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Therapies targeting immune checkpoints like programmed death receptor-1 and

programmed death ligand-1 have demonstrated remarkable effectiveness in

combating cancer. However, a subset of patients fails to respond to these

therapies, underscoring the complexity of tumor immune evasion

mechanisms. Exploring innovative immune regulatory targets represents a

crucial research priority in this field. Signal regulatory protein a (SIRPa) is an

immunosuppressive receptor expressed on myeloid cells that inhibits innate

immunity through its interaction with the ligand integrin-associated protein

(CD47). Blocking the SIRPa–CD47 axis can enhance myeloid cell-mediated

anti-tumor responses and stimulate adaptive immunity, thereby synergizing

with therapeutic antibodies and T-cell checkpoint inhibitors. Additionally,

tumor-intrinsic SIRPa may facilitate tumor growth and immune evasion. This

paper aims to elucidate the mechanisms of SIRPa activity in various cell types,

review the advancements in SIRPa-targeted tumor therapies, and highlight the

potential research value of tumor-expressed endogenous SIRPa.
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1 Introduction

The clinical application of immune checkpoint inhibitors (ICIs) has profoundly

transformed the landscape of cancer treatment (1). The majority of immune therapies

activate adaptive immune responses that primarily target T-cell immune checkpoints (2).

Programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitors are

currently the most widely used ICIs, with four anti-PD-1 and three anti-PD-L1 antibodies

currently approved for clinical use (3, 4). The blockade of PD-1/PD-L1 can substantially slow

down the progression of several solid tumors (5, 6). Despite satisfactory and lasting effects

among responders, the therapeutic efficacy of these antibodies remains suboptimal for some

patients. Therefore, more ICIs are yet necessary (7, 8). The immunosuppressive receptor

known as signal regulatory protein a (SIRPa), expressed on myeloid cells, was developed and
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has received a lot of attention because of its function in mediating the

immunosuppressive “don’t eat me” signal from cancer cells (9). It is

widely recognized that cancer cells can upregulate integrin-associated

protein (CD47) expression to exploit this “don’t eat me” signal to

evade macrophage-mediated clearance and achieve immune evasion

(Figure 1) (10). Studies have shown that targeting suppressive

macrophages may enhance anticancer immune responses and

improve the efficacy of immunotherapy combinations (11).

Myeloid cells constitute a major component of the tumor

microenvironment of solid cancers, whereas T-cell infiltration is

often limited (12). The immunosuppressive cells within the tumor

immune microenvironment inhibit T-cell activity through various

mechanisms, thereby promoting cancer growth and metastasis (13,

14). Therefore, targeting myeloid cells within the tumor

microenvironment, particularly through interventions aimed at

their immune checkpoints, may offer novel strategies for inhibiting

cancer progression. For example, blocking the CD47–SIRPa axis

holds great potential as a novel immunotherapeutic approach (15).

The structure and operation of SIRPa are covered in this review,

along with a discussion of the molecular pathways by which SIRPa
functions in various cells. We also present the research progress made

toward anti-SIRPa antibody cancer therapies and discuss why a

SIRPa-targeting strategy may be a valuable choice.
2 Structure and function of SIRPa

SIRPa is a member of the SIRP protein family, which comprises

five distinct subtypes: SIRPa, SIRPb1, SIRPb2, SIRPg, and SIRPd.
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This protein, also referred to by various names such as CD172a,

