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Anti-HBV treatment partially 
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innate immune cells and 
unconventional T cells during 
chronic HBV infection 
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1Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of 
Science and Technology, Wuhan, China, 2Institute of Infectious Diseases and Immunity, Union 
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 
Despite the successful implementation of prophylactic vaccines, hepatitis B virus 
(HBV) continues to affect over 350 million individuals globally. It remains a 
predominant etiology of end-stage liver pathologies, including liver cirrhosis 
and hepatocellular carcinoma (HCC). While nucleos(t)ide analog (NUC) therapies 
effectively suppress viral replication, functional cure is achieved in less than 1% of 
patients annually. Given that viral clearance fundamentally requires 
reconstitution of antiviral immunity, emerging therapeutic paradigms 
necessitate combinatorial strategies integrating direct-acting antiviral agents 
with immunomodulatory interventions. Substantial research efforts have been 
directed toward elucidating the immunological mechanisms underlying HBV 
persistence during chronic infection. This review systematically summarizes the 
functional impairment of innate immune populations and unconventional T cell 
subsets across distinct clinical phases of chronic HBV infection, and 
characterizes longitudinal immune reconstitution patterns following antiviral 
treatments. Our review identifies potential immunological biomarkers and 
provides a mechanistic framework for developing targeted immunotherapies 
to achieve durable HBV control. 
KEYWORDS 

hepatitis B virus, antiviral treatment, dendritic cell (DC), monocyte, natural killer (Nk) 
cell, MAIT (mucosal-associated invariant T) cell, gdT cell, NKT (natural killer T) cell 
1 Introduction 

Hepatitis B virus (HBV) remains a major global health challenge, chronically infecting 
an estimated 296 million people worldwide (1). Persistent HBV infection poses a significant 
risk for progression to end-stage liver diseases including cirrhosis, liver failure, and 
hepatocellular carcinoma. Current first-line antiviral therapies comprise two distinct 
modalities: pegylated interferon-a (PEG-IFN-a) and nucleos(t)ide analogs (NUCs). 
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While PEG-IFN-a demonstrates the potential to induce HBsAg 
seroclearance in 10-30% of patients within defined treatment 
durations, its clinical utility is constrained by frequent severe 
adverse effects and the necessity for subcutaneous administration 
(2). In contrast, NUCs have gained widespread acceptance due to 
their oral dosing regimen and favorable safety profile. Despite these 
advantages, NUCs exhibit limited efficacy in achieving functional 
cure (defined as HBsAg loss) and require careful clinical 
management. Premature treatment discontinuation may trigger 
virological relapse with subsequent hepatic flares, and prolonged 
therapy raises concerns about indefinite or even lifelong 
medication dependency. 

Emerging evidence suggests that sustained virological responses 
via antiviral treatments are accompanied by dynamic modulations 
of immune cell phenotypes and functional states (3). Notably, the 
interplay between antiviral therapy and immune reconstitution 
remains incompletely characterized, particularly regarding innate 
immunity components and unconventional T cell populations. This 
review systematically summarized current knowledge on the 
immunomodulatory effects of NUCs and PEG-IFN-a on 
temporal changes in innate immune cells (including NK cells, 
macrophages, and dendritic cells) and unconventional T cell 
responses during treatment. By integrating these findings, we aim 
to identify possible immune intervention for HBV immune therapy. 
2 Partial functional recovery of innate 
immune cells following antiviral 
therapy 

The innate immune system serves as the critical first line of 
defense against pathogens and plays a pivotal role in initiating and 
shaping subsequent adaptive immune responses. Beyond direct 
antiviral effector functions, innate immune cells are essential for 
antigen presentation, cytokine production and modulating the 
activation and function of HBV-specific T and B lymphocytes (4). 
While extensive researches have focused on the dysfunction and 
restoration of adaptive HBV-specific immunity during antiviral 
therapy (5), the longitudinal dynamics and functional reconstitution 
of innate immune cells remain relatively less explored. A deeper 
understanding of how current antivirals impact these innate 
compartments is crucial for revealing potential mechanisms to 
break immune tolerance and achieving functional cure. 
2.1 Dendritic cells 

Dendritic cells (DCs), as professional antigen-presenting cells, 
play a pivotal role as critical mediators bridging innate and adaptive 
immunity. Human DCs are broadly categorized into three main 
types, including monocyte-derived DCs (moDCs), plasmacytoid 
DCs (pDCs), and conventional DCs (cDCs) (6). MoDCs, 
characterized by the surface markers CD14, FcgRI (CD64), and 
FceRI, become activated primarily under inflammatory conditions 
(7). In contrast, pDCs are identified by their expression of CD123, 
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CD303 (BDCA2), and CD304 (BDCA4). These cells specialize in 
robust type I interferon (IFN-I) production in response to single
stranded viral RNA and DNA, a function mediated through pattern 
recognition receptors (PRRs) such as Toll-like receptor (TLR)-9 (8). 
The cDC population, often referred to as myeloid DCs (mDCs) in 
literature, consists of two principal subsets: cDC1s and cDC2s. 
cDC1s express CD141 (BDCA3) and excel at cross-presenting 
exogenous antigens on MHC class I molecules to activate CD8+ T 
cells. Conversely, cDC2s, which express CD1c/BDCA1 and 
CD172a, primarily present antigens on MHC class II molecules to 
stimulate CD4+ T cells (7). 

Emerging evidence reveals profound DC dysfunction during 
chronic HBV infection, with distinct pathophysiological 
manifestations across disease phases. Studies demonstrate reduced 
mDC frequencies alongside elevated B7-H1 (PD-L1) expression on 
mDCs in chronic hepatitis B (CHB) patients (9, 10). Similarly, 
decreased peripheral pDC percentages, reduced TLR9 expression, 
and impaired CpG-induced IFN-a responses are observed in CHB 
patients compared to healthy controls (HCs) (11–15). Notably, 
Ouaguia et al. have reported higher pDC frequencies in CHB livers 
than those in HCs, while liver cDCs remain comparable (16). This 
dysfunction extends to disrupted crosstalk between pDCs and 
natural killer (NK) cell, evidenced by impaired cytotoxic 
activation of NK cells in CHB patients (17). Beyond classical DC 
subsets, recent studies by Li et al. have identified expanded 
circulating follicular DCs (FDCs; CD14+ CD21high)in chronic 
HBV patients compared to HCs (18). 

Both circulating and intrahepatic cDC2s from HBV-infected 
patients exhibit reduced CD40/CD80 expression, whereas 
peripheral and hepatic pDCs display elevated CD40 levels 
compared to HCs (16). Altered expression of co-stimulatory/co

inhibitory molecules on DCs is prominent in CHB that co
stimulatory molecules (OX40L and 4-1BBL) are downregulated 
on peripheral pDCs and cDC1s, while PD-L1 expression on 
cDC2s and pDCs inversely correlates with HBV DNA (16). CD86 
expression on pDCs is elevated in both immune-tolerant (IT) and 
immune-active (IA) phases compared to controls, with IA patients 
showing higher CD86 levels and enhanced IFN-a2 production (19). 
In addition, TGF-b1 significantly elevate within intrahepatic cDC2s 
and pDCs of IT patients compared to other disease stages or HCs 
(20). Metabolic disturbances are also evident, as Dumolard et al. 
have recently demonstrated dysregulated glycolysis and oxidative 
phosphorylation (OXPHOS) in hepatic cDC1s and pDCs across 
HBV infection stages (20). Furthermore, peripheral DCs from IT 
patients show significantly reduced levels of free cholesterol, lipid 
rafts, and LDL receptor (LDLR) compared to HCs. This lipid raft 
impairment, potentially influenced by HBsAg, can be partially 
restored by lipophilic statins, which also enhances the antigen
presentation ability of DCs. (21). Improtantly, functional recovery 
of DCs emerges in disease resolution phases, with inactive carriers 
(IC) demonstrating superior DC functionality over IT patients 
through increased expression of CD80, CD86, HLA-DR and IL
12 (22). 

