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Background: Immune checkpoint inhibitors (ICIs) have improved survival for

non-small cell lung cancer (NSCLC) patients, but immune-related adverse events

(irAEs), like immune-mediated thyroid dysfunction (IMTD), have been reported.

IMTD causes irreversible thyroid damage, affecting NSCLC patients’ quality of life.

This study aims to explore IMTD risk factors and develop a Nomogram to predict

IMTD risk at 6, 12, and 24 months.

Methods: Data from 1,917 NSCLC patients from Chongqing University Cancer

Hospital treated with ICIs were randomly split into training (70%) and validation

(30%) cohorts. After variable selection, a Nomogram with 11 common clinical

variables was built from the training cohort. The validation cohort was used to

assess the model comprehensively using the Time C-index, Time AUC, Delong

test, calibration curves, and decision curve analysis (DCA) to ensure its

clinical effectiveness.

Results: IMTD occurred in 343 (17.89%) patients. Among the 11 model factors,

Age (OR = 1.02, 95% CI: 1.01 - 1.04), Female (OR = 1.78, 95%CI: 1.31 - 2.42), Mono

(OR = 3.52, 95% CI: 1.72 - 7.17), and TCHO (OR = 1.13, 95% CI: 1.03 - 1.24) were

significant IMTD risk factors. WBC and FT4were protective factors (OR = 0.9, 95%

CI: 0.83 - 0.98 and OR = 0.94, 95% CI: 0.90 - 0.97). The Nomogram showed

good predictive accuracy and generalizability in both cohorts, with C - indices of

0.77 (95% CI: 0.74 - 0.80) and 0.72 (95% CI: 0.67 - 0.78), and AUC values above

0.7. Kaplan - Meier curves confirmed its effective IMTD risk stratification.
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Conclusion: The developed Nomogram has good predictive performance and

can identify high-risk IMTD patients. The web calculators are user-friendly,

providing a basis for early clinical intervention to reduce IMTD incidence.
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Introduction

Non-small cell lung cancer (NSCLC) is experiencing a

continuous rise in both incidence and mortality rates, imposing a

significant disease burden in China and worldwide (1). Immune

checkpoint inhibitors (ICIs) are antibodies that block inhibitory

immune regulatory factors, including anti-programmed cell death-1

(PD-1), anti-programmed cell death ligand-1 (PD-L1), and anti-

cytotoxic T-lymphocyte antigen-4 (CTLA-4) (2). With the

advancement of therapeutic strategies, ICIs have gradually

become a standard treatment for NSCLC, offering patients

improved survival outcomes (3). Although ICIs effectively

modulate immune responses against tumor cells, they may also

excessively activate the immune system, leading to immune-related

adverse events (irAEs) (4). irAEs can affect nearly all organ systems,

but studies have identified immune-mediated thyroid dysfunction

(IMTD) as the most common endocrine-related irAEs (5).

IMTD primarilymanifests clinically as overt hypothyroidism, overt

thyrotoxicosis, subclinical hypothyroidism, and subclinical

thyrotoxicosis. The median onset time of IMTD is 6–10 weeks after

the initiation of ICI treatment, but cases have been reported as early as

7 days and as late as 3 years (6). The incidence of IMTD varies

depending on the type of drug, sex, and ethnicity, ranging from 2.6-

50.5% (5, 7, 8). CTLA-4 inhibitors are associated with an IMTD

incidence of approximately 2.5% - 5.2%, while PD-1/PD-L1 inhibitors

result in an incidence of 3.9% - 8.5%. Combination therapy with PD-1

and CTLA-4 inhibitors leads to a higher incidence, ranging from 10.2%

- 16.4% (9, 10). Studies have shown that nearly half of IMTD patients

develop irreversible thyroid damage, necessitating lifelong hormone

replacement therapy, which poses a significant challenge to improving

the quality of life in NSCLC patients (11). However, there is currently a

lack of simple and convenient tools to assist clinicians in quickly

assessing IMTD risk levels. Existing studies have identified risk factors

such as female sex, age, White or Black ethnicity, and prolonged

treatment duration. However, these factors are generally non-

modifiable, and there is limited research on modifiable risk factors

for IMTD (12, 13). Therefore, investigating IMTD risk factors and

developing reliable models to accurately predict the risk of IMTD in

NSCLC patients undergoing ICI therapy is of great clinical significance.