SHPS-1, p84, MFR, MYD-1, or PTPNS1, interacts exclusively with its

ligand, CD47 (16, 17). SIRPa was expressed on myeloid cells, such as

macrophages, neutrophils, dendritic cells, and microglial cells. It is

also expressed at low levels in T-, B-, and natural killer (NK) cells

(18). SIRPa is composed of three extracellular immunoglobulin

superfamily domains. These domains include 1 variable and 2

constant type 1 domains. Additionally, SIRPa has one

transmembrane region and an intracellular tail that can transmit

inhibitory signals. Inside the intracellular tail, there are four tyrosine

residues. These residues form two typical immunoreceptor tyrosine-

based inhibitory motifs (ITIMs) (19, 20). Additionally, the

extracellular immunoglobulin (Ig)V domain contains a ligand-

binding region that allows SIRPa to interact with CD47, which

consequently triggers a signaling cascade that can recruit the protein

tyrosine phosphatases SHP1 and SHP2. This cascade results in the

dephosphorylation of myosin IIA, which prevents its accumulation at

the phagocytic synapse and ultimately leads to the suppression of

phagocytic signals in macrophages, thereby protecting healthy cells

from immune attacks. This inhibitory signal is known as the “don’t

eat me” signal (21). Notably, the extracellular IgV domain of SIRPa is

a hotspot for polymorphisms, with 10 human SIRPA alleles

identified, the main variants being SIRPAV1, SIRPAV2, and

SIRPAV8 (22–24). In turn, SIRPg, which is primarily expressed on

activated T-cells, has a much lower affinity for CD47 than that of

SIRPa (25). Although the extracellular regions of SIRPg and SIRPa
share a high degree of homology (>70%), the intracellular domain of

SIRPg is notably shorter and fails to efficiently recruit signaling

proteins, ultimately resulting in its lack of signaling potential.
FIGURE 1

Tumor immune evasion via the “don’t eat me” signal. Cancer cells evade immune detection by exploiting the “don’t eat me” signal. The binding of
SIRPa to CD47 initiates ITIM phosphorylation in the cytoplasm, recruiting SHP1 and SHP2 tyrosine phosphatases. This cascade dephosphorylates
myosin IIA, preventing its accumulation at the phagocytic synapse and suppressing macrophage phagocytic signaling. SIRPa, signal regulatory
protein a; ITIM, immunoreceptor tyrosine-based inhibitory motifs.
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However, because of its binding ability to increase cell-cell adhesion,

it can promote the production of synapses between T-cells and

antigen-presenting cells (APCs), which increases the efficiency of

antigen presentation and helps to mediate T-cell proliferation and

cytokine secretion (26, 27). SIRPb, expressed predominantly on

myeloid cells, comprises 2 isoforms: SIRPb1 and SIRPb2. The
SIRPb2 isoform recruits the immunoreceptor tyrosine-based

activation motifs-containing adaptor DAP12 via a transmembrane

lysine residue to initiate immunostimulatory signaling, enhancing

phagocytosis and antigen presentation by myeloid cells. Unlike

SIRPa, SIRPb2 does not interact with CD47, and its activation

ligand remains unidentified. Similarly, while SIRPb1 ligands are

undefined, macrophage-specific SIRPb1 engagement enhances

phagocytic activity (28). Contrastingly, SIRPd, a secreted isoform

characterized by a single V-type Ig superfamily domain, is postulated

to be expressed in spermatozoa and respiratory tissues (17).
3 Myeloid-intrinsic SIRPa regulates
the tumor immune microenvironment

3.1 Functional role of SIRPa in
macrophages

Blocking SIRPa can enhance antibody-dependent cellular

phagocytosis (ADCP) by macrophages, features that have
Frontiers in Immunology 03
attracted significant attention for research (29–31) (Figure 2).

Microglia play a similar functional role to macrophages in central

nervous system tumors. They function as the effector cells in the

disruption of the CD47-SIRPa anti-phagocytic axis (32, 33).

Generally, promoting ADCP is achieved by blocking the binding

of SIRPa to CD47 to abolish the “don’t eat me” signal. Furthermore,

in chimeric antigen receptor macrophages, SIRPa inhibition in

macrophages can activate inflammatory pathways and the cGAS–

STING signaling cascade, leading to an elevated production of

proinflammatory cytokines, such as interleukin-1 (IL-1), tumor

necrosis factor-alpha (TNF-a), reactive oxygen species (ROS),

and nitric oxide, which increase the anticancer activity (34, 35).