Functional impairments are further highlighted by TLR 
stimulation assays. Chronic HBV patients show significantly 
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reduced production of IL-12p40/70 and TNFa by cDC2s, IFNa/ 
TNFa/IFNl1 by pDCs, and IFNl1/TNFa/IL-12p40/70 by cDC1s 
compared to HCs (16). In contrast, intrahepatic DCs from CHB 
patients retain full functionality upon TLR triggering, producing 
pro-inflammatory cytokines at levels comparable to HCs (16). 
Furthermore, study on purified peripheral moDCs from CHB 
patients reveals heightened activation. The expression of both 
MHCII and co-stimulated molecules (CD80, CD86) as well as the 
cytokines (TNF-a, IL-10, IL-12) secretion in the purified peripheral 
moDCs from CHB patients are significantly higher than those from 
HCs when co-cultured with supernatant of HepG2.2.15 cells (23). 
Interestingly, enhanced autophagy is also observed in mo-DCs from 
chronic HBV patients compared to healthy donors upon re
exposure to HBV (23). 

The immunomodulatory effects of antiviral therapies on DC 
populations exhibit substantial heterogeneity across clinical studies 
(Table 1). One study has illustrated that entecavir (ETV) therapy 
significantly reduces B7-H1 expression on peripheral DCs in CHB 
patients through suppression of HBcAg-mediated AKT/ERK/p38 
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signaling pathways (9). Furthermore, another study has shown that 
ETV induces early pDC proliferation (12-24 weeks), while CD86 is 
downregulated on pDCs in HBV DNA non-responders (27). Six
month therapy of adefovir dipivoxil (ADF) restores mDC frequency 
and enhances their capacity to produce TNF and IL-12, whereas the 
frequency and TNF-a and IL-10 secretion of pDCs remain 
refractory (26). 

Interferon-based regimens reveal distinct immunostimulatory 
patterns. PEG-IFN-a-2a treatment induces sustained CD86 
upregulation on pDCs in patients achieving functional cure (24). 
Moreover, the frequency of pDC increases at week 24 post
treatment in the functional cure group (24). Consistently, Cao 
et al. have found that HBsAg decline significantly associates with 
CD86 elevation on pDCs during IFN-a treatment (27). 
Mechanistically, IFN-a treatment enhances hepatic pDC 
expansion and upregulates TLR-9 mRNA in peripheral blood 
mononuclear cells (PBMCs) of virological responders (25). A 
recent clinical trial of selgantolimod (TLR8 agonist) has 
demonstrated significant increase of peripheral pDCs, with a 
TABLE 1 Phenotypic and functional alterations of DCs in CHB patients during antiviral therapies. 

Population study type Intervention Clinical outcome Key immunological findings 

n=63 
HBeAg+ CHB 
Cohort (24) 

PEG-IFN-a-2a (24 weeks) Functional cure: 17/63 • Significant increase in pDC% and CD86 
MFI vs baseline in both functional cure 
and non-cure groups 
• No intergroup difference in 
DC alterations 

n=178 
HBeAg+ CHB Cohort (25) 

recombinant type I IFN-a(48weeks) Responders (DNA undetectable, HBsAg↓): 
77/178 

• Responders showed elevated BDCA-2, 
ILT7 and TLR9 mRNA in pDCs vs non
responders 
• Positive correlation between DC 
activation markers and treatment response 

n=12 
CHB 
Cohort (26) 

ADF (6 months) Rapid decrease in HBV DNA and 
normalization of ALT within 3 months 

• Persistent reduction of pDC% without 
post-treatment recovery 
• Dichotomous cytokine response of pDC: 
↓TNF-a vs ↑IFN-a, IL-10 at 6 months 
• Enhanced mDC function: ↑TNF, IL
12 production 

n=87 
HBeAg+ CHB 
(PEF-IFN-a-2a:48; ETV:39) 
Cohort (27) 

PEG-IFN-a-2a or ETV (48 weeks) PEG-IFN responders (33/48): HBsAg 
decreased > 60% in 48 weeks 
ETV responders (25/39): undetectable 
HBV DNA in 48 weeks 

• PEG-IFN responders: ↑CD86+ pDC% 
correlated with HBsAg decline 
• ETV non-responders: ↓CD86+ pDC% 
associates with persistent HBV DNA 

n=16 
HBeAg+ CHB 
Cohort (9) 

ETV (6 months) ALT/AST and HBV-DNA levels decreased • Pre-treatment: ↓DCs%, mDCs% and 
↑B7-H1 vs healthy controls 
• Post-treatment: ↓B7-H1 expression 
on DCs 

n=14 
HBV-IA 
Cohort (28) 

LAM (6 months) HBV DNA undetectable, 
ALT normalization 

• HBeAg seroclearance associates with: 
- ↑Circulating pDCs at 180 days 
- Restored PBMC IFN-a 
production capacity 

n=48 
CHB (24 HBeAg+) on NUCs 
Phase II RCT (29) 

Oral selgantolimod (TLR8 agonist) 3 mg, 
1.5 mg, or placebo once weekly (24 weeks) 

• Only selgantolimod-treated patients 
(n=39) had HBsAg declines greater than 
0.1log10 IU/ml at weeks 24 (7/39) and 48 
(10/39). 
• HBsAg loss (2/39 through 48 weeks), 
HBeAg loss (3/19 through 48 weeks). 

• ↑in the selgantolimod group with a dose
dependent trend 
CHB, chronic hepatitis B; HBV, hepatitis B virus; PEG-IFN-a, pegylated interferon alpha; MFI, mean fluroscence indensity; pDC, plasmacytoid dendritic cell; mDC, myeloid dendritic cell; PBMC, peripheral blood 
monomuclear cell; ADF, adefovir; ETV, entecavir; LAM, lamivudine; IA, immune active; ALT, alanine aminotransferase; AST, aspartate transaminase; NUC, nucleos(t)ide analog; RCT, random controlled trial. 
↑, increase; ↓, decrease. 
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dose-dependent trend (29). Taken together, critical analysis 
identifies three determinants of DC functional restoration, 
including baseline DC subset characteristic, different antiviral 
agents, and variant duration of treatment and observation. 
 