The nomogram model based on Cox regression is a user-

friendly and powerful graphical tool that integrates biological and

clinical variables, visualizing the relationships between multiple

factors. It is widely used as a clinical prediction model (14).
02
In summary, this study aims to explore the risk factors for

IMTD in NSCLC patients treated with ICIs using Cox regression

analysis and develop a visualized nomogram model to predict the

risk of IMTD at 6, 12, and 24 months. This model is expected to

provide clinicians with a rapid and effective tool for IMTD risk

stratification, aiding in formulating personalized treatment

strategies and minimizing the adverse effects of IMTD on patients.
Materials and methods

Data source

This study comprehensively collected data from 2,123 NSCLC

patients who received ICI therapy at Chongqing University Cancer

Hospital between January 1, 2019, and December 31, 2023. The

collected data included sociodemographic characteristics, such as

sex, age, and body mass index (BMI). Tumor-related information,

including Karnofsky Performance Status (KPS) and TNM stage.

Hematological parameters, including white blood cell count

(WBC), hemoglobin (Hb), neutrophils, monocytes (Mono),

platelet count (PLT), albumin (ALB), globulin (GLB),

triglycerides (TAG), total cholesterol (TCHO), low-density

lipoprotein (LDL), high-density lipoprotein (HDL), creatinine

(Cr), uric acid (UA), and glucose (GLU). Thyroid-related

biomarkers, including serum-free thyroxine (FT4), thyroxine

(T4), serum-free triiodothyronine (FT3), triiodothyronine (T3),

anti-thyroid peroxidase antibody (TPOAb), thyroid-stimulating

hormone (TSH), thyroglobulin (Tg), and thyroglobulin antibody

(TGAb). All blood tests were conducted in the Chongqing

University Cancer Hospital Laboratory. The follow-up period will

continue until January 31, 2025.
Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) Age ≥18 years; (2)

Diagnosis of NSCLC and at least one hospitalization; (3) Received

ICI therapy with at least one of the following inhibitors: CTLA-4,

PD-1, or PD-L1. The exclusion criteria included: (1) Missing key

pathological data, such as thyroid-related biomarkers; (2) Death

within 48 hours of hospital admission; (3) Pre-existing thyroid

dysfunction before ICI therapy; (4) Combination therapy with two
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or more ICIs inhibitors; (5) Lack of follow-up data. After applying

the inclusion and exclusion criteria, 1,917 patients were included in

the model construction, as illustrated in Figure 1.
Definition of IMTD

The diagnosis of immune-mediated thyroid dysfunction

(IMTD) in this study was based on previously established criteria

(15): i) Overt thyrotoxicosis: TSH < 0.27 mIU/mL and FT4 > 22.00

pmol/L. ii) Subclinical thyrotoxicosis: TSH < 0.27 mIU/mL and

12.00 pmol/L ≤ FT4 ≤ 22.00 pmol/L. iii) Overt hypothyroidism:

TSH ≥ 10.0 mIU/L, regardless of FT4 levels. iv) Subclinical

hypothyroidism: 4.2 mIU/L < TSH ≤ 10.0 mIU/L and 12.00

pmol/L ≤ FT4 ≤ 22.00 pmol/L.
Model construction and validation

This study randomly divided patients meeting the inclusion and

exclusion criteria into a training cohort (n = 1,342) and a validation

cohort (n = 575) in a 7:3 ratio. This randomization was performed
Frontiers in Immunology 03
using the “caret” package in Rwith a fixed random seed to ensure result

reproducibility. In the training cohort, variable selection was performed

through LASSO regression, stepwise multivariate Cox regression, and

clinical expertise. The selected variables were then incorporated into a

Cox regression analysis to identify independent risk factors for IMTD

and construct a Nomogram model. At the same time, we use the

“DynNom” package to make the Nomogram model a user-friendly

web calculator, allowing anyone to use the website. The performance of

the Nomogram model was subsequently validated in the validation

cohort. Specifically, The “pROC” package was used to calculate the area

under the receiver operating characteristic (ROC) curve (AUC) to

assess the generalization performance of the Nomogram model. Time-

dependent C-index and time-dependent AUC were used to evaluate

the model’s predictive accuracy at different time points. Using Delong

test to validate the Nomogram model and compare its performance

with other variables included in the model in detail. A calibration curve

was generated using 1,000 bootstrap resampling iterations via the

“caret” package to validate the predictive accuracy of the Nomogram

model in both the training and validation cohorts. To assess the clinical

utility of the Nomogram model, we performed decision curve analysis

(DCA) using the “rmda” package, visually demonstrating the clinical

benefits of the model across different threshold probabilities.
FIGURE 1

Flow chart of the patients enrolled in the final study cohorts.
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Statistical analysis

