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Autophagy, a highly conserved intracellular degradation process, is essential for

maintaining cellular homeostasis, supporting development, modulating immune

responses, and enhancing stress adaptation in eukaryotic organisms. In aquatic

animals, growing evidence highlights the central role of autophagy in responding

to diverse environmental stressors and microbial challenges-factors critical to

aquaculture productivity and ecosystem health. This review synthesizes current

knowledge on the regulation and function of autophagy in aquatic species,

emphasizing key molecular pathways, environmental triggers such as

temperature, salinity, hypoxia, and pollutants, and host responses to

pathogenic infections. We explore model systems, particularly zebrafish, that

have advanced our mechanistic understanding of autophagy, while also

identifying gaps in research concerning economically important aquaculture

species. Promising applications, including the use of autophagy modulators,

probiotics, and gene-editing tools such as CRISPR/Cas9, are evaluated for their

potential in disease prevention and environmental monitoring. Despite recent

progress, selective autophagy pathways and species-specific regulatory

mechanisms remain poorly understood. Future studies integrating high-

throughput screening, multi-omics analyses, and functional genetics are

essential to unlock the full potential of autophagy-based innovations for

sustainable aquaculture development.
KEYWORDS
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1 Introduction

Cell survival and homeostasis are fundamental biological

processes that regulate development and immune defense. In

aquatic animals, autophagy plays a crucial role in maintaining

cellular integrity, responding to environmental stress, and

enhancing resilience against infections (1, 2). Autophagy, often

referred to as “self-eating,” is a highly conserved intracellular

degradation process responsible for removing damaged

organelles, misfolded proteins, and cytosolic components through

lysosomal degradation, thereby maintaining cellular homeostasis (3,

4). This process ensures the complete and irreversible breakdown of

substrates into their essential building blocks, such as amino acids

from proteins and nucleotides to nucleic acids, through lysosomal

enzymatic activity (3, 5). Beyond its role in energy balance under

nutrient-deficient conditions, autophagy acts a critical defense

strategy against germs and environmental stressors, contributing

to the overall resilience and disease resistance of aquatic organisms.

This self-digestive mechanism is essential for cellular survival,

development, and stress responses across eukaryotes, from

mammals to yeast (6). In recent decades, autophagy has gained

attention due to its dual role in both pathological and physiological

processes, including immunity, metabolism, and disease

progression (7). While extensive research has elucidated the

molecular mechanisms and regulatory pathways of autophagy in

mammals, its functions in teleost fish and other aquatic animals

remain relatively underexplored, despite their ecological and

economic importance (8).

Although progress has been made, there are still considerable

gaps in our knowledge of how autophagy is regulated in aquatic
Frontiers in Immunology 02
animals. The conservation of autophagy-related genes across

species suggests shared mechanistic pathways, but species-specific

adaptations and environmental influences warrant further

investigation (9). Furthermore, the possible uses of autophagy

modulation in aquaculture such as enhancing growth, boosting

disease resistance, and increasing stress tolerance have not yet been

fully explored or achieved. The aims of this review are to synthesize

current knowledge on autophagy in aquatic animals, focusing on its

mechanisms, monitoring methods, response to environmental

stress, host-pathogen interactions, biotechnological implications,

and future research directions. By bridging gaps between

fundamental and applied science, this work seeks to advance our

knowledge of autophagy and its role in aquatic biology and its

applications for sustainable aquaculture practices.
2 Types of autophagy

Autophagy is a well-conserved cellular mechanism found in all

eukaryotic organisms, including aquatic species like fish, mollusks,

and crustaceans (3, 10, 11). Depending on how substrates are

delivered to the lysosomal lumen, three primary types of autophagy

have been identified in mammalian cells: macroautophagy,

microautophagy, and chaperone-mediated autophagy (CMA) (12)

(Figure 1). Among them, macroautophagy is the most extensively

studied in aquatic organisms, owing to its vital roles in cellular

homeostasis, stress adaptation, and pathogen defense (13, 14). In

this process, cytoplasmic materials are sequestered by a double-

membrane structure called the autophagosome, which fuses with

lysosomes for degradation (15–18). It can also be broadly classified
FIGURE 1

Autophagy can be classified into three main types based on the pathway used to deliver intracellular components (cargo) to the lysosome for
degradation: (A) macroautophagy, (B) chaperone-mediated autophagy (CMA), and (C) microautophagy.
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into two major types found in nearly all eukaryotic organisms:

canonical autophagy (macroautophagy) and non-canonical

autophagy (Figure 1) (14). Macroautophagy has been widely

investigated in aquatic species, especially in fish and shellfish, due

to its relevance to aquaculture health and immunity.

Non-canonical forms of autophagy include microautophagy

and CMA (Figure 1). Microautophagy involves the direct

engulfment of cytosolic components by lysosomal membrane

invagination or protrusion, bypassing autophagosome formation

(19). While less studied in aquatic organisms, it has been implicated

in nutrient recycling in mollusks and fish hepatocytes (20). CMA is

a highly selective pathway in which proteins containing a KFERQ-

like motif are recognized by the HSC70 chaperone and translocated

into lysosomes via the LAMP2A receptor (21). Although well-

characterized in mammals, CMA’s presence in aquatic animals

remains uncertain. Nevertheless, CMA-related genes, such as

LAMP2A, have been identified in zebrafish genomes (22).

Overall, while macroautophagy is the most thoroughly

characterized form in aquatic species, current research is

beginning to elucidate the roles of microautophagy and CMA in

aquatic physiology, nutrient regulation, and disease resistance.
3 Mechanism of autophagy

3.1 Molecular pathways

Autophagy is a tightly regulated process activated by stimuli

such as pathogen invasion, nutrient deprivation, oxidative stress,

and metabolic changes (10). The central regulator is the

mammalian target of rapamycin (mTOR), a serine/threonine

kinase that integrates various intracellular and extracellular

signals to suppress or activate autophagy (23–26). mTOR forms

two complexes-mTORC1 and mTORC2-with mTORC1 being

modulated by growth factors, energy status, and stress via

upstream regulators like AMPK, PI3K/AKT, and p53 (27–30).

Additionally, kinases like PKR and ERK1/2, and factors such as

eIF2a, also influence autophagic responses (31–33).

Autophagy is mediated by evolutionarily conserved autophagy-

related (Atg) genes, first identified in yeast. Many of the >40 yeast

Atg genes have homologs in mammals and aquatic species (34–39).

Among them, 15 core Atg genes (e.g., ATG1–10, ATG12–14,

ATG16, ATG18) are essential for autophagosome biogenesis (17,

40, 41). ULK1, the mammalian homolog of Atg1, forms a complex

with ATG13, ATG101, and FIP200 to initiate autophagy, a step

promoted by AMPK and inhibited by mTOR (41). This triggers

recruitment of the PI3K complex (ATG14L/VPS34), producing

PI3P that recruits WIPI proteins for phagophore formation

(42–44).

Elongation involves two ubiquitin-like conjugation systems.

ATG12–ATG5–ATG16 and LC3 (Atg8 homolog) are central to

autophagosome expansion. LC3 is processed by ATG4 to LC3-I,

then lipidated to LC3-II by ATG7 and conjugated with PE (45, 46).

Specific autophagy is mediated by cargo receptors (e.g., p62, NBR1,

NDP52, optineurin) that link targets to LC3 via LIR motifs (41).
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Mature autophagosomes fuse with lysosomes, facilitated by SNARE

proteins, cytoskeletal elements, and motor proteins, leading to cargo

degradation and recycling of LC3 (17, 46). This process is vital for

maintaining cellular homeostasis and adapting to environmental

stress. These sequential steps are illustrated in Figure 2,

emphasizing the dynamic regulation and cellular importance of

autophagy (10).

Autophagy is not an isolated event but is intricately

interconnected with several other key physiological processes that

collectively maintain cellular homeostasis, including apoptosis, the

unfolded protein response (UPR), and oxidative stress regulation

(47–51). For instance, p53, a well-known tumor suppressor and

upstream regulator of mTOR, plays a dual role by also governing

apoptosis, thereby linking nutrient sensing, cell growth, and cell

death pathways (47). Likewise, eIF2a, which contributes to

autophagy initiation, is a central mediator of the PERK branch of

the UPR, responding to endoplasmic reticulum stress and

modulating downstream outcomes such as autophagy or

apoptosis depending on severity and duration (49). Furthermore,

reactive oxygen species (ROS), often elevated during oxidative

stress, act as pivotal signaling molecules that can simultaneously

activate autophagy, modulate apoptosis, and regulate the UPR

through multiple pathways including PI3K/Akt, AMPK, JNK,

ERK, and ATG4 (50, 51). These overlapping regulatory circuits

underscore autophagy’s role as a central hub in the cellular stress

response network, integrating diverse intracellular signals to

balance survival and death decisions, beyond its classical role in

nutrient sensing or pathogen clearance (34, 37).
3.2 Autophagy across taxonomic groups:
evolutionary conservation and divergence

Autophagy is a conserved catabolic process across eukaryotes,

though its regulation and physiological roles vary among taxa. In

basal metazoans like Porifera and Cnidaria, genomic analyses reveal

core autophagy-related genes (ATGs), suggesting ancient origins,

though functional data remain limited (11). In Platyhelminthes,

autophagy is essential for regeneration, as seen in planarians where

it coordinates tissue remodeling (52). Insects exhibit autophagy

during metamorphosis, indicating its developmental significance.

While data in annelids are sparse, transcriptomic evidence supports

autophagy’s role in regeneration and stress responses.

In arthropods, including crustaceans, autophagy contributes to

immune defense and environmental adaptation. Among

lophotrochozoans, mollusks offer detailed insights. Picot et al. (35)

identified 35 ATG genes in Crassostrea gigas, showing widespread

expression and homology with vertebrate counterparts, but also

lineage-specific expansions likely linked to immune function and

stress tolerance (35). Echinoderms also display expanded ATG

families, possibly reflecting adaptation to regenerative demands.