 

2.2 Monocytes 

Monocytes, originating from common myeloid progenitors 
(CMPs) in the bone marrow, constitute approximately 10% of 
human peripheral leukocytes and perform multifaceted functions 
in homeostasis and inflammation (30). In humans, two functionally 
distinct subsets are recognized. CD14++ CD16- “migratory” 
monocytes are capable of tissue infiltration, and CD14+ CD16+ 

“patrolling” monocytes maintain vascular surveillance (31). 
Chronic  HBV  exposure  induces  immunoregulatory  

reprogramming of monocytes. Monocytes from chronically 
infected individuals demonstrate elevated expression of TNF-a, 
IL-10, TGF-b, PD-L1, Gal-9 and HLA-E compared to HCs (32, 33). 
Notably, PD-L1 upregulation on monocytes is particularly 
pronounced in HBeAg-positive patients (34, 35). Furthermore, 
the hepatic compartment of chronic HBV (CHB) patients shows 
an enrichment of monocytes expressing Gal-9 and PD-L1 
compared to HCs (33). Functionally, monocytes from IT patients 
and HBeAg-positive or -negative CHB patients demonstrate 
suppressed signaling through TLR2, TLR4, and TLR9 compared 
to ICs and HCs. This functional impairment is accompanied by 
reduced production of IL-12, TNF-a, and  IL-6,  as well as

diminished phagocytic capacity and oxidative response (36–38). 
Moreover, PD-L1- and Gal-9-expressing monocytes in CHB 
contribute to the dysregulation of both adaptive and innate 
immune responses (33). Another study has revealed significantly 
downregulated expression of membrane-bound CD163, a 
monocyte activation marker, on circulating monocytes from both 
treatment-naïve CHB patients and those achieving HBsAg loss 
compared to HCs (37). Conversely, circulating soluble CD163 
(sCD163) levels are elevated in CHB patients with significant 
inflammation (A≥2) or fibrosis (F≥2) (37). 

Emerging evidence suggests antiviral interventions may 
partially reverse HBV-induced monocyte dysfunction, though 
therapeutic outcomes remain heterogeneous. After one year of 
treatment, tenofovir disoproxil fumarate (TDF) fails to restore 
monocyte functionality, as evidenced by unchanged monocyte 
subset distribution and proportions expressing PD-LI, Gal-9, 
TLR-2, IL-12, IL-10, CD64, and iNOS before and after treatment 
(33, 38), whereas responders to Peg-IFN-a and ETV demonstrate 
partial TLR9 expression recovery on monocytes (36). Intrahepatic 
transcriptomics reveal elevation of hepatic monocytes after 24-week 
PEG-IFN-a treatment (39). Recent single-cell analyses reveal that 
PEG-IFN-a reduces proportions of pro-inflammotory CD14+ and 
CD16+ monocytes,  accompanied  by  systemic  immune  
reprogramming from TNF-a-dominant to IFN-a-driven 
transcriptional profiles (40). Consistently, NUC-treated patients 
exhibit upregulated expression of TLR-associated genes LY6E and 
STK4 on monocytes compared to ICs (41). A recent clinical trial of 
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selgantolimod (TLR8 agonist) has demonstrated significant increase 
of peripheral CD14+ classical monocytes, with a dose-independent 
trend (29). Collectively, these findings position monocytes as 
pivotal mediators of HBV immunopathogenesis. While current 
antivirals show partial efficacy in reversing monocyte dysfunction, 
stratified interventions targeting subset-specific reprogramming are 
needed to achieve functional cure. 
2.3 Myeloid-derived suppressor cells 

Myeloid-derived suppressor cells (MDSCs), constituting less 
than 1% of myeloid cells in healthy individuals (42), are a 
heterogeneous population of immunosuppressive myeloid cells 
comprising two functionally distinct subsets, polymorphonuclear 
MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs) (43, 
44). In human PBMCs, these subsets are phenotypically 
characterized as CD11b+ CD14− CD15+/CD66b+ (PMN-MDSC) 
and CD11b+CD14+HLA-DR−/loCD33+CD15− (M-MDSC) (45). 
MDSCs undergo significant expansion under pathological 
conditions, suppressing T cell responses and promoting disease 
progression through multiple mechanisms (46). 

Several clinical studies demonstrate remarkable expansion of 
circulating MDSCs in CHB patients compared to HCs (47–49) The 
frequency of MDSCs positively correlates with HBV DNA load, 
HBeAg levels and HBsAg levels (48, 50). Both M-MDSC and 
granulocytic-MDSC (gMDSCs) from different phases of CHB 
expressed high TGF-b and IL-10 (51). Notably, purified M-

MDSCs from HBeAg-positive patients exhibit enhanced 
suppression of CD4+/CD8+ T cell proliferation and IFN-g 
production compared to those from HBeAg-negative individuals 
(52). Moreover, gMDSCs expressing arginase expand during high 
viral replication phases, impairing T cell function via arginase
dependent pathways (53). Notably, an enrichment of PD-L1/Arg/ 
iNOS expressing hepatic MDSCs is observed in CHB patients 
compared to HCs (51). A recent single-cell RNA sequencing of 
PBMC has shown that a CD14+ cluster with an MDSC-like 
phenotype predominantly accumulates in patients with CHB,

with  high  expression  of  genes  with  immunoregulatory  
functions (54). 

Apart from peripheral immune suppression, MDSCs also 
contribute to central tolerance via chemokine-mediated 
trafficking. HBsAg upregulates CCR9 expression on M-MDSCs 
through ERK1/2-IL-6 signaling, facilitating thymic homing via 
CCL25 chemotaxis (55). This process enables peripheral HBsAg 
transport to thymic medulla, ultimately inducing clonal deletion of 
HBsAg-specific CD8+ thymocytes, a mechanism predominant in 
pediatric CHB patients (55). Collectively, these findings unveal 
MDSCs as central orchestrators of HBV-induced immune 
tolerance through peripheral and thymic mechanisms, offering 
potential targets for therapeutic intervention. 

Current evidence suggests suboptimal efficacy of NUCs in 
reconstituting MDSC homeostasis. One-year TDF monotherapy 
fails to restore MDSC frequency and the secretion of IL-10 and 
TGF-b or improve HBV-specific T-cell responses (51, 56). 
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Strikingly, patients achieving functional cure through PEG-IFN-a
2a display substantial M-MDSC reduction (57). Consistently, 
targeting MDSCs with all-trans retinoic acid restores HBV

specific CD4+ and CD8+ T cell proliferation and IFN-g 
production in CHB patients (50). 
 

2.4 NK cells 

As critical effectors of innate immunity, NK cells mediate rapid 
antiviral and antitumor responses. In humans, NK cell populations 
are traditionally classified into CD56dim (cytotoxic) and CD56bright 

(immunoregulatory) subsets based on CD56 and CD16 surface 
marker expression (58). NK cells exhibit dual roles in HBV 
immunity, balancing antiviral defense mechanisms and 
immunopathogenic potential through liver injury (59). During 
acute HBV infection (AHB), peripheral CD56bright NK cells 
undergo significant expansion (60) and display an activated 
phenotype characterized by upregulated activation receptors 
(NKp30, NKp44, NKp46 and NKG2C), activation markers (CD38 
and HLA-DR), and cytotoxic mediators like TRAIL, alongside 
downregulation of inhibitory receptors (CD158a/b and NKG2A) 
(61). Elevated CD107a expression and robust IFN-g production 
upon IL-12+ IL-18 or K562 stimulation have also been observed in 
peripheral CD56bright NK cells during acute HBV (61). Notably, 
CD56dim  NK cell-mediated antibody-dependent cellular 
cytotoxicity (ADCC) associates with early HBsAg clearance in 
AHB (62). Temporal analyses, however, reveal transient 
suppression of IFN-g and TNF-a production during peak 
viremia, with functional recovery upon viral resolution (63). 