In this study, appropriate statistical methods were applied to

describe and compare different types of variables. For normally

distributed continuous variables, data were presented as mean ±

standard deviation (Mean ± SD), and t-tests were used for group

comparisons. For non-normally distributed continuous variables,

data were presented as median (M) and interquartile range (IQR),

and non-parametric tests were used for group comparisons.

Categorical variables were presented as frequencies and percentages,

and Chi-square tests were used for group comparisons. The above

statistical descriptions and comparisons were conducted using the

“tableone” package in R. For handling missing data, we employed

multiple imputations using the “mice” package in R, which generates

complete datasets by establishing multiple imputation models. This

approach effectively minimizes the impact of missing data on study

outcomes, thereby enhancing data completeness and analytical

reliability (16). This study reported the relevant research results in

accordance with the TRIPOD guidelines (17). All statistical analyses
Frontiers in Immunology 04
were conducted in R version 4.1.2 (http://www.r-project.org). A two-

sided P-value < 0.05 was considered statistically significant,

indicating meaningful differences between groups.

Result

Baseline characteristics of the study
population

In this study, 1,917 patients were enrolled, among whom 343

cases (17.89%) developed IMTD. The median time of IMTD

occurrence in this study was 3.03 months. Table 1 shows that the

mean age of all patients was 61.90 years, with a predominance of

male patients (83.20%). However, it is noteworthy that the

incidence of IMTD was significantly higher in female patients

compared to male patients (31.06% vs. 15.24%, P < 0.05). More

than half of the NSCLC patients had a BMI range of 18.5-23.9, and

approximately two-thirds were classified as TNM stage IV.

Statistical analyses revealed that patients who developed IMTD
TABLE 1 Sociodemographic and clinical characteristics of subjects.

Variable Overall (n=1917) Non-IMTD (n=1574) IMTD (n=343) P

Age 61.90 ± 8.74 61.79 ± 8.64 62.39 ± 9.18 0.253

KPS 80.62 ± 7.64 80.44 ± 7.78 81.43 ± 6.92 0.030

Sex <0.001

Male 1595 (83.20) 1352 (84.76) 243 (15.24)

Female 322 (16.80) 222 (68.94) 100 (31.06)

TNM 0.817

II-III 639 (33.33) 527 (82.47) 112 (17.53)

IV 1278 (66.67) 1047 (81.92) 231 (18.08)

BMI 0.672

18.5-23.9 1128 (58.84) 934 (82.80) 194 (17.20)

24-27.9 549 (28.64) 443 (80.69) 106 (19.31)

≥28 90 (4.69) 72 (80.00) 18 (20.00)

<18.5 150 (7.82) 125 (83.33) 25 (16.67)

WBC 6.95 ± 3.02 7.12 ± 3.07 6.16 ± 2.64 <0.001

Neutrophil 4.71 ± 2.65 4.85 ± 2.68 4.06 ± 2.41 <0.001

Mono 0.62 ± 0.27 0.63 ± 0.28 0.58 ± 0.26 0.002

Hb 123.84 ± 17.65 124.11 ± 17.58 122.60 ± 17.97 0.152

PLT 245.81 ± 97.12 251.89 ± 97.66 217.88 ± 89.57 <0.001

Alb 38.34 ± 5.02 38.46 ± 4.69 37.76 ± 6.31 0.018

Glb 33.60 ± 6.92 33.65 ± 7.04 33.37 ± 6.34 0.501

TAG 1.70 ± 1.10 1.63 ± 0.99 2.02 ± 1.48 <0.001

TCHO 4.94 ± 1.25 4.87 ± 1.13 5.28 ± 1.67 <0.001

LDL 3.04 ± 0.94 3.02 ± 0.90 3.13 ± 1.07 0.048

(Continued)
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had significantly higher levels of KPS, TAG, TCHO, LDL, Cr, Tg,

