regulator of

inflammation. Targeted inhibition of NF−kB is considered a

promising strategy for controlling OA−associated inflammation

(82). Upon stimulation with inflammatory mediators, NF-kB
translocates to the nucleus and up regulates a repertoire of

inflammatory genes encoding proteins, including COX-2, MMPs,
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and iNOS, culminating in chondrocyte death and exacerbation of

OA pathology. MSC exosomes counteract this process via specific

miRNAs: phosphorylation−dependent degradation of IkB−a is a

pivotal step in NF−kB activation; MSC−derived exosomes carrying

miR−147b inhibit TNF−a and IL−1b- driven expression of

inflammatory mediators and prevent IkB−a degradation (83, 84)

(Supplementary Table S1).

Multiple RNAs contained in MSC exosomes modulate

inflammatory signaling in OA. For example, miR−222 targets

HDAC4 and thereby down−regulates MMP−13 protein (85, 86);

miR−199a−5p lowers IL−6 and TNF−a levels, limiting

inflammation and cartilage destruction; miR−140−5p targets Toll

−like receptor 4 (TLR4), restraining proliferation of synovial

fibroblasts and reducing IL−6 and IL−8 secretion, thus fostering

cartilage regeneration (87, 88). Additional miRNAs contribute to

the resolution of oxidative stress and inflammation. miR−9−5p

down−regulates SDC1, diminishing expression of IL−1, IL−6, TNF

−a, MMP−13, alkaline phosphatase (ALP), cartilage oligomeric

matrix protein (COMP) and C−reactive protein (CRP), while

increasing superoxide dismutase (SOD), NO, malondialdehyde

(MDA), iNOS and COX−2, collectively alleviating cartilage injury

and curbing inflammatory and oxidative stress damage (89, 90).

Beyond miRNAs, long non-coding RNAs also play a role: the long

non−coding RNA MALAT1 up−regulates miR−19b via the Wnt/

b−catenin and NF−kB pathways, protecting chondrocytes from

lipopolysaccharide−induced inflammatory injury (91). In addition,

miR−181c, miR−146a, and miR−21 contained in MSC exosomes

can reverse the pathological inflammatory milieu characteristic of

OA (92, 93) (Figure 1B).
5.2 Recent advances in exosome-based OA
therapy

The reparative function of MSCs and their exosomes can be

modulated by diverse pre−conditioning strategies, encompassing

both biomaterial−based and physical interventions. Biomaterials

such as hyaluronic acid, sodium−alginate Janus microspheres and

related carriers enhance MSC adhesion to cartilage and enable

targeted delivery that accelerates cartilage repair (94, 95). Recent

advances in exosome-based OA therapies highlight innovative

strategies for cartilage repair. Preconditioning MSCs with

cytokines and biomaterials, such as hyaluronic acid and Janus

microspheres, enhances exosome yield and therapeutic efficacy

(64, 96). Engineered exosomes, such as CRISPR/Cas9-loaded

CAP-modified hybrids (CAP/FGF18-hyEXO) and fucoidan-

primed exosomes (F-MSCs-Exo), promote chondrogenesis and

autophagy via miR-146b-5p (97). Hydrogel encapsulation enables

sustained, targeted delivery. Conversely, pathogenic FLS-derived

exosomes exacerbate OA via HIF1A-driven glycolysis, which is

reversible with 2-DG (98). Macrophage-derived miR-26b-5p

exosomes and placental exosomes further modulate inflammation

and anabolism (50). These approaches underscore exosomes’
Frontiers in Immunology
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potential in precision OA therapy through engineering, priming,

and advanced delivery systems.
6 Conclusion

In conclusion, exosomes have emerged as pivotal mediators in the

complex immunological and inflammatory processes underlying OA.

These nano-sized vesicles, which are released by various cells, including

antigen-presenting cells and MSCs, play dual roles in OA pathogenesis

by both propagating and mitigating inflammation. APC-derived

exosomes, particularly from dendritic cells, are integral in enhancing

immune activation, facilitating antigen presentation, and driving

synovial inflammation through cytokine signaling. These exosomes

contribute to the activation of T cells and macrophages, thereby

accelerating disease progression. On the other hand, exosomes

derived from MSCs exhibit a counter-regulatory function, promoting

anti-inflammatory responses and cartilage protection. By carrying

specific microRNAs and other bioactive molecules, MSC-derived

exosomes can reprogram macrophages, shifting their polarization

towards the anti-inflammatory M2 phenotype, thus attenuating

cartilage degradation and fostering tissue repair.

The therapeutic potential of exosomes in OA treatment is

significant, particularly in their ability to influence the joint

microenvironment. However, despite this promise, several challenges

hinder their clinical translation. Standardization of exosome

production, including isolation methods, quantification metrics, and

quality control, remains unresolved, leading to batch variability and

inconsistent therapeutic effects. Optimal dosing regimens, frequency of

administration, and delivery routes are yet to be established. Moreover,

exosome-based therapies may elicit unforeseen immunogenicity,

especially when derived from allogeneic sources, necessitating

rigorous safety evaluations. Additionally, the scale-up of exosome

manufacturing under GMP-compliant conditions is still technically

and economically challenging. Addressing these translational barriers is

crucial for transforming exosome-based therapies from experimental

platforms into viable clinical interventions. The integration of

exosomes with biomaterial scaffolds and physical stimuli will offer a

promising avenue for developing effective, multi-faceted treatments for

OA. Furthermore, designing “smart” exosomes with targeted delivery

capabilities or artificial intelligence (AI)-engineered cargos may

enhance therapeutic efficacy and specificity. Ultimately, exosome

research in OA stands at a promising yet formative stage. By

addressing fundamental scientific questions and overcoming

technical and regulatory barriers, future investigations can unlock the

full therapeutic potential of exosomes for immune modulation and

tissue regeneration in OA.
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