Moore et al. (11) highlighted autophagy’s role in toxicological

responses in marine invertebrates, emphasizing its utility in

environmental stress assessment (11). Overall, while autophagy’s

core machinery is conserved, taxon-specific adaptations underscore
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its evolutionary diversification and multifunctionality, warranting

further comparative studies in underrepresented invertebrate groups.
3.3 Autophagy in response to various stress

An overview of autophagy’s role in different aquatic species

under various environmental stress conditions is provided

in Table 1.

3.3.1 Starvation-induced autophagy
Starvation triggers a highly conserved autophagic response in

teleost fish, facilitating cellular recycling and energy mobilization

under nutrient-deprived conditions. In rainbow trout

(Oncorhynchus mykiss), in vivo studies have shown that

prolonged fasting induces autophagy in muscle and hepatic

tissues, as indicated by the upregulation of autophagy-related

genes and increased autophagosome formation, promoting

protein degradation and nutrient redistribution (60, 61).

Similarly, in adult zebrafish (Danio rerio), in vivo starvation for

1–3 weeks leads to systemic metabolic suppression, including

decreased RNA/DNA ratios and impaired reproductive capacity,

along with notable developmental disruptions in larvae such as

delayed hatching and reduced survival (62). These effects are

accompanied by significant transcriptional activation of

autophagy-related genes in both maternal ovaries and offspring,

indicating a maternal transference of starvation-induced autophagic

signaling. Further transcriptomic analyses have shown that the

zebrafish liver exhibits extensive downregulation of genes
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involved in lipid metabolism, proteolysis, and protein

biosynthesis under starvation, while autophagy-related and

gluconeogenic pathways are upregulated (63). In contrast, the

zebrafish brain shows a limited response, with only agrp1

significantly upregulated, reflecting tissue-specific regulation of

autophagy. Comparative analysis also reveals species-specific

differences in hepatic transcriptional responses: while zebrafish

and rainbow trout share similar starvation-induced expression

patterns, common carp (Cyprinus carpio) displays a notably

divergent profile (63), suggesting variable autophagy regulation

across species. Although most findings are from in-vivo models,

in vitro studies using fish-derived liver cell lines and primary

hepatocytes-such as those from zebrafish-have also shown

starvation-induced autophagy, including autophagosome

formation and upregulation of key genes. These systems help

clarify molecular mechanisms without systemic influences. In

medaka (Oryzias latipes), early larval starvation induces hepatic

lipid accumulation and shifts in amino acid and fatty acid

metabolism, likely linked to autophagy (64).

Beyond fish, invertebrates also exhibit robust autophagic

responses to starvation. In the bivalve mussel Mytilus

galloprovincialis, starvation for nine days significantly upregulated

autophagy-related genes such as atg2, atg6, and atg13, and increased

autophagosome formation in gill tissues, suggesting a protective

role of autophagy in response to nutritional stress (65). Similarly,

the cnidarian Hydra vulgaris undergoes widespread autophagic

vacuole formation in ectodermal epithelial cells during starvation,

which is essential for survival; disruption of this process via RNAi-

mediated knockdown of Kazal1 results in excessive autophagy and
FIGURE 2

Schematic diagram of the autophagy pathway. Autophagy is initiated by specific signals, leading to the formation of the isolation membrane
(phagophore), which matures into an autophagosome. Fusion with a lysosome forms an autolysosome, where degradation occurs. Core ATG
proteins essential for autophagosome creation are highlighted in light blue. Donor membranes include the ER, Golgi apparatus, mitochondria,
endosomes, and plasma membrane.
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organismal death, underscoring the need for tightly regulated

autophagic activity (66). Furthermore, evidence from annelids

and planarians supports that autophagy plays a vital role in

cellular maintenance during starvation across diverse aquatic

invertebrates. These findings collectively highlight starvation-

induced autophagy as a fundamental and evolutionarily

conserved survival mechanism among aquatic taxa.

3.3.2 Role of autophagy in heavy metal stress
Autophagy plays a critical role in mediating cellular responses

to heavy metal exposure in aquatic organisms. As a protective
Frontiers in Immunology 05
mechanism, it helps mitigate oxidative stress and cellular damage

induced by metals such as cadmium, lead, and mercury (67).

However, chronic or excessive exposure can overwhelm

autophagic capacity, leading to cytotoxic effects that impair fish

health, growth, reproduction, and survival (68). Understanding the

dual role of autophagy-both protective and potentially harmful- is

essential for elucidating heavy metal toxicity pathways and for

developing strategies to monitor and mitigate environmental

contamination (67, 68). Below, we discuss how autophagy is

modulated in response to exposure to different heavy metals in

aquatic organisms.
TABLE 1 Mechanisms of autophagy activation in response to environmental stressors.

Stress Factor Species Mechanism of
Autophagy Activation

Key Genes Involved Outcome & Transition
to Apoptosis

Citation

Heavy Metal (Cd) Carassius gibelio Cd disrupts protein homeostasis,
triggering ER stress and UPR
pathways (PERK-eIF2a-ATF4, IRE1-
XBP1), leading to
autophagy activation.

beclin1, atg5, lc3b Adaptive response initially;
prolonged exposure leads to
excessive autophagy and apoptosis
(bax, casp3).

(53)

Chromium (Cr²+)
exposure
(oxidative stress)

Channa punctatus Oxidative stress triggered autophagic
response in liver and kidney

Upregulation of ATG5,
LC3, GABARAP;
downregulation of mTOR

Induced autophagosome
formation, elevated ROS, oxidative
stress markers, and
micronuclei formation.

(54)

Copper
(Cu²+) exposure

Chinese mitten crab
(Eriocheir sinensis)

Oxidative stress and ER stress
triggered autophagy via ERK and
AMPK pathways

Autophagy-related genes,
ERK, AMPK, TLR2-
MyD88-NF-kB

Induced autophagy and apoptosis
in hepatopancreas and gills;
immune response activation
through TLR2-MyD88-NF-
kB pathway.

(55)

Hypoxia Ctenopharyngodon
idella (grass carp)

ROS accumulation activated
autophagy via inhibition of Akt and
activation of FoxO1

LC3-II, pink1, beclin-1,
p62, foxO1a/1b, Hif-1a

Autophagosome formation
observed; FoxO1 upregulation
essential for hypoxia-
induced autophagy

(55)

Pesticide (Fipronil) Common carp
(Cyprinus carpio)

Induces oxidative stress, activating
the ubiquitination pathway (ATG5–
ATG12–ATG16L) for
autophagosome formation.

ATG5, ATG12, ATG16L,
LC3-II, Beclin1

Initially protective, but prolonged
exposure causes apoptosis (Bcl-2,
Caspase-3).

(56)

Nitrite stress grass carp
(Ctenopharyngodon
idella)

Nitrite exposure triggers ER stress,
activating the GRP78 pathway,
potentially inducing autophagy
and apoptosis

GRP78, Ulk1, Beclin1, Atg5,
Atg12, LC3, BNIP3, P62

Optimal dietary protein (22-25%)
reduces nitrite-induced autophagy,
alleviates gill damage, and inhibits
apoptosis through mitochondrial
and death receptor pathways.

(57)

Nutrient Deprivation
(Serum Starvation)

Zebrafish
(Danio rerio)

Serum deprivation activates
autophagy through upregulation of
autophagic genes (ulk1a, becn1,
atg12, sqstm1, maplc3, lamp1), with
initial boosting followed by
weakening at 48 hours.

ulk1a, becn1, atg12, sqstm1,
maplc3, lamp1

Autophagic activity initially
compensates for stress; prolonged
starvation leads to apoptosis
(caspases, Bcl-2/Bax expression,
Annexin V/PI).

(58)

Acute
Ammonia Stress

Yellow catfish
(Pelteobagrus
fulvidraco)

Ammonia stress triggers autophagy
via the SLC38A9-mTOR axis, initially
inhibiting autophagy followed
by restoration.

SLC38A9, LC3a, sqstm1 Inhibition followed by restoration
of autophagic flux; excessive
autophagy worsens ammonia
toxicity, oxidative stress,
and apoptosis.

(2)

Chronic
Pollution (TFS)

Zebrafish
(Danio rerio)

Trifloxystrobin (TFS) induces
autophagy via mTOR inhibition,
leading to an increase in
autophagosomes and LC3-
II conversion.

LC3-II, Beclin-1,
P62, mTOR

Increased viral replication due to
impaired immune response; TFS
exposure may contribute to
viral outbreaks.

(59)
fr
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3.3.2.1 Autophagy in response to cadmium exposure

Autophagy is vital for cellular defense against environmental

stressors like heavy metals and pollutants by preserving cellular

homeostasis and eliminating damaged organelles and proteins.

Exposure to heavy metals, such as cadmium (Cd), can trigger

oxidative stress and endoplasmic reticulum (ER) stress, activating

autophagy as a protective response in aquatic animals (53). Cd

exposure disrupts protein homeostasis, triggering the unfolded

protein response (UPR), which activates autophagy to reactive

cellular balance (69). The PERK-eIF2a-ATF4 and IRE1-XBP1 of

the UPR are critical in modulating autophagic responses to heavy

metal-induced stress (70, 71). Studies in gibel carp (Carassius

gibelio) suspected to waterborne Cd have shown significant

upregulation of genes related to autophagy, including atg5,

beclin1, and lc3b, suggesting a cellular adaptation to Cd toxicity

(53). However, prolonged Cd exposure can result in excessive

autophagic activity, potentially leading to apoptosis as cells fail to

recover from persistent stress (72).

Autophagy and apoptosis are closely linked under metal-

induced stress, sharing regulatory pathways such as CHOP-

mediated apoptosis, which can be triggered by excessive ER stress

(73). In Cd-exposed fish, increased expression of apoptotic markers,

including Bax and Casp3, alongside autophagy markers, indicates a

transition from adaptive autophagy to programmed cell death (53).

The interaction between autophagy and apoptosis under heavy

metal stress underscores the delicate balance between cell survival

and death. While autophagy initially serves as a protective

mechanism, it can eventually lead to apoptosis if stress persists.