TPOAb, TSH, and TGAb compared to those who did not develop

IMTD (all P-values < 0.05). Conversely, WBC, Neutrophil, Mono,

PLT, Alb, FT4, T4, FT3, and T3 levels were significantly lower in

patients with IMTD (all P-values < 0.05). However, no significant

differences were observed between IMTD and non-IMTD patients

regarding age, TNM stage, BMI, Hb, Glb, HDL, UA, and GLU levels

(all P-values > 0.05). No significant differences were observed

between the cohorts (Supplementary Table 1).
Nomogram model construction

Supplementary Figure 1 shows the correlation of all continuous

variables in the study. Following LASSO regression, stepwise
Frontiers in Immunology 05
multivariate Cox regression, and clinical experience, we identified

11 variables: Age, Sex, WBC, Mono, Hb, PLT, TCHO, Tg, FT4,

TPOAb, and TSH to be included in the final model. Figure 2 shows

the results of the LASSO regression analysis, in which we adopted

the screening principle of minimizing l. The hypothesis test results
show that the Cox regression model constructed in this study

conforms to the proportional hazards hypothesis. Figure 3A

presents the multivariate Cox regression analysis results for the

final variables. The analysis revealed that Age, Female sex, Mono,

and TCHO were significant risk factors for IMTD, whereas WBC

and FT4 were important protective factors. The remaining variables

had minimal impact on IMTD occurrence and were deemed

negligible. Mono had the most significant influence among these

variables, followed by Sex. Specifically, when all other factors

remained constant, each unit increase in Mono level was
TABLE 1 Continued

Variable Overall (n=1917) Non-IMTD (n=1574) IMTD (n=343) P

BMI 0.672

HDL 1.35 ± 0.40 1.35 ± 0.40 1.35 ± 0.43 0.885

Cr 66.92 ± 18.31 66.51 ± 17.43 68.80 ± 21.85 0.036

UA 324.01 ± 83.83 323.43 ± 83.37 326.65 ± 85.98 0.520

Tg* 8.50 [4.72, 15.30] 8.20 [4.72, 14.10] 11.30 [4.46, 32.80] <0.001

FT4 14.67 ± 3.90 15.09 ± 3.02 12.72 ± 6.22 <0.001

TPOAb* 29.00 [28.00, 41.40] 28.00 [28.00, 37.98] 42.30 [28.00, 439.70] <0.001

T4 109.44 ± 36.52 111.08 ± 29.35 101.89 ± 58.66 <0.001

FT3 4.68 ± 1.22 4.79 ± 0.90 4.17 ± 2.09 <0.001

TSH* 1.70 [1.01, 2.96] 1.64 [1.06, 2.57] 3.89 [0.39, 14.55] <0.001

TGAb 15.00 [1.30, 16.20] 15.00 [1.30, 15.00] 15.00 [2.40, 93.00] <0.001

T3 1.81 ± 0.58 1.83 ± 0.50 1.73 ± 0.86 0.002

GLU 5.58 ± 1.77 5.57 ± 1.74 5.64 ± 1.87 0.506
*Expressed as median (M) and interquartile range (IQR).
FIGURE 2

The results of LASSO regress analysis. (A) Each curve in the figure represents the changed trajectory of each independent variable coefficient; (B) l
value of Lasso regression.
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associated with a 3.52-fold higher relative risk of developing IMTD.

Additionally, female patients had a 1.78-fold higher relative risk of

IMTD compared to male patients.