Moreover, preventing the expression of SIRPa in macrophages

induces the recruitment and migration of T-cells via increased

secretion of chemokines (e.g., C-C motif chemokine ligands CCL3

and CCL4) (26). In SIRPa-knockout (SIRPa-KO) mice, SIRPa-KO
macrophages were found to display robust anticancer activity and

antigen-presenting capacity, which was associated with enhanced

T-cell activation and proliferation. Notably, SIRPa-KO
macrophages were found to promote T-cell recruitment in

cancers via a Syk–Btk-dependent mechanism involving CCL8

secretion, transforming tumor-associated macrophages and

granulocytic myeloid-derived suppressor cells into subsets

expressing high levels of CCL8 and H2-Q10, respectively, with

enhanced antigen presentation, phagocytosis, inflammatory

response, and chemotaxis capacities (36). Therefore, targeting
FIGURE 2

SIRPa blockade enhances innate and adaptive immunity. Inhibition of SIRPa boosts the phagocytic and antigen-presenting capabilities of myeloid
cells. In macrophages, SIRPa blockade activates inflammatory pathways and the cGAS-STING cascade in CAR macrophages, increasing the secretion
of IL-1, TNF-a, ROS, nitric oxide, and chemokines like CCL3 and CCL4. It also promotes T-cell recruitment in tumors through a Syk-Btk-dependent
mechanism. In neutrophils, SIRPa inhibition enhances chemotaxis, infiltration, and cytotoxicity. During inflammation, neutrophil ITIM cleavage
generates a truncated receptor that binds CD47 without transmitting inhibitory signals, further enhancing chemotaxis, ROS release, and
phagocytosis. In DCs, SIRPa blockade suppresses STAT3 signaling, increases cytokine secretion (e.g., IL-12, TNF-a, and IFN-g), and promotes DC
maturation. It also activates cGAS-STING signaling, improving tumor antigen cross-presentation. Additionally, SIRPa on DCs modulates naive T-cell
differentiation into helper T-cells. SIRPa, signal regulatory protein a; CAR, chimeric antigen receptor; DC, dendritic cell; IL, interleukin; TNF, tumor
necrosis factor; INF, interferon.
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SIRPa has the potential to reprogram the tumor immune

microenvironment, promoting systemic anticancer responses and

preventing solid cancer progression. In brief, by blocking the

expression of SIRPa in macrophages, the traditional “don’t eat

me” signaling pathway can be suppressed, which will improve

phagocytosis and stimulate macrophages to secrete chemokines

and cytokines via additional signaling pathways. Simultaneously, it

has the potential to block the SIRPa-mediated non-CD47-

dependent pathway, reprogramming the suppressive tumor

immune microenvironment.
3.2 Functional role of SIRPa in neutrophils

In cancer therapeutics, anti-SIRPa antibodies exert their

antitumor effects by disrupting the CD47-SIRPa interaction and

relieving inhibitory signaling on neutrophils.) (37). When combined

with tumor-targeting antibodies, the Fc region of these therapeutic

antibodies engages activating Fcg receptors (e.g., FcgRIIIa) on

neutrophils, triggering antibody dependent cell-mediated

cytotoxicity (ADCC) and subsequently enhancing neutrophil-

mediated tumor cell killing (3, 38). Sodium stibogluconate (SSG), a

selective SHP-1 inhibitor, enhances neutrophil cytotoxicity by

blocking phosphatase-mediated suppression of Vav1 and

PLCg2 signaling. Co-administration of SSG with CD47-SIRPa
blockade amplifies ADCC efficacy through dual inhibition of

immunosuppressive pathways (39). SIRPa signaling suppresses

neutrophil phagocytic activity and cytotoxicity through the SHP-1/

p38 MAPK/STAT3 pathway while promoting IL-6 and IL-17

secretion. After SIRPa-KO, neutrophils polarize toward the anti-

tumor N1 phenotype, with enhanced phagocytic function and

reduced inflammatory cytokine secretion, thereby inhibiting the

growth of lung cancer (40). However, compared with IgA, IgG-

mediated ADCC exhibits relatively low efficiency (41–45). Blocking

SIRPa on neutrophils with anti-SIRPa antibodies significantly

enhances ADCC mediated by IgA2 variants of cetuximab and

trastuzumab against HER2-positive breast cancer cells and EGFR-

positive epidermoid carcinoma cells (46). Paradoxically, SIRPa
overexpression in autoimmune lesions (e.g., rheumatoid arthritis