3.3.2.2 Autophagy in response to chromium exposure

Chromium (Cr²+), the metal of higher toxicity, is globally found

in aquatic environments and has been shown to induce disrupt

antioxidant defense mechanisms, oxidative stress, and modulate

autophagy-related gene expression in fish (Channa punctatus) (67).

Exposure to heavy metals, especially Cr²+, results in the

overproduction of reactive oxygen species (ROS), causing oxidative

stress that disrupts cellular homeostasis. In response, autophagy is

activated to degrade damaged cellular components and helpmaintain

cell survival (68). In Cr²+-exposed C. punctatus, genes such as ATG5,

LC3, and GABARAP were highly upregulated, indicating enhanced

autophagic vesicle creation in response to oxidative stress, while

mTOR (Negative regulator of autophagy), was downregulated,

suggesting mTOR inhibition-mediated autophagy activation (67).

The accumulation of ROS due to heavy metal exposure can

trigger both apoptosis autophagy, with the balance between these

processes determining cell fate. Initially, autophagy helps cells adapt

to stress, but under prolonged exposure, excessive oxidative damage

shifts the response toward apoptosis (74). In Cr²+-exposed C.

punctatus, increased apoptotic markers such as Bax and Caspase-3

were detected alongside autophagy-related genes, indicating a

transition from protective autophagy to programmed cell death (67).

3.3.2.3 Copper toxicity and autophagy in crustaceans

Environmental pollutants, particularly metals like copper,

induce oxidative stress, leading to the activation of autophagic
Frontiers in Immunology 06
responses as a protective mechanism. Research has demonstrated

that excess copper exposure triggers autophagy in various

species, including crustaceans like the Chinese mitten crab

(Eriocheir sinensis). This activation is often characterized by the

upregulation of autophagy-related genes, such as beclin1, LC3, p62,

and TFEB (75).

The response of autophagy to copper toxicity is dose dependent.

In the case of E. sinensis, exposure to lower copper concentrations

(0.04–0.18 mg/L) results in the activation of autophagy, marked by

the upregulation of atg7 and p62 in the gills (75). However,

exposure to higher concentrations (0.7 mg/L) downregulates these

markers, suggesting that while low doses of copper trigger

protective autophagy, excessive exposure can impair the

autophagic process (75). This highlights the complexity of

autophagy regulation under environmental stress, with copper

exposure eliciting both protective and damaging effects depending

on the concentration.

The hepatopancreas of E. sinensis appears to be particularly

sensitive to copper exposure, demonstrating higher copper

accumulation compared to other tissues (76). This organ is essential

for detoxification in crustaceans, making it more vulnerable to the

effects of copper toxicity. Furthermore, the AMPK pathway has been

implicated in the regulation of autophagy in response to copper-

induced stress. This signaling pathway helps coordinate the response

to oxidative stress by modulating autophagy and related processes

(77, 78).

3.3.3 Autophagy in response to nanoparticles
Autophagy plays a crucial role in mitigating the effects of

environmental pollutants in aquatic invertebrates, particularly

bivalves and other mollusks. Studies on mussels exposed to

nanoparticles, such as glass wool from oil spill barriers, have

revealed significant lysosomal instability, leading to oxidative

stress and lipofuscin accumulation. This autophagic response is

essential for managing cell damage and preventing cell death

following nanoparticle exposure (79). Similarly, in the bivalve

Ruditapes decussatus, exposure to cadmium (Cd) has been shown

to induce autophagy, which helps maintain cellular function by

protecting vital tissues, such as the gills and digestive gland, from

toxic damage (80). However, recent advances suggest that

autophagy can act as a double-edged sword in response to

nanoparticle exposure. For instance, Chen et al. (81) argue that

while autophagy may initially serve a cytoprotective function,

excessive or dysregulated autophagy induced by certain

nanomaterials could exacerbate cellular damage, contributing to

pathogenesis and cell death (81). Their call for tiered in vitro–in vivo

testing frameworks highlights the urgency to better characterize the

threshold at which autophagy shifts from protective to detrimental,

especially given the increasing use of engineered nanoparticles

(ENPs) in aquatic environments.

Furthermore, Dube et al. (82) stress that the fate and

transformation of ENPs in aquatic systems-through aggregation,

dissolution, or interaction with organic matter-can significantly

influence their toxicity profiles (82). They point out that

autophagy is not only an early cellular response but may also play
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a role in the systemic effects of ENP exposure, such as

bioaccumulation and biomagnification along trophic levels. This

raise concerns that chronic ENP exposure might impair autophagic

flux in aquatic animals, disrupting tissue function and ecosystem

stability. Together, these findings highlight that while autophagy is a

critical defense mechanism, it is also a sensitive indicator of

nanoparticle-induced stress, and its modulation by different types

of NPs must be carefully evaluated to distinguish adaptive responses

from toxic outcomes (81, 82).

Studies in fish have also demonstrated contaminant-induced

autophagy. For instance, zebrafish (D. rerio) exposed to

nanoparticles exhibit autophagic responses through the cellular

uptake of these particles, highlighting autophagy’s protective role

in vertebrate aquatic species as well (83, 84). This stress-induced

autophagy contributes to the removal of damaged organelles and

maintenance of cellular homeostasis, underscoring a conserved

mechanism across aquatic organisms in combating nanoparticle-

related environmental stress.

3.3.4 Autophagy in response to hydrocarbons
Beyond nanoparticles, many aquatic invertebrates, including

corals and other mollusks, utilize autophagy as a defense

mechanism against pollutant-induced stress (85). The blue mussel

(Mytilus edulis), a widely recognized bioindicator of ecosystem

health, exhibits autophagic responses to contaminants. Its

digestive gland plays a pivotal role in detoxification, sequestering

pollutants into cellular vesicles and lysosomes, thereby activating

autophagy to facilitate both food digestion and detoxification (86).

Exposure to lipophilic xenobiotics, such as oil-derived aromatic

hydrocarbons (AHs), has also been shown to trigger autophagy,

with simulations suggesting that AH exposure and food deprivation

serve as key models for understanding autophagic regulation in

aquatic organisms (87). Additionally, autophagy is hypothesized to

mitigate oxidative stress caused by the accumulation of damaged

proteins and lipids in lysosomes, potentially enhancing resilience

against pollutant-induced oxidative damage (88).

3.3.5 Hypoxia-induced autophagy
Hypoxia disrupts oxygen homeostasis, leading to excessive

reactive oxygen species (ROS) generation and oxidative damage

in fish gills (32, 89). This stress activates autophagy, primarily

regulated by the hypoxia-inducible factor (HIF)-Bcl-2/adenovirus

E1a 19 kDa interacting protein 3 (BNIP3) pathway, which promotes

autophagosome formation (90). In Ctenopharyngodon idella,

exposure to hypoxia significantly upregulated autophagy-related

genes, including BNIP3, ATG5, ATG12, and Beclin1, alongside an

increase in LC3-II protein levels, indicating enhanced autophagic

activity (91).

While autophagy initially acts as a protective mechanism,

prolonged hypoxia may lead to excessive autophagic flux,

contributing to apoptosis (92). The activation of caspase-

dependent pathways and upregulation of apoptotic markers, such

as Bax and Caspase-3, indicate a shift from survival to programmed

cell death in severely stressed fish (93). The transition from

autophagy to apoptosis is closely linked to endoplasmic reticulum
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ATF4, and XBP1s, are upregulated under hypoxia but mitigated

by protective compounds such as tea tree oil (93).

In aquatic invertebrates, particularly intertidal sessile species like

mussels and oysters, hypoxia is a recurrent environmental stressor

due to fluctuating tidal levels. These organisms show remarkable

hypoxia tolerance, partly due to adaptive regulation of autophagy,

apoptosis, and mitochondrial quality control mechanisms.

Crassostrea gigas and Mytilus edulis, for instance, exhibit distinct

responses to hypoxia and subsequent reoxygenation. Long-term

hypoxia upregulates Bcl-2 in both species, promoting anti-

apoptotic signaling (94). However, M. edulis shows stronger

transcriptional activation of apoptotic and inflammatory markers

(Caspases, BAX, NF-kB), while C. gigas demonstrates a muted

response, suggesting a greater capacity to maintain cellular

homeostasis under oxygen stress (94). Hypoxia/reoxygenation (H/

R) stress also affects mitochondrial integrity in these bivalves. In

mussels, H/R induces mitochondrial fission, suppression of fusion,

and activation of mitophagy-highlighting the role of mitochondrial

quality control in hypoxia resilience. Conversely, oysters show stable

expression of mitochondrial maintenance genes under similar stress,

indicating superior inherent tolerance (95).

Transcriptomic analysis of Mytilus chilensis under hypoxia and

reoxygenation reveals over 15,000 differentially expressed genes in

gill tissue alone, including regulators of Toll-like, mTOR, and

apoptosis pathways, signifying immunometabolic reprogramming

under low oxygen (96). These changes support a shift from aerobics

to anaerobic metabolism and may increase disease susceptibility

due to immune suppression. Earlier studies further corroborate the

autophagic role in coping with fluctuating oxygen levels. Autophagy

induced by anoxia in M. edulis and M. galloprovincialis was shown

to be reversible and protective, facilitating lysosomal stability and

the clearance of ROS-damaged components (97). This basal level of

autophagic activity may underlie the resilience of intertidal

invertebrates to repeated hypoxic episodes. Together, these

findings underscore that hypoxia-induced autophagy is a

conserved yet species-specific response across aquatic organisms.

While it serves as a survival strategy in both fish and invertebrates,

the molecular pathways involved and the balance between

autophagy, apoptosis, and mitochondrial maintenance vary

significantly, reflecting differences in ecological adaptation and

physiological tolerance (32, 93).
3.3.6 Autophagy and pesticide exposure
Various environmental pollutants, including pesticides such as

fipronil, can trigger autophagy in aquatic organisms, often as a

protective response to stress-induced cellular damage (56).