In chronic HBV infection, phenotypic and functional defects of 
NK cells are well-documented. Discrepancies in circulating NK cell 
frequencies across studies reflect population heterogeneity and 
clinical phase variations (64–66). Progressive NK cell dysfunction 
has been observed in chronic HBV infection, characterized by 
reduced expression of activating receptors (e.g. NKG2D), 
increased inhibitory checkpoint molecules (PD-1, Tim-3, CD94) 
(67), with the frequency of intrahepatic PD-1+ NK cells being the 
highest in HBeAg+ HBV patients (68). This dysfunction is further 
marked by attenuated antiviral cytokine (IFN-g, TNF-a) secretion 
(69, 70), and elevated immunosuppressive IL-10/TGF-b1 
production (71, 72). Conversely, NK cells may negatively regulate 
HBV-specific T cells through TRAIL-R2-mediated lysis (73). 
Fur thermore ,  the  ac t iva t ion  of  NK  ce l l s  dr iven  by  
proinflammatory cytokines (IFN-a, IL-12, IL-15, IL-8)  also
exacerbates liver inflammation via NKG2D/TRAIL/IFN-g
mediated hepatocyte damage, particularly in IA phase (64, 74– 
76). This pathogenic role is supported by a positive correlation 
between intrahepatic NK cell accumulation and histological 
inflammation severity (77). Furthermore, TRAIL expression on 
CD56bright NK cells positively correlates with liver inflammation 
and ALT flare (65, 71, 75). Intrahepatic analyses of a recent single
cell RNA sequencing demonstrate that the CXCR6+ NCAM1+ 
CD160high liver-resident NK-cell cluster with a significant higher 
Frontiers in Immunology 05 
expression of IL-32 within the HBsAg-high group compared to 
HBsAg-low group (78). 

Functional analyses reveal discrepancies in NK cell cytotoxic 
activity. While NK cells from IA patients exhibit enhanced TNF-a, 
IFN-g, and CD107a production compared to HCs (75, 79), 
cytokine-mediated functional exhaustion has been reported 
following IL-2 and IL-12 or IL-21 stimulation (71, 80, 81). 
Conversely, other studies illustrate preserved cytotoxic function of 
NK cells, as evidenced by intact K562 lysis capacity (82, 83). 

Emerging evidence reveals the multifaceted immunomodulatory 
effects of antiviral therapies on NK cells in CHB (Table 2). NUCs and 
PEG-IFN-a therapies have demonstrated marked heterogeneity 
across studies regarding capacity to reshape NK cell quantity, 
phenotype, and function, influenced by treatment duration, 
therapeutic agents, and patient-specific factors. A recent 
randomized controlled trial has observed significant upregulation 
of activation markers (TRAIL, HLA-DR, Ki-67, CD38) and receptors 
(NKp46, NKG2D, NKp30, NKG2A) on total NK cells—irrespective 
of HBsAg decline magnitude (98). However, some studies report 
transient expansion of immunoregulatory CD56bright subset during 
NUC therapy, with normalization post-HBsAg clearance (88, 96), 
while other investigations document static or even reduced NK cell 
counts in NUC-treated cohorts, including telbivudine (LDT) and 
ETV (81, 97). Intrahepatic transcriptomics reveal no alteration of 
hepatic NK cells after 24-week PEG-IFN-a treatment (39). 

The phenotype of NK cells varies among different studies 
following antiviral therapy. Inhibitory receptors such as NKG2A 
and KIR2DL3 demonstrate progressive downregulation in tandem 
with viral suppression under NUC therapy (88, 90). Consistently, 
activation receptors(NKp30, NKp46, and NKG2D) exhibit 
temporal upregulation patterns that parallel HBsAg clearance 
trajectories (88, 92, 94, 95). ETV monotherapy transiently 
suppresses NKG2D and NKp30 expression on NK cells in 
HBeAg-positive patients (85), whereas therapeutic regimen 
switching (ADV to ETV) enhances CD244+ activated NK subsets 
(86). PEG-IFN-a induces TRAIL upregulation on CD56bright NK 
cells in complete responders (102), while LAM-ADV combination 
therapy restores TRAIL expression without rescuing IFN-g 
production deficits in CD56dim subsets (71). Intriguingly, ETV 
treatment enhances CD69 expression and IFN-g production 
specifically within CD56bright NK populations (81). Furthermore, 
PEG-IFN-a discontinuation in plateau-phase patients reduces 
exhaustion markers (CD57, TIGIT) on CD56dim NK (93). Several 
clinical trials of novel immunotherapies exhibit prominent 
alteration on NK cells. GS-9620 (TLR-7 agonist) rapidly 
upregulates NK activation markers (CD69, TRAIL, HLA-DR) and 
enhances effector functions (IFN-g, TNF-a, degranulation) (99). 
Preliminary research of selgantolimod (TLR-8 agonist) activates 
NK cells as well, evidenced by CD69 expression (100), while another 
phase II trial demonstrates no alteration in circulating NK cell 
frequencies (29). a-GalCer modulates NK cell frequencies 
bidirectionally (decreasing at lower doses, increasing at 10 mg/kg), 
and effectively increases CD69 expression (101). Collectively, these 
findings highlight the critical role of NK cells in antiviral immunity, 
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TABLE 2 Functional and phenotypic alterations of NK cells during anti-HBV therapies. 

Population study type Intervention Clinical outcome Key immunological findings 

64 treatment-naïve vs 22 
treated CHB 
Case-control (71) 

LAM+ADF combination therapy Treated group: HBV DNA undetectable • ↓CD56bright subset proportion to HC levels 
• ↓TRAIL expression (normalization) 
• Partial recovery of IFN-g production in 
CD56dim subset (remained ↓vs HC) 

5 treated, 42 active, 21 inactive 
CHB 
Case-control (84) 

IFN-a1b + ADF HBV DNA reduction • ↓NKG2A+ NK% with HBV DNA 
reduction 
• NKG2A expression inversely correlated 
with viral load 

n=15 
active CHB 
Cohort (81) 

ETV (6 months) HBV DNA reduction • Preserved total NK count 
• CD56bright: ↑CD69 expression (2-fold) 
• Both subsets: ↓NKG2A 
• ↑IFN-g+ NK cell frequency 

n=18 
HBeAg+ CHB 
Cohort (85) 

ETV (24 weeks) HBV DNA/HBsAg/HBeAg reduction; 
ALT/AST decrease 

• Stable NK cell numbers 
• ↓Activation markers: NKG2D, 
NKp30, CD107a 

n=30 
HBeAg+ suboptimal 
responders to ADV 
Cohort (86) 

Switch to ETV (6 months) HBV DNA/HBsAg reduction; HBeAg 
seroconversion (11/30); ALT/ 
AST decrease 

• ↑Total NK cell count (normalization) 
• ↑CD244+ activated NK cells to HC levels 

n=54 
active CHB 
Cohort (87) 

LDT (13 months) HBV DNA reduction; HBeAg 
seroconversion (15/54); ALT/ 
AST normalization 

• Gradually ↑NK cell count 
• ↑CD244+ activated NK% (time-dependent, 
reaching HC levels) 

n=52 
IA patients 
Cohort (88) 