and inflammatory bowel disease) exacerbates inflammation

through dysregulated innate immunity (47). During chronic

inflammation, neutrophil-derived serine proteases cleave the SIRPa
ITIM domain in an IL-17-dependent manner. The resultant

truncated SIRPa retains CD47-binding capacity but loses

inhibitory signaling, unleashing neutrophil chemotaxis, ROS

production, and phagocytic activity (48).
3.3 Functional role of SIRPa in dendritic
cells

As specialized APCs, dendritic cells (DCs) are crucial in

facilitating T-cell activation and maintaining immune tolerance

(49, 50). When DCs come into contact with cancer cells, they send a

“don’t eat me” signal through the classic ITIM–SHP1 complex that
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mediates anti-phagocytic effects but also through SIRPa, which
detects cancer mitochondrial DNA for cross-priming or activate the

STAT3 signaling pathway to suppress the production of cytokines

(such as IL-12, TNF-a, and interferon-g) and consequently inhibit

DC maturation. Additionally, the PI3K–AKT signaling pathway

also plays a pivotal role in regulating the activation and maturation

of DCs through SIRPa (51, 52). Combined therapy with

radiotherapy/anti-SIRPa/anti-PD-1 for colorectal cancer was

shown to effectively induce cGAS–STING signaling in DCs both

in vitro and in vivo, facilitating efficient cross-presentation of

tumor-associated antigens (53, 54). Moreover, when SIRPa was

silenced in DCs, increased secretion of cytokines (e.g., TNF-a, IL-
12, and IL-6), enhanced the secretion of interferon-g by CD8+ T

lymphocytes, and effectively killed cervical cancer cells in vitro (55).

Of note, the interaction between SIRPa on DCs and CD47 on T-

cells modulates the differentiation of naïve T-cells into T-helper

(Th) cells. Mice lacking SIRPa exhibit enhanced resistance to

autoimmune diseases caused by Th1 or Th17 cells, such as

encephalomyelitis and colitis (56–59). Besides regulating T-cells

by presenting tumor antigens, SIRPa can further influence the

differentiation and function of T-cells by regulating their own

maturation. Thus, blocking SIRPa can promote DC maturation

and enhance their antigen-presenting function, thereby facilitating

the function of cytotoxic T-cells.
4 Role of tumor-intrinsic SIRPa in
tumor progression

In summary, targeting the immune checkpoint receptor SIRPa
can boost both innate and adaptive immune responses, offering

novel strategies for cancer immunotherapy. Surprisingly, some solid

cancers (such as renal cell carcinoma, colorectal cancer, and

osteosarcoma) exhibit high levels of SIRPa expression. Despite

the limited research on endogenous SIRPa in cancer cells,

multiple pivotal studies have shed light on the role of endogenous

SIRPa in the malignant progression of cancers (Figure 3) (60, 61).

Specifically, in osteosarcoma cells, the upregulation of SIRPa
activates the extracellular signal-regulated kinase (ERK) pathway,

leading to the phosphorylation of specificity protein 1 (Sp1) at the

threonine 278 site. This phosphorylated protein then binds to the

promoter region of solute carrier family 7 member 3 (SLC7A3),

resulting in increased SLC7A3 expression and enhanced cellular

arginine uptake capacity. These processes collectively promote the

metastasis of osteosarcoma (62). Contrastingly, in acute

promyelocytic leukemia (APL) cells, overexpression of SIRPa
exhibits distinct effects, potentially inhibiting the b-catenin
signaling pathway and upregulating Foxo3a expression, which in

turn induces apoptosis and inhibits tumor cell proliferation (63). In

hepatocellular carcinoma cells, SIRPa has been shown to negatively

regulate tumor initiation, primarily through the inhibition of the

ERK and NF-kB pathways (64). Similarly, SIRPa is used by non-

small cell lung cancer as a critical regulator of the EGFR pathway.