Environmental stressors such as pesticide exposure, oxidative

stress, and nutrient depletion can induce autophagy by activating

key regulatory pathways. Fipronil exposure in Cyprinus carpio led

to significant upregulation of autophagy-related genes (ATG5,

ATG12, ATG16L, LC3-II, and Beclin1), suggesting enhanced

autophagic activity as an adaptive response (56). The

ubiquitination pathway (ATG5–ATG12–ATG16L) has been

reported to be crucial for autophagosome formation and
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degradation (98) Similarly, increased expression of Beclin1, a key

autophagy regulator, further confirms autophagy activation

following environmental pollutant exposure (99, 100).

While autophagy is a survival mechanism under stress,

prolonged exposure to pollutants can lead to excessive autophagic

flux, pushing cells toward apoptosis (101). In fipronil-exposed carp,

autophagic activity was particularly evident in liver and intestinal

tissues during the early exposure period, as indicated by increased

LC3-II/LC3-I ratios. However, prolonged exposure resulted in a

shift toward apoptosis, with increased expression of apoptotic

markers such as Bcl-2 and Caspase-3 (56). The balance between

autophagy and apoptosis is critical in determining cell fate under

environmental stress.
4 Autophagy monitoring methods

Monitoring autophagy in aquatic animals is essential for

understanding their roles in development, immunity, disease

progression, and responses to environmental stress. A variety of

methodological approaches have been developed and adapted

across numerous aquatic species, each offering specific strengths

and limitations. Commonly used techniques include Western

blotting for detecting autophagy-related protein markers (e.g.,

LC3, p62), qRT-PCR for analyzing the transcriptional regulation

of autophagy-related genes, and fluorescence microscopy for

visualizing autophagic structures in live or fixed cells. Additional
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(TEM), and immunohistochemistry further enhance the ability to

quantify and localize autophagic components within tissues (102)

(Table 2). When applied in combination, these methods provide a

comprehensive understanding of autophagy dynamics and its

physiological significance in aquatic organisms (112, 113).

Building upon this methodological foundation, autophagy has

emerged as a critical biomolecular marker and therapeutic target

in aquaculture. Reflecting their importance on mammals,

modulating autophagy in aquatic species offers valuable insights

into disease mechanisms and control strategies (6). A variety of

pharmacological agents have been utilized to explore and

manipulate this pathway. For example, chloroquine (CQ), a

widely used autophagy inhibitor, effectively blocks the fusion of

autophagosomes with lysosomes, thereby halting autophagic flux in

both in vitro and in vivo fish models (114–117). On the other hand,

Autophagy inducers such as rapamycin- an inhibitor of the mTOR

signaling pathway have been shown to enhance autophagic activity

by modulating key autophagy-related genes and proteins, as

demonstrated in Litopenaeus vannamei. This induction of

autophagy contributes to improved cellular homeostasis and may

strengthen immune responses during pathogenic challenges (116).

These modulators not only serve as experimental tools but also

reveal the profound role of autophagy in host-pathogen dynamics,

contributing to our understanding of fish immunity and stress

resilience. Importantly, leveraging these compounds in

aquaculture holds transformative potential: they may pave the
TABLE 2 Methods for monitoring autophagy.

Method Description Advantages Limitations References

Western Blotting Detects protein markers of
autophagy (e.g., LC3B-II,
SQSTM1/P62, ATG proteins).

Quantitative, widely used,
detects protein-level changes.

Requires careful controls (e.g.,
lysosomal inhibitors), can be
challenging to interpret.

(103, 104)

PCR-Based Assays Measures mRNA levels of
autophagy-related genes (e.g.,
atg genes).

Sensitive, useful for gene
expression studies.

mRNA levels do not directly
reflect autophagic activity due
to post-translational regulation.

(105, 106)

Transmission Electron
Microscopy (TEM)

Directly visualizes
autophagosomes and
autolysosomes at an
ultrastructural level.

High-resolution, gold standard
for autophagy detection.

Labor-intensive requires
specialized equipment
and expertise.

(103, 107)

Flow Cytometry Measures autophagy in single
cells using fluorescent dyes like
Cyto-ID®, which label
autophagic vacuoles. Used to
analyze large numbers of
hemocytes in aquatic species.

Fast, sensitive, can measure
both autophagy and cell health
at the same time; good for
tracking changes over time.

Needs specialized equipment
and careful setup for accurate
results; may need adjustments
for different species.

(108, 109)

Transmission Electron
Microscopy (TEM)

Uses high-resolution imaging
to directly see tiny cell
structures like autophagosomes
and autolysosomes, which are
involved in autophagy.

Gives clear, detailed images of
autophagic structures;
considered the gold standard
for confirming autophagy at
the cellular level.

Time-consuming, needs special
equipment and expert skills to
prepare and analyze samples.

(109)

Immunohistochemistry (IHC) Uses antibodies to detect and
locate autophagy-related
proteins (like LC3, SQSTM1)
in tissue slices, helping show
where autophagy is happening
in different parts of a tissue.

Shows both the presence and
location of proteins involved in
autophagy; useful for
understanding tissue-
specific responses.

Needs well-prepared tissue
samples and specific
antibodies; interpretation can
be affected by tissue quality
and staining conditions.

(35, 110, 111)
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way for new interventions to increase disease resistance, optimize

vaccine responses, and cultivate genetically or physiologically

robust aquatic species populations, advancing sustainability in

aquatic food production.
4.1 Western blotting

Western blotting is a widely used technique for monitoring

autophagy by detecting specific protein markers associated with the

autophagic process. In aquatic animals, it is commonly employed to

identify the conversion of LC3-I to LC3-II, a hallmark of

autophagosome formation, as well as to quantify other autophagy-

related proteins such as SQSTM1/p62, BECLIN 1, ATG5, and ATG7

(102, 118). However, these markers are not fully specific to

autophagy, and care must be taken when interpreting the data

(119). A key challenge is distinguishing between increased

autophagy and impaired lysosomal degradation; thus, lysosomal

inhibitors such as chloroquine, bafilomycin A1, or 3-MA are often

used to assess autophagic flux (108). Experimental accuracy depends

on several factors, including antibody specificity, membrane type, and

exposure duration. Comparing LC3-II levels to a stable housekeeping

protein is generally more reliable than using LC3-I as a reference

(102). Despite its limitations, when paired with appropriate controls

and complementary assays, Western blotting remains a valuable and

reproducible method for studying autophagy in aquatic species (103).

In aquatic species, Western blotting has been successfully applied

to assess autophagic responses under various physiological and

pathological conditions. For instance, in oysters (Crassostrea gigas),

the technique has been used to detect autophagy-related proteins

post-infection with OsHV-1 and Vibrio aestuarianus, indicating the

activation of innate immune mechanisms (119). Yang et al. (118)

employed Western blotting to examine hemocyte protein expression

using SDS-PAGE, specific primary antibodies (e.g., anti-CgLC3), and

chemiluminescence-based detection systems (118). Similarly, Zhang

et al. (102) demonstrated oxidative stress-induced autophagy by

visualizing LC3 levels in oyster hemocytes (102). Picot et al. (108)

further characterized the expression of autophagy-related genes such

as MAP1LC3, BECN1, MTOR, and SQSTM1 across different tissues

of C. gigas, confirming a conserved and functional autophagy

pathway (108). Collectively, these examples highlight Western

blotting’s pivotal role in elucidating the molecular regulation of

autophagy in diverse aquatic organisms (104, 120).
4.2 PCR-based assays

PCR-based assays, particularly real-time PCR, are widely

employed to explore the transcriptional regulation of autophagy-

related genes (atg genes) in aquatic organisms. These assays provide

valuable insights into gene expression levels, helping to identify

changes in autophagy-related pathways under various conditions.

However, it is important to note that mRNA expression does not

always directly correlate with autophagic activity due to complex

posttranslational regulation (105, 106). Despite this limitation, PCR
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remains a widely used method for studying autophagy, especially

when combined with other techniques. It has been used to

investigate factors such as circadian rhythms in atg gene

expression, the influence of bacterial infections on host

autophagy, and the role of specific genes in immune responses

(121, 122). PCR can also be instrumental in examining the timing of

gene expression during different developmental stages, as well as in

response to environmental or physiological stressors.

For example, PCR analyses have demonstrated that several atg

genes are maternally deposited in zebrafish embryos, with distinct

expression patterns observed during early development. Some of

these genes exhibit stable expression, while others show dynamic

changes, indicating their potential roles in regulating embryonic

development (122). In this way, PCR-based assays offer critical

insights into the temporal regulation of autophagy genes. Although

PCR cannot provide direct functional evidence of autophagic flux, it

is an essential complementary tool when combined with protein-

level analyses and functional assays. This integration enhances the

overall understanding of autophagy regulation at both the

transcriptional and functional levels (89).
4.3 Fluorescence microscopy

Fluorescence microscopy is a powerful technique for visualizing

and quantifying autophagy at the cellular level. In aquatic species, it

enables spatial resolution of autophagic structures using fluorescent

dyes like Cyto-ID®, which selectively stain autophagic vacuoles,

allowing direct image-based analysis of fluorescence intensity in

individual cells (109). This technique is particularly advantageous

for live-cell imaging and is often used in conjunction with confocal

microscopy for enhanced resolution. In zebrafish, fluorescence

microscopy is especially effective due to the natural transparency

of embryos and larvae, permitting real-time observation of

autophagic processes (102). Transgenic models such as Tg (CMV:

GFP-map1lc3) express fluorescently tagged LC3B to mark

autophagosomes as distinct puncta (102, 118). Advanced dual

fluorescence reporters like mCherry-GFP-LC3B further improve

accuracy by distinguishing between autophagosomes and

autolysosomes based on pH-sensitive signal degradation (109).

Additionally, specialized transgenic lines targeting organelles (e.g.,

mitochondria) or pathogens with fluorescent tags enable the study

of selective autophagy, including mitophagy and xenophagy (118).

This method has been effectively applied to a range of aquatic

organisms. In the Pacific oyster (Crassostrea gigas), Picot et al. (109)

demonstrated that adapted mammalian protocols using Cyto-ID®

and immunofluorescence microscopy could visualize autophagic

activity in hemocytes (109). Zhang et al. (102) used this approach to

show that lipopolysaccharide (LPS)-induced oxidative stress

significantly increased autophagosome formation, with fluorescent

staining revealing the accumulation of autophagic vacuoles (102).