LDT (48 weeks) HBV DNA/HBsAg reduction; HBeAg 
seroconversion (11/52); ALT decrease 

• ↑CD56bright NK% 
• ↑Activating receptors: NKG2D, NKp46 on 
CD56bright 

• ↓Inhibitory receptor NKG2A 
on CD56bright 

n=14 
CHB 
Cohort (65) 

PEG-IFN-a-2a +ADF (48 weeks) Responder: HBsAg loss at week 72 (7/14) • ↑NK cell proportion 
• ↑CD56bright/CD56dim ratio 
• ↑Activation markers: Ki67, HLA-DR, 
CD38, NKp30, NKp46 on both subsets 
• Baseline predictors: ↓CX3CR1 
(CD56bright), ↓NKG2A (CD56dim) 
• ↑TRAIL+ and IFN-g+ NK in responders 

n=55 
HBeAg+ CHB (27 IFN-switch 
vs 28 on-ETV) 
RCT (89) 

ETV→PEG-IFN-a vs continued ETV 
(48 weeks) 

• IFN-switch group: 
HBeAg loss (21/27) 
HBsAg loss (4/27) 
• on-ETV group: 
HBeAg loss (16/28) 
HBsAg loss (0/28) 

• IFN-switch group vs on-ETV group: 
- ↑CD56bright % 
- ↑NKp30+/NKp46+ CD56bright 

- ↑TRAIL, TNF-a, IFN-g production 
on CD56bright 

15 treated vs 69 active CHB 
Case-control (90) 

ETV (6 months) – • ↓NKG2A on NK post-treatment 

n=20 
pediatric HBeAg+ CHB 
Cohort 

PEG-IFN-a (48 weeks) Complete responder: HBsAg 
seroconversion at week 48-96 (11/20) 

• Complete responders: ↑TRAIL 
on CD56bright 

n=24 
CHB (12 TDF vs 12 ADV) 
RCT (91) 

TDF/ADV (24 weeks) HBV DNA reduction • Both groups: ↓NKG2A, ↓KIR2DL3 on NK 
• TDF group: ↑NK cells 
• ADV group: ↑CD158b+ NK 

87 pregnant IT (41 untreat vs 
46 TDF) 
Case-control (92) 

TDF (32-week gestation to delivery) – • Antepartum: ↑Total NK% and NKp46+ 

NK vs untreated 

n=101 
CHB (51 naïve; 50 IFN-plateau 
(HBsAg reduction<0.5 lg IU/mL) 
Cohort (93) 

PEG-IFN-a (initial vs interrupted
resumed) (24 weeks) 

– • Initial group: ↓CD56dim %; ↓ (CD57, 
TIGIT) on CD56dim NK 
• Plateau group: ↑CD57 on CD56dim NK 
after IFN interruption 

(Continued) 
F
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with treatment-induced phenotypic remodeling potentially serving 
as a biomarker for therapeutic efficacy. 
3 Effects of antiviral therapies on 
unconventional T cells 

Unconventional T cells (UTCs) represent a heterogeneous 
group of non-classical MHC-restricted lymphocytes that 
recognize non-peptide, non-polymorphic antigens. This family 
includes gd T cells, invariant natural killer T (iNKT) cells, 
mucosal-associated invariant T (MAIT) cells, and CD4/CD8 
double-negative  T  cells  (103).  UTCs  orchestrate  rapid  
Frontiers in Immunology 07 
antimicrobial responses through producing potent cytokines (e.g. 
IFN-g, TNF-a, IL-17) and exerting cytotoxicity during early 
infection phases, prior to conventional ab T cell activation (104). 
Beyond pathogen defense, UTCs contribute to chronic 
inflammation and tissue homeostasis (105). UTCs account for 
10–30% of peripheral T cell populations in adult (106). These 
cells predominantly reside at mucosal sites and notably enriched 
in the human liver, positioning them as key sentinels and early 
responders in HBV infection (107, 108). Despite their potential 
significance in hepatic immunity, the impact of chronic HBV 
infection and subsequent antiviral therapy on the frequency, 
phenotype, and function of distinct UTC subsets is less 
comprehensively characterized compared to conventional HBV-
TABLE 2 Continued 

Population study type Intervention Clinical outcome Key immunological findings 

n=66 
HBeAg+ CHB Cohort (94) 

PEG-IFN-a-2a (24-48 weeks) Functional cure (17/66) • Functional cure group: 
- ↑CD56bright % 
- ↑NKp46high % and MFI on NK 
- ↑IFNAR2 MFI on NK 
• Non-cure: Only NKp46 MFI ↑ on NK 

n=89 
HBeAg+ CHB (49 IFN, 40 
ETV) 
Cohort (95) 

PEG-IFN-a/ETV (48weeks) • PegIFN group: responder (HBsAg 
reduction>60%, 33/49); HBV DNA 
undetectable (45/49); HBeAg 
seroconversion (9/49) 
• ETV group: HBV DNA undetectable 
(27/40); HBeAg seroconversion (3/40) 

• PegIFN group: 
- ↑Total NK, CD56bright, NKp46+/bright NK 
(↑↑ in responders) 
- HBsAg decline correlates with NKp46bright 

NK at baseline/wk12 
• ETV group: ↑NK at wk12/24 

n=71 
HBeAg- CHB 
25 naïve vs 46 NUC-treated 
(10/46 HBsAg clearance) Case
control (96) 

NUCs – • ↑NK cells after NUC (significant post-
HBsAg clearance) 
• HBsAg clearance: ↓CD56bright to HC levels 
• ↓TRAIL/CD38/Ki67 after viral suppression 
and ALT normalization 

n=41 
CHB (ALT 2-5×ULN) 
Cohort (97) 

LDT (36 weeks) HBV DNA reduction; ALT/AST decrease • No significant NK frequency changes 

n=53 
HBeAg- CHB on NUC 
RCT (98) 

25 PEG-IFN-a v.s 28 NUC (48weeks) HBsAg Log10 decline> 0.5 (n=12); 
HBsAg Log10 decline< 0.5 (n=13) 

• ↑TRAIL, HLA-DR, Ki-67, CD38 on total 
NK in both groups 
• ↑NKp46, NKG2D, NKp30, NKG2A on 
total NK in both groups 

n=28 
HBeAg- CHB on NUCs (3-4 yrs) 
RCT (99) 

GS-9620 (TLR7agonist) (12 weeks) at 1/2/ 
4 mg/w doses 

HBsAg show no significant reduction in 
patients given any dose of GS-9620. 

• ↑ total and CD56bright NK cells 
• ↑CD69, HLA-DR, TRAIL on CD56bright 

and CD56dim NK cells across all doses 
• ↑ IFN-g, TNF-a and CD107a of NK 
• ↓NK cell-mediated inhibition of HBV
specific T cells 

n=14 
CHB 
Phase 1b RCT (100) 

a single 3mg dose of selgantolimod 
(TLR8 agonist) 

– • ↑CD69 on NK cells 8 hours 
post-administration 

n=27 
CHB 
Phase I/II RCT (101) 

a-GalCer at doses of 0.1/1/10 ug/kg 
All received 3 doses (week0, 4, 8) 

No clearly affect HBV DNA and 
ALT levels 

• ↓NK cells at 0.1 and 1 mg/kg doses ↑NK 
cells at 10 mg/kg dose 
• ↑CD69 on NK in all treatment groups 

n=48 

CHB (24 HBeAg+) on NUCs 
Phase II RCT (29) 

Oral selgantolimod (TLR8 agonist) 3 mg, 
1.5 mg, or placebo once weekly 
(24 weeks) 

• Only selgantolimod-treated patients (n=39) 
had HBsAg declines greater than 0.1log10 
IU/ml at weeks 24 (7/39) and 48 (10/39). 
• HBsAg loss (2/39 through 48 weeks), 
HBeAg loss (3/19 through 48 weeks). 