Knockdown of SIRPa induces the upregulation of p27,

subsequently inhibiting cell cycle progression and reducing tumor
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growth. However, increased p27 expression leads to its

mislocalization to the cytoplasm, paradoxically promoting cancer

cell invasiveness. Conversely, the enhanced expression of SIRPa
boosts the cell’s migratory and proliferative capabilities. These

findings suggest that SIRPa may exert dual oncogenic or tumor-

suppressive properties, depending on its regulation of multiple

signaling pathways within cancer cells (65). Additionally, Z. Zhou

and his research team uncovered a unique function of SIRPa in

melanoma cells: as a marker for melanoma cells, the expression

level of SIRPa diminishes progressively as melanoma progresses.

SIRPa interacts with CD47, modulating the function of CD8+ T-

cells. Studies have shown that cytotoxic T-cells exert stronger anti-

melanoma effects on cells overexpressing SIRPa, and the addition

of anti-PD-L1 antibodies significantly enhances this killing effect.

This suggests that endogenous SIRPa in melanoma cells plays a

positive role in PD-1/PD-L1-induced T-cell-mediated anticancer

immunity, while the absence of SIRPa may lead to increased

resistance to PD-L1 therapy (66). Microglia critically shape
Frontiers in Immunology 05
developing neural circuits by eliminating redundant synapses via

phagocytic activity. Genetic ablation of neuronal SIRPa suppressed

microglial synaptic engulfment, resulting in elevated retinal synapse

density. Conversely, sustained neuronal SIRPa expression

prolonged phagocytic activity and decreased synaptic numbers.

Mechanistically, neuronal SIRPa serves as a decoy receptor that

sequesters inhibitory CD47 signals from microglial SIRPa, thereby
enabling synapse clearance. This SIRPa-CD47 regulatory axis

elucidates a molecular basis for pathological synapse loss in

neurological conditions (67). SIRPa is not expressed in normal

astrocytes but exhibits functional expression in astrocytomas,

potentially participating in cell adhesion and signaling through

CD47-dependent phosphorylation and SHP-2 recruitment, thereby

influencing tumor invasiveness. Furthermore, SIRPa may regulate

tumor proliferation and survival by either suppressing growth

factor signaling or modulating the PI3K/AKT pathway. Its

potential as a therapeutic target or prognostic biomarker in

astrocytomas warrants further investigation (68).
FIGURE 3

Endogenous SIRPa in tumor malignancy. In osteosarcoma(OS), SIRPa overexpression activates the ERK pathway, driving metastasis. In acute
promyelocytic leukemia(APL), SIRPa upregulation may inhibit b-catenin signaling, suppressing tumor proliferation. In hepatocellular carcinoma(HCC),
SIRPa negatively regulates tumor initiation by inhibiting ERK and NF-kB pathways. In non-small cell lung cancer(NSCLC), SIRPa knockdown
upregulates p27, reducing tumor growth, but p27 mislocalization to the cytoplasm paradoxically increases invasiveness. Conversely, SIRPa
overexpression enhances cell proliferation and migration. In melanoma(MM), SIRPa overexpression augments CD8+ T-cell function. In
astrocytomas, SIRPa may be involved in cell adhesion and signal transduction through CD47-dependent phosphorylation and SHP-2 recruitment,
thereby affecting tumor invasiveness. Additionally, SIRPa may regulate tumor proliferation and survival by inhibiting growth factor signaling or by
modulating the PI3K/AKT pathway. SIRPa, signal regulatory protein a; ERK, extracellular signal-regulated kinase.
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5 Advances in therapeutic targeting of
SIRPa in solid tumors

5.1 Preclinical studies on anti-SIRPa
therapy in solid tumors

Multiple anti-SIRPa antibodies developed for solid tumor

treatment in preclinical studies have demonstrated significant

efficacy in suppressing tumor progression (38, 69) (Table 1).