The application of fluorescence microscopy in both vertebrates and

invertebrates highlights its versatility and effectiveness in tracking

autophagy-related responses under immune challenge,

developmental stages, and environmental stress conditions (123).
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4.4 Flow cytometry

Flow cytometry is a high-throughput technique used to quantify

autophagic activity at the single-cell level by measuring fluorescence

intensity of specific dyes, such as Cyto-ID®, that selectively label

autophagic vacuoles. In aquatic species, this method enables rapid

and accurate detection of autophagy in large hemocyte populations,

making it a valuable tool for immune and stress response studies

(109). When combined with viability stains (e.g., 7-AAD or PI),

flow cytometry can simultaneously assess cell viability and

autophagic status, offering a comprehensive understanding of

host responses under various experimental conditions (108). The

technique’s sensitivity and capacity for multiparametric analysis

make it especially suitable for evaluating dynamic changes in

autophagy during pathogen infection or environmental stress in

invertebrates and fish species.

Flow cytometry has been successfully applied in the Pacific oyster

(Crassostrea gigas) to monitor autophagy in hemocytes under viral

stress. Picot et al. (109) adapted mammalian protocols for

invertebrate application, using the Cyto-ID® Autophagy Detection

Kit to label autophagic compartments (109). Later, Picot et al. (108)

employed flow cytometry to quantify hemocytes containing

autophagosomes during OsHV-1 infection, analyzing approximately

5000 gated events per sample while excluding debris and bacteria

through size discrimination (108). This approach revealed temporal

and tissue-specific modulation of autophagic activity, indicating the

involvement of autophagy in antiviral immune responses. These

findings support the utility of flow cytometry as a quantitative and

scalable method to study autophagy in aquatic immunology research.
4.5 Transmission electron microscopy

Transmission electron microscopy (TEM) is a high-resolution

imaging technique used to observe the ultrastructural features of cells,

providing detailed views of cellular processes, including autophagy.

TEM is particularly valuable for visualizing autophagic vesicles, such

as autophagosomes and autolysosomes, which appear as double- or

single-membrane-bound structures within the cytoplasm. This

technique is critical for confirming the presence of autophagic

structures and understanding the morphological details of

autophagic processes at the subcellular level. TEM has become an

essential tool for assessing immune responses in aquatic species, as it

allows for the direct observation of cellular degradation pathways

involved in pathogen clearance and stress adaptation (109).

In aquatic species, TEM has been successfully applied to

examine autophagic activity in hemocytes. For instance, Picot

et al. (109) used TEM to investigate autophagy in hemocytes of

the Pacific oyster (Crassostrea gigas) (109). Their study revealed

autophagic vesicles within the hemocytes, confirming that the

autophagic process is activated during immune responses,

especially in reaction to pathogen exposure. TEM provided clear

visual evidence of autophagosome formation and their subsequent

degradation, offering valuable insights into the cellular mechanisms

employed by oysters in defending against infections.
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4.6 Immunohistochemistry

Immunohistochemistry (IHC) is a widely used technique to

detect and localize autophagy-related proteins in tissue sections,

providing spatial context to cellular responses. The method involves

fixation of tissues, typically in formalin, followed by paraffin

embedding, sectioning, and staining. Specific primary antibodies

targeting autophagy markers such as LC3, Beclin-1, SQSTM1/p62,

or mTOR are used to label the proteins of interest, and these are

subsequently detected using enzyme-conjugated secondary

antibodies (35). The antigen–antibody complexes are visualized

with chromogenic substrates like DAB (3,3′-diaminobenzidine),

producing a brown precipitate at the site of expression, often

counterstained with hematoxylin to distinguish cellular structures.

IHC is especially useful for determining the localization of

autophagy activity within tissue architecture, making it an

important complement to molecular techniques such as Western

blotting or qRT-PCR.

This technique has been effectively applied in aquatic

invertebrates, notably in the Pacific oyster (Crassostrea gigas), to

investigate immune responses against pathogens. Picot et al. (35)

used IHC to localize autophagy-related markers LC3 and SQSTM1

in oyster hemocytes and digestive glands during OsHV-1 infection

(35). Their study revealed differential expression patterns in various

tissues, suggesting activation of the autophagy pathway in response

to viral challenge. IHC allowed the researchers to visualize not only

the presence but also the distribution and intensity of autophagy-

related proteins, providing critical insights into tissue-specific

autophagic responses in infected oysters (110, 111).
5 Autophagy in host-pathogen
interactions

Autophagy is crucial for preserving cellular homeostasis and

regulating cell health, particularly in response to infections (48,

124). Although autophagy has been extensively studied in

mammals, its investigation in aquatic species remains relatively

underexplored (125, 126). This is partly due to the limited

availability of suitable detection methods, validated molecular

markers, specific antibodies, and autophagy modulators in aquatic

research compared to mammalian systems (6). Despite these

constraints, emerging studies suggest that autophagy in aquatic

species plays a vital role in various biological processes, including

resistance to toxins and pathogens (125).

Table 3 summarizes the diverse roles of autophagy in aquatic

animals, encompassing embryonic development, metabolism, and

host-pathogen interactions. During embryogenesis, autophagy is

essential for processes such as neurogenesis, tissue morphogenesis,

and angiogenesis. Studies in zebrafish embryos have demonstrated

that genes like atg5 and wdr24 are crucial for proper brain and

organ development, with their disruption leading to morphological

defects and increased cell death (120, 127, 129, 131–133). In

metabolic regulation, autophagy contributes to protein turnover,

l ipid homeostasis , and compensatory growth. Dietary
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TABLE 3 Autophagy in pathogen defense, metabolism, and embryonic development.

Study Focus/Process Cell Model/Organism Key Findings References

Embryonic development

Autophagy in
embryonic development

Zebrafish embryos High autophagy activity observed, upregulated by rapamycin and
calpeptin; GFP-tagged Lc3 and Gabarap used to track autophagic activity

(127)

Liver-specific autophagy in
embryonic development

Transgenic zebrafish larvae EGFP-Lc3 puncta increased with autophagy inducer Torin1; further
accumulation with chloroquine due to blocked lysosomal degradation

(128)

Embryonic morphogenesis Transgenic zebrafish embryos Autophagy active in multiple tissues, including the heart; inhibition
caused morphogenesis defects, increased cell death, abnormal heart
structure, and reduced survival

(129)

Early embryonic development Zebrafish embryos Maternal factors drive early development before zygotic genome
activation, influencing axis formation, germ layer specification, and other
early embryonic processes.

(130)

Role of atg5 in neurogenesis
and organogenesis

Zebrafish embryos atg5 is essential for brain development, body plan formation, and
regulation of neural gene expression.

(106)

Autophagy in angiogenesis and
vascular remodeling

Zebrafish embryos CPCD inhibits angiogenesis by blocking VEGFR2/AKT signaling and
induces autophagy, reducing blood vessel sprouting.

(131)

Autolysosome formation and
embryonic senescence

Zebrafish embryos Spns1 and v-ATPase cooperate in autolysosomal biogenesis and
acidification. Loss of Spns1 leads to embryonic senescence, which can be
suppressed by disrupting v-ATPase.

(132)

Embryonic development Zebrafish embryos Wdr24 is required for normal embryogenesis; knockdown causes
developmental defects and cell death due to dysregulated autophagy.

(133)

GABARAP expression during
embryonic development

Haliotis diversicolor (small abalone) GABARAP was expressed throughout embryonic and larval stages, with
peak levels at the gastrula stage.

(134)

Temperature-induced autophagy
and apoptosis
during embryogenesis

Sepiella japonica embryos High temperature altered autophagy gene expression (LC3, BECN1,
Inx4) and increased embryonic sensitivity, highlighting autophagy’s role
in temperature-regulated development.

(135)

Metabolism

Protein degradation and
flesh quality

Rainbow trout (Oncorhynchus mykiss) Supranutritional dietary selenium inhibited autophagy-related protein
degradation, improving fillet firmness and water-holding

(136)

Compensatory growth and
protein metabolism

Arctic charr (Salvelinus alpinus) Autophagy-related genes regulate compensatory growth; miRNAs
influence glycogen homeostasis.

(137)

Zinc and hepatic
lipid metabolism

Hepatocytes (liver cells) Zinc reduces hepatic lipid accumulation via Zn2+/MTF-1/PPARa and
Ca2+/CaMKKb/AMPK pathways, promoting lipophagy.

(138)

Compensatory growth and
protein metabolism

Arctic charr (Salvelinus alpinus) Autophagy-linked protein accretion, miRNA-regulated
glycogen homeostasis

(137)

Fish metabolism regulation Various fish species Autophagy, miRNAs, genome complexity, and early-life nutrition
impact metabolism

(8)

Starvation-induced autophagy
and metabolism

Mytilus spp. (mussel) Starvation upregulated autophagy genes (atg2, atg6, atg13) and activated
metabolic and lysosomal pathways in Mytilus.

(119)

Pathogen Infection

Spring Viraemia of Carp
Virus (SVCV)

Epithelioma papulosum dellad
(EPC) cells

SVCV glycoprotein activates autophagy, supporting viral replication and
cell survival.

(33)

Rhabdoviral G Glycoproteins
Induce Autophagy

Zebrafish, Vertebrate Cell Lines Rhabdoviral G glycoproteins (VSV, VHSV, SVCV) induce autophagy,
suggesting its role in antiviral defense.

(139)

Autophagy Induction by
Infectious Salmon Anemia
Virus (ISAV)

Atlantic Salmon Cells ISAV induces autophagy, shown by LC3-GFP redistribution and
autophagosome formation, suggesting a role in viral replication.

(140)

Autophagy in Infectious Spleen
and Kidney Necrosis Virus
(ISKNV) Replication

CPB (Chinese perch brain) Cells ISKNV triggers autophagy, which promotes viral replication but reduces
extracellular virus yields.