Figure 3B displays the Nomogram model constructed based on

the Cox regression results. A total score is obtained by summing the

individual scores assigned to each variable. Based on the nomogram

scale, this score is then used to estimate the cumulative probability

of IMTD occurrence over different time points. The web-based

calculator we developed can quickly calculate the probability of

IMTD risk for patients at any time within 24 months. It is accessible

via the following URL: https://cqch.shinyapps.io/IMTD/. For

example, a 60-year-old male patient has a WBC of 7, Mono of 1,

Hb of 116, PLT of 271, TCHO of 5, Tg of 30, FT4 of 16, TPOAb of

156, and TSH of 10. His probability of developing IMTD within 1

year is 0.850 (95% CI: 0.81-0.89).
Model evaluation and validation

To systematically assess the performance of the Nomogram

model, we conducted evaluations using a validation cohort. The C-

index for the model in the training and validation cohorts was 0.77

(95% CI: 0.74 - 0.80) and 0.72 (95% CI: 0.67 - 0.78), respectively,

indicating high predictive consistency. Additionally, Figure 4A

illustrates the C-index of the Nomogram model at different time

points for both the training and validation cohorts, demonstrating

that the model maintains accurate and robust predictive performance

over time. Similarly, Figure 4B presents the area under the curve

(AUC) values at different time points, confirming the model’s

stability and reliability. In the training cohort, the AUC values for

predicting 6-, 12-, and 24-month IMTD occurrence were 0.785,

0.799, and 0.800, respectively, while in the validation cohort, the

corresponding AUC values were 0.749, 0.755, and 0.745, suggesting

good generalization ability. Figures 4C, D provide detailed ROC curve
Frontiers in Immunology 06
analyses for further validation. Supplementary Table 2 presents the

detailed results of the DeLong test. The results indicate that

the differences in AUC values between the nomogram model and

the univariate models constructed with individual variables are

statistically significant (all P-values < 0.05). This suggests that the

nomogram, which integrates multiple variables, demonstrates

superior predictive performance and is significantly better than

models based on a single variable. Regarding prediction accuracy,

Figures 5A, B display the calibration curves for the training and

validation cohorts. The calibration plots show that all points are

evenly distributed along the diagonal, indicating a strong agreement

between predicted and actual IMTD outcomes and demonstrating

high predictive accuracy.

Decision curve analysis (DCA) was employed for clinical utility,

as shown in Figures 5C, D. The results indicate that the model

provides a more significant net benefit in the training cohort than

the “all” and “none” strategies within a 9% - 99% threshold

probability range, confirming its clinical applicability. The model

retains clinical value within a threshold probability range of 9-98%

in the validation cohort. Regarding risk stratification, Figures 6A, B

illustrate the risk identification capabilities of the Nomogram model

in both cohorts. The model effectively distinguishes IMTD risk

levels across different patient groups. Furthermore, Figures 6C, D

utilize waterfall plots to visualize actual patient outcomes and

predicted risk scores across both cohorts, achieving high

predictive accuracy in both settings.
Discussion

ICI therapy has transformed NSCLC treatment and

significantly delayed patient mortality. However, with the

increased use of ICIs, irAEs have become more common (18).

irAEs, caused by an overactive immune response, often affect the
FIGURE 3

Results of the risk predicted nomogram for IMTD. (A) The hazard ratio plot of multivariate Cox regression;(B) Nomogram for predicting the 6-, 12-,
and 24-month IMTD risk of NSCLC patients after ICI treatment.
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endocrine system, with IMTD being a frequently observed type

(19). In NSCLC treatment, exploring IMTD risk factors and

developing a precise prediction model is crucial for guiding

clinical decisions, optimizing ICI therapy, and improving patient

outcomes. This study innovatively integrates multi-dimensional

data from NSCLC patients treated with ICIs, including

demographic characteristics, hematological indicators, and

thyroid biomarkers. Through multivariate Cox regression

analysis, it not only identifies risk factors associated with IMTD

but also develops a new Nomogram prediction model. This model

can accurately predict the risk of IMTD at 6-, 12-, and 24 months

without additional complex imaging examinations, making it easy

to operate and intuitive to understand. It enables clinicians to

quickly identify high-risk patient groups and develop personalized

care plans, further enhancing the safety of ICI therapy in

clinical practice.

Nomograms transform complex Cox regression models into

visual graphics, enhancing the readability of prediction results, and

are increasingly applied in clinical practice. Kattan et al. compared

six machine learning prediction models with Nomogram models

based on Cox proportional hazards regression using three large

urological datasets and found that Nomogram models had
Frontiers in Immunology 07
comparable or even superior predictive ability to other machine

learning models (20). Similarly, Wang et al. developed a Nomogram

model using LASSO-Cox regression to predict recurrence in early-

stage hepatocellular carcinoma patients, which performed well (21).

In this study, the developed Nomogram model has a C-index and

AUC greater than 0.7 within the prediction period, demonstrating

excellent predictive accuracy and model robustness.

Several existing models have significantly contributed to

predicting thyroid dysfunction during immunotherapy. For

instance, Wang et al. developed a thyroid dysfunction prediction

model based on hospital electronic medical record system data (8).