Yanagita et al. validated the tumor-inhibitory effect of the mouse-

derived anti-SIRPa monoclonal antibody MY-1, which showed

enhanced cytotoxicity against HER2-positive breast cancer cells in

vitro. It significantly inhibited the growth of SIRPa-expressing renal
cell carcinoma and melanoma cells, but not of non-SIRPa-
expressing cells. Combination with rituximab or anti-PD-1

antibody further enhanced the ability of MY-1 to suppress the

growth of Burkitt lymphoma and colorectal cancer cells. Moreover,

when used as a monotherapy, MY-1’s anticancer activity against

renal cell carcinoma and melanoma was mediated by macrophages,

but also NK and CD8+ T -cells (60). In SIRPa-deficient mice, MY-1

monotherapy showed inhibition of cancer growth by binding to

SIRPb and promoting ADCP (70). The effects of MY-1 differ

between tumors with and without SIRPa expression, indicating

that endogenous SIRPa in cancer cells is involved in certain

regulatory mechanisms.

Humanized SIRPa antibodies can effectively block various

human SIRPa variants. Several antibody monotherapies each

have their own characteristics. KWAR23 alone fails to induce
Frontiers in Immunology 06
macrophage phagocytosis. Moreover, no immune cell infiltration

or obvious neurological abnormalities were observed in the brains

of mice treated with KWAR23; however, it binds to SIRPg and

affects T-cell function (38). The phagocytic activity of SIRP-1 and -2

is important as monotherapy depends on the “eat me” receptor

CD32 (FcgRII) in macrophages. SIRP-1 functions by directly

blocking SIRPa and inducing internalization of the SIRPa/
antibody complex, thereby reducing the levels of SIRPa in

macrophages, while SIRP-2 alters the affinity of SIRPa for CD47

by affecting its dimerization/aggregation in macrophages (69).

BR105 is ineffective when used alone; although it can mildly bind

to SIRPg, it does not inhibit T-cell activation. Toxicity studies in

non-human primates showed that BR105 is well-tolerated, with no

treatment-related adverse reactions observed (71). 1H9 exhibits a

similar effect in inhibiting cancer progression without affecting T-

cell function. When comparing anti-SIRPa and anti-CD47

antibodies using CD47/SIRPa double-humanized mice, it was

found that 1H9 exhibits significantly reduced antigen sink effect

and enhanced biosafety owing to the limited tissue distribution of

SIRPa expression (72).

When combined with therapeutic antibodies, such as rituximab,

all antibodies demonstrate significant inhibitory effects on the

growth of hematological malignancies and solid cancers both in

vitro and in vivo. Additionally, several antibodies when used in

combination with ICIs exhibit good safety and therapeutic effects.

Competition between hAB21 and cetuximab for macrophage FcgR
limits the ability of anti-SIRPa antibodies to enhance macrophage

phagocytosis. Alternatively, hAB21 with an active Fc structure can
TABLE 1 Preclinical characteristics of anti-SIRPa antibodies in solid tumors.

Antibody Mechanism of Action Monotherapy Efficacy Combination Therapy Safety Profile

MY-1
Blocks SIRPa; activates macrophages, NK
cells, and CD8+ T cells; binds SIRPb in
SIRPa-deficient mice

Suppresses HER2+ breast cancer (in
vitro), renal cell carcinoma, and
melanoma (in vivo)

Synergizes with rituximab/anti-
PD-1 (Burkitt lymphoma,
colorectal cancer)

No severe toxicity
reported; macrophage-
dependent activity

KWAR23
Binds SIRPg; no direct
phagocytosis induction

Limited efficacy as monotherapy
Enhances T-cell function; no
immune cell infiltration in
brain tissue