(23)

(Continued)
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supplementation with selenium and zinc modulates autophagic flux

to enhance flesh quality and reduce hepatic lipid accumulation,

while early-life nutrition and miRNA regulation also influence

autophagy-linked metabolic pathways in several fish species (8,

114, 136–138). Autophagy also plays a dual role in host-pathogen

interactions. On one hand, it enhances immune defenses by limiting

viral and bacterial replication, as observed in responses against

VHSV, Aeromonas hydrophila, and other pathogens (115, 143, 144).

On the other hand, certain viruses such as SVCV, ISAV, and ISKNV

manipulate autophagy to support their replication and persistence

within host cells (23, 33, 139, 140, 146).

Beyond its involvement in individual infections, autophagy is

fundamentally intertwined with the development and function of

the immune system. It supports both innate and adaptive responses

and contributes directly to the clearance of intracellular pathogens

(33). However, many pathogens have evolved mechanisms to evade

or exploit autophagic pathways to their advantage (147),

complicating their overall role. This complexity suggests that

autophagy’s activity during infection is highly context-dependent,

influenced by specific pathogen-host interactions. A deeper

understanding of these dynamics is essential for improving

aquatic immunology and developing targeted disease

management strategies in aquaculture (148).
5.1 Autophagy in viral infections

Extensive research has explored the importance of autophagy in

viral infections in mammals; however, studies on viral infections in

fish remain relatively limited (149, 150). The first document

autophagy of virus-induced in fish cells came from Schiøtz et al.
Frontiers in Immunology 12
(140), who demonstrated that Infectious Salmon Anemia Virus

(ISAV) induces autophagy in Atlantic salmon cells (140). This was

evidenced by the formation of autophagosomes and the

redistribution of LC3-GFP fluorescence (140). Inhibiting

autophagosome formation led to a reduction in LC3-GFP puncta

and viral production, suggesting that autophagy facilitates ISAV

replication (140). Similarly, Liu et al. (33) showed that Spring

Viremia of Carp Virus (SVCV) activates autophagy in infected

cells, promoting viral replication and survival (33). This process,

triggered by the SVCV glycoprotein, is mediated through the ERK/

mTOR pathway, with autophagy suppression significantly reducing

SVCV replication.

Building on these individual findings, recent reviews provide

broader insight into the dual and context-specific roles of

autophagy in aquatic viral infections. Li et al. (10) reported that

both RNA and DNA viruses manipulate host autophagy-either

enhancing their replication or being suppressed by it. For example,

autophagy supports replication in SVCV and ISAV infections but

acts protectively against IHNV and OsHV-1 (10). Key pathways like

PI3K/AKT/mTOR and eIF2a are central to this modulation (10).

These insights suggest that targeting autophagy signaling could offer

strategies for antiviral therapy and vaccine enhancement

in aquaculture.

Transcriptomic studies indicate that rhabdoviral G glycoproteins

from both mammalian and fish viruses induce autophagy in

vertebrate cells, contributing to antiviral immunity. Rhabdoviruses

encode a single surface glycoprotein (G protein), which is essential for

viral entry by mediating receptor binding and membrane fusion.

Beyond its structural role, the G protein also influences host cellular

responses, including autophagy. For instance, Luo et al. (151)

identified the laminin receptor (LamR) as a functional receptor for
TABLE 3 Continued

Study Focus/Process Cell Model/Organism Key Findings References

Pathogen Infection

Autophagy in TDCIPP-
Induced Neurotoxicity

Zebrafish embryos and larvae Exposure to TDCIPP triggers autophagy, which helps reduce
developmental neurotoxicity in zebrafish

(141)

Autophagy in nucleated
erythrocytes and
antiviral immunity

Turbot (Scophthalmus
maximus) erythrocytes

Autophagy in red blood cells (RBCs) limits the replication of viral
hemorrhagic septicemia virus (VHSV) and boosts antiviral immunity.

(115)

ROS-induced autophagy in
antiviral defense

Ctenopharyngodon della kidney cells ROS-induced autophagy restricts grass carp reovirus (GCRV) replication.
HSP70 and HMGB1b promote autophagy by interacting with Beclin 1.

(142)

g-Aminobutyric Acid (GABA)
Signaling in
Antibacterial Autophagy

Macrophages, mice, zebrafish Activation of g-Aminobutyric acid (GABA) enhances autophagy,
facilitates phagosomal maturation, and strengthens antimicrobial defense
against intracellular bacterial infections.

(143)

Autophagy in immune response
to bacterial infection

Macrobrachium rosenbergii
(freshwater prawn)

Autophagy reduces apoptosis and improves survival during Aeromonas
hydrophila infection.

(144)

Autophagy in OsHV-1 and
Vibrio aestuarianus infections

Crassostrea gigas (Pacific oyster) Autophagy is active and protective against OsHV-1 and V. aestuarianus;
its induction improves survival, while inhibition increases mortality.

(119)

Autophagy in response to Vibrio
tapetis infection

Mytilus galloprovincialis hemocytes V. tapetis induces autophagosome formation and LC3-II expression;
autophagy appears protective and is blocked by Wortmannin

(145)

Autophagic and lysosomal
responses to
environmental stress

Mytilus edulis and Mytilus
galloprovincialis hepatopancreas cells

Environmental stressors (e.g., PAHs, copper, starvation) trigger
lysosomal damage and autophagy; starvation-induced autophagy protects
against oxidative stress.

(97)
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Micropterus salmoides rhabdovirus (MSRV), demonstrating that the

G protein directly binds to LamR to facilitate viral attachment and

internalization via clathrin-mediated endocytosis (151). These

findings underscore the G protein’s dual role in mediating virus

entry and potentially modulating intracellular pathways, including

autophagy (151). Given the established links between endocytic

trafficking and autophagy, such interactions may be central to

understanding how rhabdoviruses exploit host cellular machinery.

Furthermore, peptides in the fusion domains of rhabdoviral G

proteins have been shown to trigger autophagy, suggesting that

modulating this process could be a promising strategy for

preventing and treating rhabdoviral infections such as rabies (139).

Infectious Spleen and Kidney Necrosis Virus (ISKNV), a severe

pathogen affecting fish, particularly Chinese perch (Siniperca

chuatsi), also activates autophagy in infected cells (23). While

autophagy promotes viral replication, it simultaneously restricts

viral release. Notably, blocking autophagy results in the release of a

higher number of infectious viral particles (139).

Further studies highlight the role of metabolic stress in antiviral

defense via autophagy. Sun et al. (146) demonstrated that glutamine

starvation induces autophagy, which inhibits Snakehead Fish

Vesiculovirus (SHVV) replication in snakehead fish (Channa

striata) (146). Similarly, Zhao et al. (152) found that autophagy

plays a protective role during Infectious Hematopoietic Necrosis

Virus (IHNV) infection. Inducing autophagy suppressed viral

replication, whereas blocking it enhanced infection (152). IHNV,

which primarily affects salmonid fish, triggers autophagy, leading to

autophagosome formation and altered LC3 protein levels.

Enhancing autophagy reduces viral replication, whereas inhibiting

it results in an increased viral load, suggesting that autophagy

functions as a defense mechanism against IHNV (152).

Additionally, teleost fish red blood cells (RBCs) contribute to

antiviral defense through autophagy. Pereiro et al. (115) found that

Nk-lysin (Nkl), an antimicrobial peptide associated with viral

resistance, is localized inside autophagosomes, indicating a link

between autophagy and antiviral immunity (115). Their study

demonstrated that autophagy in RBCs enhances antiviral defense,

as blocking autophagy led to increased viral replication. This

discovery provides the first evidence that autophagy in RBCs

plays a crucial role in antiviral immunity in teleost fish.

Overall, these findings underscore the dual role of autophagy in

viral infections. While autophagy can support viral replication in some

cases, it also serves as a key antiviral defense mechanism in others.

Recent studies on Grass Carp Reovirus (GCRV) further emphasize the

dual role of autophagy during viral infections in fish. Chu et al. (153)

demonstrated that GCRV infection stimulates autophagy in grass carp

spleen and CIK cells, where enhanced autophagy-either induced by

rapamycin or CiATG5 overexpression-suppressed viral replication and

mitigated excessive inflammatory responses (153). Their findings

suggest that autophagy serves as a protective mechanism by

promoting viral clearance and attenuating cytokine-mediated

damage. In contrast, Zhu et al. (154) found that GCRV-induced

autophagy in CIK cells facilitates viral replication via the Akt-mTOR

signaling pathway. In this study, activation of autophagy enhanced viral

proliferation, while its inhibition reduced viral titters, indicating that
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autophagy supports the virus lifecycle under certain conditions (154).

Together, these contrasting findings illustrate the complex, context-

dependent nature of autophagy in virus-host interactions, highlighting

the need for deeper investigation into the underlying molecular

pathways. A better understanding of these mechanisms in fish could

contribute to the development of novel strategies for controlling viral

infections in aquaculture.

Autophagy also plays a protective role against viral infections in

invertebrates such as the Pacific oyster (Crassostrea gigas),

particularly during Ostreid herpesvirus 1 (OsHV-1) outbreaks

(119). Autophagy is functionally active in oysters, with conserved

autophagy-related genes (e.g., ATG1, BECN1) and the

autophagosome marker LC3-II being upregulated upon infection

(119). Induction of autophagy through starvation or carbamazepine

significantly enhanced oyster survival and reduced viral DNA levels

(119, 155). Although NH4Cl inhibited autophagy in mantle and

hemolymph tissues, this inhibition was not directly associated with

increased viral replication, suggesting that the relationship between

autophagy and OsHV-1 may be tissue-specific and more complex

than a straightforward antiviral mechanism (108). Moreover, oyster

families with low susceptibility to OsHV-1 showed early

upregulation of autophagy genes, suggesting that effective

autophagy activation is linked to viral resistance, highlighting its

role as a vital innate immune mechanism in mollusks (119).
5.2 Autophagy in bacterial infections

Recent studies underscore the multifaceted role of autophagy in

bacterial infections in aquatic species, functioning as both a protective

and, in some contexts, a detrimental mechanism (6). As part of the

innate immune system, autophagy is rapidly activated upon pathogen

invasion in aquatic species, like higher vertebrates (156–159). Its

antibacterial functions have been well demonstrated in species like

Japanese flounder, where Edwardsiella tarda infection triggers

autophagic degradation through the pol-miR-3p-2–p53–Beclin-1

pathway (159–162). Comparable protective responses are observed

in zebrafish infected with Shigella flexneri,Mycobacterium marinum,

and Salmonella typhimurium, where the silencing of autophagy-

related genes such as atg5, p62, and Dram1 exacerbates infection

severity (160–162). However, emerging evidence also highlights the

role of autophagy in bacterial immune evasion. For instance, in

Miichthys miiuy, infection with Vibrio harveyi induces eIF3k

expression, promoting autophagy-mediated degradation of MyD88,

thereby hindering NF-kB signaling and inflammatory response

activation (156). Similarly, in Staphylococcus aureus-infected

zebrafish, LC3-associated phagosomes may serve as replication

sites, facilitating bacterial escape into the cytoplasm (163, 164).