Our study, however, distinguishes itself by incorporating a wider

range of variables, including patients’ sociodemographic

characteristics, hematological parameters, and thyroid - related

biomarkers. This diversity in variables enables our model to

conduct a more nuanced and comprehensive assessment of

IMTD risks. Unlike the model by Wang et al., our Nomogram

model also offers time - dependent predictions, allowing clinicians

to measure IMTD risks at 6, 12, and 24 - month time points. This

dynamic approach not only enhances the accuracy of predictions

but also equips healthcare providers with crucial information for

designing personalized patient management strategies.
FIGURE 4

(A) The C-index at different time points; (B) The AUC at different time points; (C) The 6-, 12- and 24-month ROC curves for the Nomogram model
in the training cohort; (D) The 6-, 12- and 24-month ROC curves for Nomogram model in the validation cohort.
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To build the final Nomogram model, the study selected 11

variables, including sociodemographic characteristics ,

hematological indicators, and thyroid biomarkers. Females and

Mono were the two most influential factors in IMTD. Existing

research has indicated potential gender differences in irAE

incidence. Triggianese et al. found that men have a slightly lower

incidence of ICI-related endocrine diseases (especially IMTD) than

women (22). Niafar et al. noted that women are 5–10 times more

likely to develop thyroid-related diseases than men (23). Recent

studies have shown that thyroid dysfunction significantly affects

blood parameters, and complete blood counts are crucial for

diagnosis (24). Specifically, one study highlighted that patients

with thyroid dysfunction have significantly higher Mono levels

than the normal population (25). This could be because T3 and

T4 in thyroid hormones affect blood formation and cell

differentiation and cause changes in blood parameters (26).

Similar findings have been reported for other hematological

indicators. Cao et al. discovered that IMTD patients have

significantly higher PLT levels than healthy individuals (27). In

IMTD patients, the abnormal immune system attacks thyroid

tissue, affecting platelet production and metabolism through

inflammatory factors and anti-thyroid antibodies. Elevated levels
Frontiers in Immunology 08
of inflammatory factors such as interleukin-6 (IL-6) and Tumor

necrosis factor-a (TNF-a) stimulate the proliferation and

differentiation of megakaryocytes in the bone marrow, increasing

PLT production and leading to higher PLT levels. Anti-thyroid

antibodies may cross-react with antigens on PLT surfaces, affecting

their metabolism and function and causing PLT abnormalities (28).

This situation may further lead to anemia or decreased Hb levels in

patients. Research has shown that Hb decline is associated with a

higher risk of thyroid dysfunction (29, 30). A cross-sectional study

found that blood lipids significantly impact thyroid dysfunction,

especially in IMTD. It pointed out that higher TCHO levels increase

the risk of thyroid dysfunction (31). This is because NSCLC patients

with high TCHO levels often have high leptin levels, which increase

TSH secretion and induce IMTD (32). Notably, in this study, WBC

was found to be a protective factor that was not previously reported.

The mechanisms underlying WBC reduction associated with IMTD

involve complex immune regulatory pathways influenced by cancer

therapies and tumor microenvironment dynamics. The tumor

microenvironment (TME) plays a pivotal role in modulating

immune responses. For example, regulatory T cells (Tregs) can

suppress effective anti-tumor immunity through various

mechanisms, such as cytokine secretion and cell-cell interactions
FIGURE 5

(A) The 6-, 12- and 24-month calibration curves of the Nomogram model in the training cohort; (B) The 6-, 12- and 24-month calibration curves of
the Nomogram model in the validation cohort; (C) The DCA curves for Nomogram models in training cohort; (D) The DCA curves for Nomogram
models in the validation cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1611956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1611956
(33). The presence of tumor-associated immune cells, such as

macrophages and Tregs, can inhibit immune clearance and alter

systemic immune cell populations, which may contribute to the

WBC reductions observed in hypothyroid states linked to tumor

immunity. Additionally, the immune suppression mediated by B

regulatory cells (Bregs) and other immunosuppressive cells can

further complicate the immune landscape, potentially leading to

decreased WBC counts as part of broader immune dysregulation

(34). Furthermore, immune mechanisms involving PD-1/PD-L1

pathways can inhibit phagocytosis and immune clearance, thereby

impacting WBC dynamics (35).