No neurological
abnormalities observed

SIRP-1
Blocks SIRPa; induces internalization of
SIRPa/antibody complex

Phagocytosis dependent on
macrophage CD32 (FcgRII)

Not explicitly reported
Reduces macrophage
SIRPa levels

SIRP-2
Alters SIRPa-CD47 affinity via
dimerization modulation

Similar to SIRP-1 Not explicitly reported
Modulates macrophage
SIRPa aggregation

BR105 Pan-allele binder; mild SIRPg binding Ineffective as monotherapy Not explicitly reported
Well-tolerated in non-
human primates; no
adverse reactions

1H9 Blocks SIRPa; limited antigen sink effect
Inhibits tumor progression without T-
cell interference

Superior to anti-CD47 in CD47/
SIRPa double-humanized mice

Reduced antigen sink
effect; enhanced biosafety

hAB21
Competes with cetuximab for FcgR binding
(“scorpion effect”)

Limited phagocytosis enhancement
Synergizes with anti-PD-1/PD-
L1; no anemia in
cynomolgus monkeys

Safe in primates; avoids
FcgR competition

CTX-5861
Bispecific (SIRPa + PD-L1); enhances
phagocytosis and antigen presentation

Not explicitly reported
Dual targeting improves
macrophage and dendritic
cell activity

Designed to minimize off-
target effects

AL008
Triggers SIRPa degradation; activates FcgR
via Fc domain

Monotherapy efficacy in triggering
myeloid activation

Enhances anti-PD-L1 activity
Pan-allele coverage; no
reported toxicity
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co-bind to SIRPa and FcgR in macrophages, leading to

heterotrimeric interactions that restrict the binding of cetuximab

to macrophage FcgR, thereby reducing phagocytic signaling. This

phenomenon is known as the “scorpion effect.” When combined

with anti-PD-1 or anti-PD-L1 antibody blockade therapy, hAB21

significantly inhibits the growth of tumor cells and does not cause

anemia or other adverse outcomes when used in cynomolgus

monkeys (11). CTX-5861 is a bispecific antibody targeting both

SIRPa and PD-L1, designed to enhance macrophage phagocytosis

and improve the efficiency of antigen presentation by DCs (73).

AL008, a specific antibody targeting pan-alleles of SIRPa,
demonstrates monotherapy efficacy by triggering SIRPa
degradation and stimulating the activation of FcgR on bone

marrow cells via its Fc domain. Additionally, the antitumor

activity of anti-PD-L1 drugs has also been enhanced (74).
5.2 Clinical studies on anti-SIRPa therapy
in solid tumors

Although the aforementioned anti-SIRPa antibodies have not

entered the clinical trial stage, some anti-SIRPa antibodies have

demonstrated good biosafety and cancer treatment efficacy in

preclinical studies and have thus entered clinical trials (Table 2).

ADU-1805, a humanized IgG2 anti-SIRPa antibody, does not affect

T-cell activation or bind to red blood cells/platelets. In non-human

primates, ADU-1805 exhibited no toxicity. Furthermore, ADU-

1805 does not bind to macrophage FcgRIIA to trigger the “scorpion

effect,” nor does it induce NK cell-mediated ADCC, lacks activity in

mediating complement-dependent cytotoxicity, and does not

stimulate cytokine secretion in human whole blood, further

substantiating its clinical viability. ADU-1805 is undergoing

clinical trials (NCT05856981), and the results are yet to be

announced (27, 75). BI 765063 is a humanized IgG4 monoclonal
Frontiers in Immunology 07
antibody antagonist of SIRPa that binds with high affinity to

SIRPaV1 but not to SIRPg, thereby preserving T-cell function.