• No change of NK frequency in the 
selgantolimod group 
ADF, adefovir; ADV, adefovir dipivoxil; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CHB, chronic hepatitis B; ETV, entecavir; HC, healthy controls; IA, immune-active; IT, 
immune-tolerant; LAM, lamivudine; LDT, telbivudine; MFI, mean fluorescence intensity; NUC, nucleos(t)ide analog; PEG-IFN, pegylated interferon; RCT, random controlled trial; TDF, 
tenofovir disoproxil fumarate; TRAIL, TNF-related apoptosis-inducing ligand; ULN, upper limit of normal. 
↑, increase; ↓, decrease. 
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specific CD4+ and CD8+ T cells. Investigating the dynamics and 
restoration of UTCs during treatment is vital, as these cells may 
contribute uniquely to viral control, immunopathology, and offer 
novel immunological insights or biomarkers for therapeutic efficacy 
and the development of combined immunotherapies aimed at 
functional cure. 
 

 

3.1 MAIT cells 

MAIT cells are characterized by their semi-invariant TCR a
chain (usually Va7.2–Ja33/12/20 in humans) and restriction to the 
MHC-I-related protein MR1 (103, 109), which presents microbial 
riboflavin (vitamin B2) and folate (vitamin B9) derivatives (110). 
MAIT cells constitute approximately 5% of circulating T cells (111) 
but are enriched in mucosal tissues, representing up to 45% of 
hepatic T lymphocytes (109). Upon activation, they predominantly 
secrete IFN-g and TNF, with a minor subset producing IL
17A (109). 

The frequency, phenotype and cytokine production of MAIT 
cells exhibits conflicting patterns across studies in CHB patients. 
Several studies have reported reduced circulating MAIT cells in 
CHB compared to HCs (112, 113), whereas another study 
documents comparable levels (114). MAIT cell reduction is also 
observed in patients with HBV-related acute-on-chronic liver 
failure (115). Mechanistically, this reduction potentially attributes 
to conjugated bilirubin-mediated apoptosis of MAIT cells (113). 
Several studies have documented the upregulation of activation 
markers (CD69, HLA-DR, CD38), immunosenescence marker 
CD57, and inhibitory receptors (PD-1, CTLA-4) on peripheral 
MAIT cells in CHB compared to HCs (113, 116, 117). However, 
another study demonstrates reduced expression of CD69 on MAIT 
cells in CHB patients (118). Notably, CD69 expression on MAIT 
cells correlates positively with HBV viral load, while inhibitory 
markers (PD-1 and CTLA-4) on MAIT cells show negative 
correlation with HBV DNA levels (115, 116). Further functional 
assessments show enhanced IFN-g and Granzyme B secretion from 
MAIT cells in CHB patients than those in HCs upon anti-CD28/ 
E.coli co-stimulation (114, 118), whereas combined stimulation of 
IL-12 and IL-18 yields impaired IFN-g responses in CHB patients 
(119). Single-cell transcriptomics identify two hepatic MAIT 
subsets in CHB, T7(CD3+SLC4A10+TNFAIP3+) cells displaying 
proinflammatory cytokine secretion and immune cell recruitment 
capacities, and T6(CD3+SLC4A10+TNFAIP3-) cells with impaired 
antiviral function (120). The progressive shift toward T6 
predominance during advanced hepatic inflammation highlights 
MAIT cell dysfunction in chronic HBV pathogenesis (120). These 
findings collectively illustrate the complex duality of MAIT cell 
responses in CHB, balancing protective immunity with 
inflammation-driven exhaustion. Longitudinal analyses suggest 
preserved MAIT cell frequencies during NUC therapy (114, 121). 
Nevertheless, treatment-induced normalization of CD38 activation 
marker expression implies partial recovery of MAIT cell 
functionality, though complete phenotypic and functional 
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restoration remains to be established (114). A phase 1b clinical 
trial of selgantolimod (TLR8 agonist) shows the elevation of CD69 
on MAIT after a single dose (100). 
3.2 gd T cells 

gd T cells  are defined by their unique TCR consisting of a g-chain 
and a d-chain, which enables antigen recognition independent of 
MHC class I/II molecules (103). Two major subsets exist in humans, 
Vd1+ and Vd2+ gd T cells (122). Vd1+ cells, characterized by pairing of 
the Vd1 chain with diverse Vg family members (Vg2/3/4/5/8/9) (123) 
predominantly reside in mucosal and epithelial tissues such as 
intestinal epithelium (124), skin (125, 126), spleen and liver. In 
contrast, Vd2+ cells typically express an invariant Vg9 chain  paired
with Vd2 (127), constituting 50–95% of circulating gd T cells in human 
peripheral blood (128, 129). These cells are activated through 
phosphoantigen recognition via butyrophilin 3A1 (BTN3A1) (130, 
131), triggering rapid secretion of cytotoxic molecules and Th1 
cytokines (IFN-g and TNF-a) to combat malignancies and microbial 
pathogens (132, 133). Additionally, Vd3+ T cells have been found in 
the periphery which only consist about 0.2% of gd T cells, while in the 
liver they are more abundant. Limited studies on this subset show their 
capacity to secret Th1, Th2 and Th17 cytokines (134). 

Acute HBV infection significantly reduces peripheral gd T cell 
proportions and absolute counts compared to CHB and HCs, 
negatively correlating with serum ALT (135). AHB patients 
exhibit heightened activation profiles in circulating gd T cells 
compared to HCs, characterized by upregulated CD38, HLA-DR, 
granzyme B, CD107a, and distinct transcriptional polarization as 
Tbet+/hi Eomesdim Vd1 subsets and Tbetdim Eomeshi Vd2 subsets 
(135, 136). Concurrently, intrahepatic gd T cells accumulate in 
inflamed liver lobules during AHB (135), a phenomenon 
recapitulated in acute HBV murine models where hepatic gd T 
cell expansion coincides with early-stage IFN-b production (137). 

In chronic HBV infection, peripheral gd T cells are significantly 
reduced in CHB patients relative to HCs (138), particularly in severe 
liver inflammation (ALT>3×ULN) (139). However, one study reports 
comparable gd T cell frequencies between symptomatic CHB and HCs 
(140), and some studies document elevated Vd1 T cell percentages in 
CHB (138, 141). Hepatic gd T cells, particularly the Vd2 subset,

decrease in CHB patients, especially within the IA group (138). 
Analysis of paired samples further reveals markedly lower hepatic 
Vd2 T cell levels than their peripheral counterparts in IA patients (138). 