Furthermore, autophagy has been implicated in ferroptosis-induced

death of host cells, as seen in E. coli-infected grass carp red blood cells

(GcRBCs), where autophagy-mediated iron release initiates oxidative

damage and cell death (157, 165). These findings collectively suggest

that while autophagy is a critical antibacterial mechanism, its

regulation and context-dependent outcomes must be carefully

considered in aquaculture disease management strategies (152).
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In the Hong Kong oyster (Crassostrea hongkongensis),

autophagy serves as a crucial innate immune response against

Vibrio parahaemolyticus infection. Upon bacterial challenge,

autophagy was rapidly activated in hemocytes, peaking at 6 hours

post-infection-which enhanced bacterial clearance and reduced

apoptosis (166). This process was shown to be dependent on

AMP-activated protein kinase (AMPK) signaling, regulated by

infection-induced surges in AMP and reactive oxygen species

(ROS) (166). These findings underscore the essential role of

autophagy in host defense and highlight AMP and ROS as

upstream co-regulators of autophagic activation during bacterial

infection. Similarly, in Crassostrea gigas (Pacific oyster), autophagy

also plays a protective role against Vibrio aestuarianus, a pathogen

linked to mortality outbreaks in aquaculture. Experimental

infection revealed that inhibition of autophagy with NH4Cl

reduced LC3-II levels, increased bacterial DNA loads, and

heightened oyster mortality, suggesting that suppressed autophagy

worsens infection outcomes (119). In contrast, autophagy

stimulation with carbamazepine reduced bacterial burden and

improved survival, regardless of host susceptibility levels. These

findings collectively reinforce the conserved and protective nature

of autophagy in bacterial defense across oyster species, albeit

through distinct upstream regulatory cues (167, 168).
6 Potential biotechnological
applications

6.1 Probiotics as autophagy modulators in
aquaculture

In recent years, the modulation of autophagy has emerged as a

promising biotechnological tool in aquaculture, particularly using

probiotics (169). Probiotics, which are live, viable microorganisms

that provide health benefits (such as strengthening the immune

system, enhancing resistance to infectious diseases, and improving

tolerance to stressful conditions) to the host when consumed

through the diet (170), have been found to regulate autophagy in

different cell lines and tissues (171, 172), offering potential

applications for improving aquatic animal health and productivity.

Probiotics are increasingly recognized for their ability to

modulate autophagy, contributing to the health and survival of

aquatic organisms. For instance, studies have demonstrated that

Lactobacillus rhamnosus can influence physiological processes in

zebrafish embryos by regulating both autophagy and apoptosis,

ultimately improving developmental outcomes (121). This suggests

that probiotics could be utilized to enhance embryonic development

and survival rates in aquaculture species.

Beyond developmental benefits, probiotics also enhance disease

resistance by modulating autophagy. For example, Bacillus

amyloliquefaciens SC06 has been reported to induce autophagy in

murine macrophage cell lines, providing antibacterial activity

against Escherichia coli (169). This finding indicates that

probiotics could be employed to strengthen immune responses in

aquatic species, reducing bacterial infections in aquaculture settings.
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The regulatory effects of probiotics on autophagy extend

beyond immunity and gut health to include organ protection,

stress resistance, and reproductive health. These diverse functions,

summarized in Table 4, highlight the potential of probiotics as an

innovative strategy for improving aquaculture sustainability

and productivity.

6.1.1 Mechanisms of probiotic-induced
autophagy

The ability of probiotics to induce autophagy in aquatic animals

involves complex and multifaceted mechanisms (185). Certain

probiotic species, such as Lactobacillus and Bacillus, activate

autophagy through key signaling pathways, including the mTOR

pathway and the upregulation of autophagy-related genes (ATG),

such as Atg5, Atg7, and Beclin1 (121). These pathways are essential

for degrading damaged cellular components and eliminating

intracellular pathogens, thereby promoting cell survival and

maintaining tissue integrity.

Additionally, probiotics enhance autophagic responses in intestinal

epithelial cells, which is particularly beneficial for aquatic species prone

to gastrointestinal infections. For instance, Bifidobacterium breve and

Lactobacillus plantarum have been shown to induce autophagy in

intestinal cells, strengthening their resilience under stress and

protecting them from pathogen-induced damage (177). This

underscores the potential of probiotics in improving gut health and

mitigating enteric diseases in aquaculture (Figure 3).

Beyond gut health, autophagy-modulating probiotics offer

significant applications in aquaculture by enhancing growth,

disease resistance, and overall health. Bacillus species have been

reported to improve growth performance and intestinal health

through autophagy induction (178), a strategy that could benefit

farmed fish and shellfish. Integrating probiotics into functional

feeds may further reduce reliance on antibiotics, supporting more

sustainable aquaculture practices. However, further research is

needed to fully elucidate the mechanisms of probiotic-induced

autophagy and optimize their application in aquaculture systems.
6.2 Genetic and epigenetic regulation

6.2.1 CRISPR/Cas9 studies on autophagy in
aquatic species

CRISPR/Cas9 genome-editing technology has emerged as a

powerful tool to dissect autophagy-related pathways in aquatic

organisms, offering precise gene knockout capabilities to explore

gene function at both cellular and systemic levels (186). CRISPR/

Cas9 genome editing has been effectively used to investigate

autophagy-related genes (epg5, ambra1a, and ambra1b) in aquatic

species specially zebrafish (D. rerio), a key aquatic model organism

to study the roles of these genes in autophagy regulation,

development, and disease modeling (187).

Expanding beyond zebrafish, CRISPR/Cas9 technology has also

been applied to study autophagy in other aquatic species, such as

rainbow trout (Oncorhynchus mykiss). In this case, researchers used

CRISPR-Cas9 to generate knockout (KO) lines targeting
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autophagy-related genes like Lamp2A, observing significant

physiological changes, including altered body size, organ indices,

and liver proteome remodeling (188). Building on this, Wang et al.

(189) highlighted the potential of CRISPR in freshwater fish species,

such as fathead minnows, to study autophagy mechanisms (189).

Their work demonstrated that HMGB1 paralogues (HMGB1a and

HMGB1b) are crucial regulators of autophagy through modulation

of LC3-II expressions. These findings not only provide valuable

insights into autophagy regulation in teleosts but also suggest that

CRISPR could be applied to study and potentially enhance

autophagy in commercial fish species, offering a better

understanding of cellular processes critical for aquaculture (189).
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Similarly, beyond zebrafish, CRISPR/Cas9 has been applied in

commercial aquaculture species like gibel carp (Carassius gibelio),

with early studies targeting immune-related genes. Mou et al. (190)

used CRISPR/Cas9 in vivo to knock out duplicated viperin genes

(Cgviperin-A and Cgviperin-B), revealing their distinct roles in

antiviral defense against Carassius auratus herpesvirus (CaHV).

The study showed that these paralogues regulate immune and

autophagy pathways, and their simultaneous disruption

eliminated viral resistance, underscoring the potential of CRISPR

in functional genomics and disease resilience in aquaculture (190).

However, autophagy-targeted CRISPR studies in commercial fishes

remain limited, highlighting a gap and potential for future research.
TABLE 4 Summarizing the functions of probiotics as autophagy modulators.

Function
Probiotic
Strain

Mechanism/Effect
Species Studied

Citation

Immune Regulation Lactobacillus
brevis
BGZLS10-17

Modulates autophagy in mesenteric lymph node cells (MLNC) via
ATG5-dependent pathways, enhancing immune responses.

In vitro (mouse cells) (173)

Anti-Inflammatory Effects Lactobacillus
salivarius AR809

Reduces inflammatory mediators and elevates autophagic proteins,
protecting against S. aureus-induced pharyngitis via Akt-mediated
NF-kB and autophagy signaling pathways.

Mice (174)

Stress Resistance Bacillus
amyloliquefaciens
SC06

Alleviates oxidative stress-induced intestinal injury by triggering
autophagy via p38-mediated pathways.

Rats (169)

Disease Prevention Lactobacillus
rhamnosus GG

Reduces autophagy marker expression and LC3 activity during viral
gastroenteritis, preventing tissue damage and maintaining
gut homeostasis.

Piglets (175)

Organ Protection Lactobacillus
reuteri ZJ617

Ameliorates LPS-induced liver injury in mice by suppressing
autophagy, protecting liver tissue.

Mice (176)

Gut Health and Homeostasis Bifidobacterium
breve

Induces autophagy in intestinal epithelial cells, promoting survival
during stress and protecting against pathogen-induced damage.

Mice (177)

Growth Performance Bacillus
amyloliquefaciens
SC06

Improves growth performance and intestinal health in weaned
piglets by inducing autophagy, suggesting similar applications
in aquaculture.

Piglets (178)

Embryonic Development Lactobacillus
rhamnosus

Modulates autophagy and apoptosis in zebrafish embryo
development, improving survival and developmental processes.

Zebrafish (121)

Cardiovascular Protection Multi-
strain probiotics

Reduces autophagy pathway proteins, attenuating cardiomyocyte
fibrosis in obese rats, suggesting potential cardiovascular protection
in aquatic species.

Rats (179)

Neuroprotection SLAB51 (multi-
strain probiotic)

Restores impaired neuronal proteolytic pathways (autophagy),
reducing brain damage and cognitive decline in Alzheimeric mice,
indicating potential neuroprotective effects in aquatic species.