Regarding thyroid biomarkers, FT4 and TSH are crucial for

diagnosing thyroid dysfunction, as they are the most sensitive

biomarkers for assessing thyroid function. The actual reason for

the decline in FT4 levels in cases of thyroid dysfunction is not fully

understood. However, it may be due to dysregulation of the

hypothalamic-pituitary-thyroid axis or the interaction effects of

age and gender (36). Studies have shown that FT4 levels change

with age and gender, with FT4 levels being slightly lower in

individuals aged ≥60 compared to younger and middle-aged

populations (37). In this study, the average age of the NSCLC

patients was over 60 years, which could explain why FT4 was

identified as a protective factor for IMTD in this research. Patients

with IMTD have an immune system disturbance, and the TPOAb

produced in the body causes damage and death of thyroid cells,

reducing the synthesis and release of thyroid hormones.

Furthermore, this also leads to increased TSH secretion by the
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anterior pituitary gland to stimulate the thyroid gland and produce

more hormones to maintain normal physiological function (38).

TSH plays a significant role both in diagnosing and predicting

IMTD. Brilli et al. pointed out that pre-treatment serum TSH levels

can help identify high-risk IMTD patients (39). Additionally,

Kobayashi et al. used a multivariate logistic regression model to

explore risk factors for IMTD after PD-L1 antibody treatment, and

their study highlighted that elevated baseline TSH levels are a

significant risk factor for IMTD (40). Due to the interaction

between TPOAb and TSH, TPOAb is an important predictor of

IMTD risk. A cross-sectional study found that TPOAb-positive

individuals are at higher risk for potential thyroid damage (41).

Similarly, other studies have used TPOAb as a prognostic indicator

for thyroid dysfunction, particularly in thyroid diseases caused by

immune responses (42). Tg is a dimeric protein produced only by

mature thyroid tissue and stored in the follicular lumen. The

concentration of Tg in the blood varies among individuals. It

depends on factors such as thyroid mass, TSH levels, and the

stimulation of the gland by antibodies such as TPOAb, as well as

tissue damage (43). Tg is commonly used as a biomarker for thyroid

dysfunction during pregnancy and in Graves’ disease; however, in

the study by Kurimoto et al., serum Tg levels were also found to help

distinguish patients more likely to develop IMTD (44, 45).

The Nomogram model offers a predicted score of IMTD for each

patient. Those with a score > 293.99 are classified as high-risk, others

as low-risk. We recommend high-risk patients undergo daily thyroid

function monitoring in - hospital and every three months post-
E 6FIGUR

(A) K-M curves of different risk levels for Nomogram model in training cohort; (B) K-M curves of different risk levels for Nomogram model in
validation cohort; (C) Prediction results waterfall plot of Nomogram model in training cohort; (D) Prediction results waterfall plot of Nomogram
model in validation cohort.
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discharge. They should also consider adjusting the ICIs treatment

plan or preparing for early hormone replacement therapy.

This study has several strengths. First, we applied strict

inclusion and exclusion criteria, ensuring that patients unsuitable

for the study were excluded, thereby guaranteeing the validity of the

data. Second, this is the first large-scale study in Western China to

investigate the risk factors and predictive model for IMTD in lung

cancer patients following ICI treatment, providing valuable insights

for future related research.

However, this study also has some limitations. First, as a

retrospective study, it has inherent limitations, such as recall bias

and recording bias. To address these issues, we plan to design a

prospective cohort study to overcome these inherent flaws and validate

the clinical applicability of the model. Second, we did not consider the

results of patients’ ultrasound examinations and individual genetic

data when constructing the model. In future research, we intend to

incorporate genetic and imaging data to enhance the assessment of

IMTD risk. Although this may raise upfront costs, it is expected to

considerably boost the model’s predictive power and offer a more

comprehensive risk evaluation. Finally, this is a single-center study,

with all ICI patient data derived from the same hospital, which means

the predictive model we developed lacks external validation. The

model’s generalizability and robustness need further verification. The

study’s conclusions apply primarily to patient groups similar to the

study cohort. In subsequent studies, we can expand the sample source

and use data from other centers to validate the model’s performance.
Conclusion

This study developed a Nomogram model using 11 features that

are easily accessible in clinical practice to predict the risk of IMTD

occurrence in NSCLC patients receiving ICI treatment. The model

demonstrates high prediction accuracy and strong generalizability

with intuitive and straightforward characteristics. It can quickly

assist clinicians and patients in identifying the risk of IMTD in

clinical practice, making early adoption of preventive and

therapeutic strategies possible and ultimately reducing the

likelihood of IMTD occurrence.
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