The phenotype and function of gd T cells varies among different 
studies. Elevated exhaustion markers (PD-1, Tim-3 and Lag-3) and 
activation markers (CD69, CD38 and HLA-DR) levels are 
frequently reported in CHB (140, 142). Paradoxically, Chang 
et al. have observed decreased PD-1, CD38, Ki-67, Tim-3, and 
CD158a expression on Vd2 T cells from CHB patients compared to 
HCs (136). Intriguingly, PD-1 expression on circulating Vd2+ cells 
inversely correlates with serum 25(OH)D3 levels in CHB (142). 
PMA/ionomycin stimulation enhances IFN-g/granzyme B/TNF-a 
co-expression on gd T cells from CHB patients (136, 141). However, 
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TABLE 3 Alterations in gd T cell profiles during anti-HBV therapies. 

Population study type Intervention Clinical outcome Key immunological findings 

n=30 
CHB (on TDF, virally suppressed): 
10 add-on Peg-IFN-a; 20 on-TDF 
RCT (143) 

TDF ± PEG-IFN-a (48 weeks) Add-on group: HBsAg reduction • add-on vs monotherapy 
-gd T cells→ 
-IFN-g+/TNF-a+/GrzB+/CD107a+ gd 
T cells→ 

n=10 
treatment-naïve CHB 
Cohort (144) 

PEG-IFN-a (48 weeks) Responder (5/10): ALT normalization + 
HBeAg loss+ HBV DNA reduction>3log10 

• ↓ gd T 
• ↑ TNF-a+/CD107a+ gd T 
• Effector gd T: Responders > Non
responders at week 4/8 

n=11 
HBeAg+ CHB 
Cohort (145) 

PEG-IFN-a (48 weeks) Responder (5/11): ALT normalization+ 
HBeAg loss+ HBV DNA reduction>3log10 

• ↓ gd T/Vd2 T  
• gd Tem: Responders Non-responders 

n=51 
HBeAg+ CHB 
Cohort (146) 

LDT (52- 112 weeks) Responder (20/51): HBeAg seroconversion • Peripheral CD4-CD8 gd T: Responders 
Non-responders at baseline (predicts 
recurrence) 
• ↑ Hepatic CD4-CD8 gd T in non
responders at week104 
F
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ALT, alanine aminotransferase; CHB, chronic hepatitis B; GrzB, granzyme B; TDF, tenofovir; LDT, telbivudine; PEG-IFN, pegylated interferon; RCT, random controlled trial. 
↑, increase; ↓, decrease. 
TABLE 4 Effects of anti-HBV therapies on NKT cells. 

Population study type Intervention Clinical outcome Key immunological findings 

n=30 
CHB (on TDF, virally suppressed): 
10 add-on Peg-IFN-a; 20 on-TDF 
RCT (143) 

TDF ± PEG-IFN-a (48 weeks) Add-on group: HBsAg reduction • Add-on group: ↓iNKT cell count (week 12) 
• Both groups: IFN-g,TNF-a production 
of iNKT→ 

n=63 
HBeAg+ CHB (ALT 2-10× ULN) 
Cohort (158) 

PEG-IFN-a (48 weeks) • Significant effect (26/63): HBV DNA 
negative+ HBeAg loss+ ALT normal 
• Effect (11/63): HBV DNA 
reduction>2log10; 
• No effect (16/63): HBV DNA reduction 
<2log10 +no HBeAg loss 

• Significant effect group vs. effect/no-effect 
group: 
-↑ Peripheral NKT cells (baseline
treatment- follow-up) 

n=21 
HBeAg+ CHB 
Cohort (155) 

ETV (6 months) HBV DNA, ALT reduction • ↑ IFN-g+ iNKT 
• ↓ IL-4+ iNKT 

n=41 
HBeAg+ CHB (ALT 2-5×ULN) 
Cohort (97) 

LDT (36 weeks) HBV DNA, ALT/AST reduction 
Well responder (14/36): HBV DNA 
negative+ HBeAg seroconversion 

• Peripheral NKT-like(CD3+ CD56+) 
- ↓ in well-responders 
- → in non/partial responders 

n=19 
HBeAg+ CHB (ALT >ULN) 
Cohort (156) 

LDT (52 weeks) HBeAg seroconversion (7/19) • ↑ Circulating iNKT cells (CD4 subset 
dominant) 
• Baseline CD4-/CD4+ iNKT ≥1 → higher 
HBeAg seroconversion 

n=42 
CHB 
cohort 
(159) 

p.o. with HBV envelope proteins 
(HBsAg+preS1+preS2), every other 
day (20-30 weeks) 

HBV DNA reduction in 35.7% of patients 
HBsAg/HBcAg biopsy scores improved in 
41%/57.1% of patients 
Histological improvement (liver 
necroinflammatory score) in 12/40 
5/19 HBeAg seroconversion 

• ↑ Peripheral iNKT cells (> 2-fold) 

n=27 
CHB 
Phase I/II RCT 
(101) 

a-GalCer at doses of 0.1/1/10 ug/kg 
All received 3 doses (week0, 4, 8) 

No clearly affect HBV DNA and 
ALT levels 

• ↓NKT cells at 2 days post-injection, 
recovery at day 7 
•↓ CD4+ NKT cells decreased and ↑CD8+ 

NKT counterpart, most significant in 
1ug/kg dose 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; CHB, chronic hepatitis B; ETV, entecavir; LDT, telbivudine; PEG-IFN, pegylated interferon; RCT, random controlled trail; TDF, 
tenofovir disoproxil fumarate; ULN, upper limit of normal. 
↑, increase; ↓, decrease. 
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another study describes suppressed IFN-g secretion of gd T cells, but 
can be reversible by Tim-3/Lag-3 blockade (136, 140). Functional 
cytotoxicity assays reveal impaired gd T cell-mediated lysis of HBV

infected hepatocytes in symptomatic CHB compared to HCs, 
though asymptomatic carriers retain partial cytolytic activity than 
symptomatic patients (139). 

The impact of antiviral therapies on gd T cell populations in 
CHB treatment presents complex immunological modifications 
(Table 3). A randomized controlled trial has revealed TDF/PEG-
IFN-a combination therapy in HBV-suppression patients exhibits 
no significant alterations in gd T cell frequencies or their functional 
capacity to produce IFN-g/TNF-a/granzyme B/CD107a (143). 
Conversely, PEG-IFN-a monotherapy reduces gd T cell numbers, 
accompanied by enhanced TNF-a/CD107a expression (144, 145). 
Furthermore, treatment responders exhibit distinct gd T cell

differentiation patterns characterized by transient early effector 
cell expansion and reduced Tem subsets (145). Longitudinal 
monitoring of LDT therapy suggests that elevated baseline 
CD4⁻CD8⁻ gd T cells predict non-response and virologic relapse 
(146). Collectively, these findings underscore the heterogeneity of 
gd T cell responses during CHB therapy, with dynamic changes in 
subsets and functional markers correlating with treatment efficacy 
and relapse risk. 
Frontiers in Immunology 10 
3.3 NKT cells 

Natural killer T (NKT) cells constitute a specialized lymphocyte 
population distinguished by their recognition of lipid antigens presented 
through the CD1d molecule (103). These CD1d-restricted cells are 
broadly classified into two subsets, invariant NKT (iNKT) cells and 
diverse (type II) NKT cells. iNKT cells are characterized by a semi

invariant TCR architecture, featuring a conserved a chain 
rearrangement Va24-Ja18 paired with limited b chain diversity Vb11 
in humans (103). This unique TCR configuration enables iNKT cells to 
detect both endogenous and exogenous lipid antigens, including the 
prototypical a-galactosylceramide (a-GalCer), presented via the MHC

I-like CD1d molecule (103). Additionally, iNKT cells can be activated in 
a TCR-independent manner through innate cytokines like IL-12 and IL
18 (147). In contrast to their invariant counterparts, type II NKT cells 
possess highly diverse ab TCR repertoires while maintaining CD1d
restricted lipid antigen specificity (148). Current understanding of type 
II NKT cell functionality remains limited, though emerging evidence 
suggests their involvement in both immunoregulatory and pathogenic 
responses through distinct lipid antigen recognition pathways (149). 