Mice (Alzheimer’s model) (180)

Renal Protection Short-chain fatty
acids (SCFAs)
from microbiota

Increases autophagy and tubular proliferating cells, preventing acute
kidney injury (AKI) induced by ischemia-reperfusion, suggesting
potential renal protection in aquatic animals.

Mice (181)

Anti-Tumor Effects Lactobacillus and
Bifidobacterium
strains

Induces autophagic cell death in tumor cells, suggesting potential
applications in controlling tumor growth in aquatic species.

In vitro (human cells) (182)

Pharyngeal Tissue Protection Lactobacillus
salivarius AR809

Prevents S. aureus-induced pharyngeal inflammation by regulating
mTOR signaling pathway-related autophagy, suggesting applications
in protecting aquatic species from inflammatory diseases.

Mice (183)

Reproductive Health Lactobacillus
rhamnosus
IMC 501

Regulates ovary physiology in zebrafish by inhibiting follicular
apoptosis and improving follicular survival through
autophagy modulation.

Zebrafish (184)
fr
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In addition to fish, CRISPR applications are also emerging in

invertebrate aquaculture species, showing promising potential. For

instance, in Mulinia lateralis, a commercially relevant bivalve,

Wang et al. (191) used CRISPR/Cas9 to knockout Cfap206,

uncovering its critical role in embryonic ciliogenesis and sperm

flagellum formation (191). This study not only validates CRISPR-

based functional genomics in marine invertebrates but also suggests

its applicability in reproductive management strategies, further

supporting its broader relevance across aquatic organisms (191).

CRISPR/Cas9 has enhanced understanding of autophagy in aquatic

models, uncovering key genetic interactions. It offers valuable

insights into conserved molecular pathways, with future research

set to deepen exploration of their interplay in aquatic species.

6.2.2 RNAi-based interventions to control disease
RNAi-based interventions in aquatic animals represent a

sophisticated approach to disease control by simultaneously

targeting pathogens and modulating host autophagy and cell

death pathways. Studies demonstrate that viral gene silencing via

RNAi (e.g., targeting WSSV VP28 or YHV protease) not only

reduces pathogen load but also restores beneficial autophagy flux

and prevents excessive apoptosis in infected cells (192). For

instance, dsRNA against WSSV rr2 in shrimp upregulates ATG5-

dependent autophagy while reducing caspase-3 activation by 75%,

illustrating RNAi’s dual role in pathogen clearance and cellular

homeostasis maintenance (193, 194). The technology’s efficacy is

further enhanced by advanced delivery systems like chitosan-

rapamycin-dsRNA nanoparticles that combine gene silencing

with autophagy induction, showing 3.2-fold greater tissue

accumulation and prolonged antiviral effects compared to

conventional methods (195, 196).
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Emerging challenges include pathogen evolution of siRNA-

resistant variants and tissue-specific differences in RNAi-

autophagy coupling (197, 198), which are being addressed

through multiplexed dsRNA designs and tissue-targeted delivery

platforms (199). Future directions focus on integrating RNAi with

CRISPR for synergistic gene editing (200), optimizing

administration timing based on circadian rhythms of RNAi

machinery activity (201), and engineering probiotic bacteria for

gut-specific delivery (202). These developments position RNAi as a

versatile tool that bridges pathogen-specific defense with

fundamental cellular regulation, offering a comprehensive strategy

for sustainable disease management in aquaculture systems facing

increasing pathogen threats and environmental stressors.
7 Future directions and knowledge
gaps

7.1 Unexplored molecular pathways

Although significant progress has been made in understanding

autophagy and cell death mechanisms in aquatic animals, several

molecular pathways remain underexplored. While approximately

90% of the core autophagy-related genes (ATGs) are conserved

across eukaryotes, the specific functions and regulatory mechanisms

of these genes in fish and other aquatic species remain largely

unknown (203). The whole-genome duplication event that occurred

300–350 million years ago in teleost fish may have led to lineage-

specific modifications in autophagy pathways, influencing crucial

processes such as immune responses, tissue remodeling, and

metabolic regulation (126). Therefore, comparative genomic and
FIGURE 3

Probiotic-induced autophagy in aquaculture.
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functional studies are essential to determine whether the

autophagy-related gene expression and regulatory mechanisms

observed in model organisms are applicable to aquatic species.

Additionally, selective autophagy pathways, such as mitophagy

and chaperone-mediated autophagy (CMA), which are vital for

cellular homeostasis, are still poorly understood in aquaculture

species. The lysosome-autophagy system in fish has been widely

used as a biomarker for aquatic environmental health (88).

However, the molecular mechanisms linking lysosomal integrity,

toxicant accumulation, and autophagy dysfunction remain unclear

(125). While transgenic zebrafish and zebrafish-derived cell lines

have proven to be valuable models for studying autophagy

regulation, research on other fish species, especially those of

aquacultural importance, remains limited. Expanding studies to

include a broader range of fish species could provide deeper insights

into species-specific autophagy responses and their implications for

growth, immunity, and stress adaptation.

Despite advancements in understanding autophagy in fish,

several molecular pathways, particularly those related to disease

response and immune regulation, remain unexplored. One

significant gap is understanding the spatiotemporal characteristics

of autophagy during microbial infections. For example, in nervous

necrosis virus (NNV) infection, autophagy expression exhibits

distinct temporal and spatial patterns, but its precise molecular

role and regulatory mechanisms remain undetermined (204).

Further investigation is needed to determine whether autophagy

serves a protective function or facilitates viral replication.

Addressing this knowledge gap could offer critical insights into

host-pathogen interactions and help develop targeted therapeutic

strategies for viral diseases in aquaculture.

Chaperone-mediated autophagy (CMA), long thought to be

restricted to tetrapods due to the apparent absence of LAMP2A, a

key component of this pathway, in other species (205), has recently

been shown to exist in certain fish species. These species possess

sequences with high homology to mammalian LAMP2A, suggesting

that CMA may have an evolutionary role in fish autophagy

regulation (206). This discovery challenges previous assumptions

and highlights a critical gap in our understanding of CMA’s

function in fish. Further research is required to explore its

molecular mechanisms, regulatory pathways, and potential

implications for fish health, immunity, and adaptation, especially

in response to environmental and pathogenic stressors.

Currently, only few studies has explored the relationship

between Ostreid herpesvirus 1 (OsHV-1) infection and autophagy

in the hemolymph and mantle of Pacific oysters (35). However, the

broader implications of autophagy in the immune responses of

other aquatic invertebrates, such as shrimp, mussels, and other

mollusks, remain largely unexplored. More studies are needed to

elucidate the molecular mechanisms underlying autophagy-

mediated antiviral defense in invertebrates. These insights could

provide novel strategies for disease management in aquaculture (10,

58)However, the molecular mechanisms by which ATG proteins

modulate innate immunity in aquatic animals are still largely

unknown. Although studies have demonstrated the interplay

between viral infections and autophagy in aquatic species, the
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exact role of ATG proteins in antiviral defense mechanisms

remains unclear (10). Addressing this research gap could provide

critical insights into immune regulation in aquatic organisms and

contribute to the development of novel disease management

strategies in aquaculture.
7.2 Potential for disease control in
aquaculture

Although research on autophagy in fish is still in its early stages,

emerging evidence suggests that this process holds significant

potential for disease control in aquaculture. Autophagy has been

shown to modulate immune responses by degrading intracellular

pathogens and regulating inflammation, highlighting its importance

in host defense (207). While transgenic zebrafish and zebrafish-

derived cell lines have been widely used to study autophagy

regulation, its role in disease resistance among commercially

important fish species remains largely unexplored (88).

The lysosome-autophagy system, commonly employed as a

biomarker for aquatic ecosystem health, also plays a critical role

in pathogen defense by modulating immune responses at the

cellular level (88). Understanding how autophagy influences

pathogen-host interactions in fish could lead to novel disease

management strategies, including the development of autophagy-

targeting therapeutics and dietary interventions to enhance

immunity (207, 208). Additionally, nutrient deficiency-induced

autophagy has been shown to mitigate oxidative stress, potentially

reducing susceptibility to infections in aquaculture species (88).

Future research should focus on elucidating the molecular

mechanisms through which autophagy interacts with fish

immune pathways, paving the way for innovative approaches to

disease prevention and control. Exploring autophagy’s regulatory

role in immune modulation could contribute to the development of

targeted interventions aimed at enhancing disease resistance and

overall fish health. Autophagy modulators such as probiotics, plant-

derived compounds, and immune-stimulants warrant further

investigation to optimize their application in aquaculture.

Additionally, RNA interference (RNAi)-based strategies show

promise for pathogen control by modulating host autophagy and

cell death pathways. However, challenges related to cost,

environmental safety, and delivery methods must be addressed

before these approaches can be widely implemented in aquaculture.
7.3 Need for high-throughput studies and
multi-omics approaches

High-throughput screening methods, when combined with

CRISPR/Cas9, offer a powerful approach to systematically dissect

autophagy pathways and identify novel regulators or therapeutic

targets (209–211). The zebrafish epg5 mutant line, for instance,

serves as a model for high-throughput drug screening to identify

compounds that can modulate autophagy flux without

disrupting its essential functions (187). Additionally, phenotypic
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analysis of ambra1a and ambra1b mutants highlights the potential

of multi-omics approaches- such as transcriptomics and

proteomics-in uncovering compensatory mechanisms and the

sub-functionalization of paralogous genes (212).

Future research should expand the use of CRISPR/Cas9 to

target additional autophagy-related genes in aquatic models

for comprehensive functional analysis. Integrating genomic,

transcriptomic, and proteomic data will enhance mapping of

autophagy networks and their crosstalk with other pathways. High-

throughput platforms can also be employed to screen autophagy-

modulating drugs for conditions like neurodegenerative diseases and

cancer (213). Combining CRISPR/Cas9 with multi-omics and

advanced bioinformatics will help uncover conserved and species-

specific autophagy mechanisms and advance its therapeutic

exploration in aquatic and mammalian systems (213, 214).
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