Chronic HBV infection markedly alters homeostasis and function 
of iNKT cells. Both peripheral and hepatic iNKT cells are significantly 
reduced in CHB patients compared to HCs, with negative correlation 
FIGURE 1 

Treatment-induced immune reconstitution in chronic HBV: restoring functionality of dysregulated innate immune and unconventional T cells. HBV, 
hepatitis B virus; DC, dendritic cell; pDC, plasmacytoid dendritic cell; mDC, myeloid dendritic cell; PD-L1, programmed death ligand-1; TLR, Toll-like 
recptor; IFN, interferon; HLA, human leukocyte antigen; IL, interleukin; TGF-b, transforming growth factor-beta; TNF-a, tumor necrosis factor-alpha; 
MDSC, myeloid-derived suppressor cell; NK, natural killer cell; PD-1; programmed cell death protein-1; Tim-3, T-cell immunoglobulin and mucin
domain containing-3; IA, immune active phase; IT, immune tolerant phase; NKG2A, natural killer group 2 member A; KIR2DL3, killer cell 
immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3; TRAIL, TNF-related apoptosis-inducing ligand; CTLA-4, cytotoxic T
lymphocyte-associated protein 4; Lag-3, lymphocyte-activation gene 3; MAIT, mucosal-associated invariant T cell; NKT, natural killer T cell. 
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between circulating iNKT cell counts and liver injury severity (143, 150, 
151). Furthermore, CD4- iNKT cells are reduced in CHB, especially in 
those with detectable HBV DNA levels (151). Functional analyses 
reveal complex dysregulation of CD1d-iNKT axis in chronic HBV 
infection. Despite hepatic CD1d upregulation, the CD1d-iNKT system 
remains unactivated in CHB, showing impaired a-Galcer responses 
(150, 152). Surface marker profiling unveils a complex phenotype 
characterized by increased expression of NKG2A (153) and  activation  
markers (CD69, CD38, HLA-DR) (150) alongside elevated exhaustion 
markers (Tim-3, PD-1) and reduced CD28 co-stimulation in both 
peripheral and hepatic iNKT cells from CHB patients compared to 
HCs (154). However, one study reports no significant upregulation in 
circulating or hepatic iNKT populations (150). Functional restoration 
is achieved in vitro through Tim-3/PD-1 blockade or CD28 activation 
(154). Other studies reveal that enhanced chemokine receptor 
expression (CCR5 and CCR6) and elevated Fas and FasL levels on 
peripheral iNKT cells from CHB (150). Moreover, IFN-g+ NKT cells 
positively correlated with ALT levels and inversely correlated with 
HBV DNA (79, 155). Besides, other studies report diminished IL-4 and 
IFN-g production in iNKT cells from CHB patients, partially reversible 
by exogenous IL-2 and IL-15 (150, 153, 154), while other studies find 
comparable cytokine production post-stimulation across disease phases 
upon stimulation of a-GalCer and PMA (156, 157). 

Antiviral therapies elicit heterogeneous modulation of NKT cells 
(Table 4). PEG-IFN-a add-on TDF therapy reduces peripheral iNKT 
frequencies without altering cytokine profiles (IFN-g and TNF-a) (143). 
However, other studies observe that PEG-IFN-a or LDT monotherapy 
conversely increase iNKT frequencies (156, 158). Notably, baseline iNKT 
frequencies predict sustained response to PEG-IFN-a monotherapy in 
HBeAg-positive patients (158). ETV treatment differentially modulates 
iNKT subsets, enhancing IFN-g+ while reducing IL-4+ iNKT cells during 
six-month treatment (155). LDT therapy selectively reduces peripheral 
CD3+CD56+ NKT-like cells in treatment responders instead of non
responders (97). Longitudinal analyses further reveal post-treatment 
expansion of circulating CD4− iNKT subsets, with baseline elevations in 
the CD4−/CD4+ iNKT cell ratio correlating with HBeAg seroconversion 
(156). Novel immunotherapies reveal distinct mechanisms. Oral HBV 
envelope proteins trigger a >2-fold increase in iNKT frequency alongside 
improved histology and seroconversion (159), while a-GalCer 
administration transiently suppresses total NKT cells at 2 days post
injection (recovering by day 7) and drives a shift toward CD8+ 

predominance, most prominently at the 1 mg/kg dose (101). 
Collectively, these findings highlight the heterogeneity of NKT cell 
responses across therapeutic regimens, emphasizing NKT cells as 
potential biomarkers for therapeutic stratification and outcome 
prediction in CHB management. 
4 Conclusion 

Chronic HBV infection induces broad immune dysfunction across 
innate (DCs, monocytes, MDSCs, NK cells) and unconventional T cell 
populations (MAIT, gd T, NKT cells), characterized by inhibitory 
receptor upregulation, suppressed cytotoxicity, and immunosuppressive 
cytokine profiles (Figure 1). While NUCs demonstrate limited 
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immunorestorative capacity, PEG-IFN-a exhibits superior efficacy in 
reversing DC/monocyte dysfunction, reducing MDSC accumulation, 
and partially restoring NK/unconventional T cell activity (Figure 1). 
Critically, the currently limited evidence base (summarized in Tables 1-4) 
reveals a paucity of prospective studies tracking innate immune 
dynamics during NUC therapy, hindering comprehensive 
understanding of functional restoration in these compartments. Future 
studies should prioritize intrahepatic immune profiling, given the 
profound functional and phenotypic disparities between circulating 
and liver-resident immune cells in chronic HBV infection. 

Emerging immunomodulatory agents show promise in restoring 
antiviral immunity. For instance, TLR agonists like selgantolimod 
(TLR8 agonist) remodel  the  intrahepatic immune microenvironment  
by activating MAIT and NK cells (160). Combination therapies pairing 
immunomodulators (anti PD-1/PD-L1, TLR agonists, therapeutic 
vaccines and monoclonal antibodies) and viral-targeting agents 
(siRNA, core protein allosteric modulators (CpAMs) and virus entry 
inhibitors) represent a theoretically powerful strategy to overcome 
monotherapy limitations in achieving HBV functional cure (161). 
While several clinical studies confirm the efficacy of such 
combinations (162–164), their underlying immune mechanisms 
remain inadequately explored. The success of combination strategies 
will likely depend on identifying immunological biomarkers and 
implementing high-dimensional immune profiling to enable precise 
patient selection (165, 166). In summary, advancing immune-focused 
combinatorial regimens within precision medicine frameworks is 
essential to overcome HBV’s potent immunosuppressive mechanisms. 
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CCR5/CCR6 C-C Chemokine Receptor Type 5/6 
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IL Interleukin 
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MFI Mean Fluorescence Intensity 
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