Ongoing research (NCT05249426) to test whether different

combinations of BI 765063, Ezabenlimab, chemotherapy,

cetuximab and BI 836880 are helpful for patients with head and

neck or liver cancer. Another clinical trial (NCT03990233) is

currently evaluating the safety and efficacy of BI 765063 as

monotherapy or in combination with ezabenlimab in patients

with advanced solid tumors. BI 765063 monotherapy was found

to be well-tolerated and showed activity, with treatment biopsies

from responders demonstrating increased CD8+ T-cell infiltration

and activation (76). Additionally, a clinical trial in Japan

(NCT04653142) assessed the safe dose of BI 765063 in Japanese

patients and found that its safety and pharmacokinetic parameters

were consistent with those observed in Caucasian patients (77). A

study (NCT05446129) aimed at evaluating the safety, feasibility,

efficacy, and biological activity of the neoadjuvant treatment with

Ezabenlimab combined with BI 765063 and pembrolizumab

combined with BI 765063 in newly diagnosed patients with

locally regional colorectal cancer has been dropped by the

pharmaceutical company. BI 770371 is a pan-specific monoclonal

antibody against SIRPa currently being evaluated the tolerability of

different doses of BI 770371 when used alone or in combination

with ezabbenlimab (NCT05327946). It is considered that the

toxicity profile of BI 770371, both as a monotherapy and in

combinat ion therapy , is manageable . Another study

(NCT05068102) aimed at finding out how the two drugs, BI

765063 and BI 770371, are absorbed in tumors and how they are

distributed in the body is underway (78). CC-95251(BMS-986351)

is a fully human monoclonal antibody targeting SIRPa, with
preclinical studies showing its ability to enhance macrophage

phagocytic activity when combined with the therapeutic antibody

rituximab (79). A clinical trial (NCT03783403) is evaluating CC-

95251 as a monotherapy and in combination with cetuximab and
TABLE 2 Various anti-SIRPa antibodies are involved in multiple clinical trials.

First
Submitted

Drug
names

Categories
Clinical
Trials

Indications Phase
Clinical
Status

2023/1/4 ADU-1805
An anti-SIRPa pan-allelic humanized
monoclonal IgG2 antibody

NCT05856981 Advanced Solid Cancers 1 Recruiting

2019/5/21

BI 765063
An anti-SIRPa V1 variant
IgG4Pro antibody

NCT03990233 Advanced Solid Cancers 1 Active

2020/11/27 NCT04653142 Advanced Solid Cancers 1 Completed

2022/2/10 NCT05249426
Head and Neck Cancer or
Liver Cancer

1 Active

2022/7/1 NCT05446129 Colorectal Cancer 1 Terminated

2021/9/19
BI 770371

An anti-SIRPa V1 and V2 variant
IgG1 antibody

NCT05068102
Advanced Head and Neck Cancer,
Skin Cancer, or NSCLC

1 Recruiting

2022/4/8 NCT05327946 Advanced Solid Cancers 1 Active

2018/12/19
CC-95251

(BMS-986351)
An anti-SIRPa humanized
monoclonal antibody

NCT03783403
Advanced Solid and
Hematologic Cancers

1 Terminated

2023/3/1 DS-1103a An anti-SIRPa humanized IgG4 antibody NCT05765851 Advanced Solid Cancers 1 Recruiting

2022/1/26 IBI397 An anti-SIRPa pan-allelic antibody NCT05245916 Advanced Malignancies 1 Withdrawn
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rituximab for safety, tolerability, and preliminary clinical activity in

participants with advanced solid and hematological malignancies.

Unfortunately, the clinical trial has been terminated owing to

changes in business objectives (80). DS-1103a, a recombinant

humanized IgG4 antibody targeting SIRPa, is currently being

assessed in combination with T-DXd for its efficacy,

recommended dosage, and pharmacokinetic properties in patients

with advanced solid tumors (NCT05765851). IBI397, a pan-allelic

antibody against SIRPa, underwent clinical trials for advanced

malignant tumors but the trial (NCT05245916) was withdrawn

owing to changes in the company’s development strategy.
6 Why select an anti-SIRPa antibody
therapeutic strategy?

6.1 Limitations of CD47-targeted therapy in
solid tumors

Current developments of CD47–SIRPa signaling pathway

inhibitors can be roughly categorized into three types: (i) blockers

of CD47 molecules in target cells, which includes anti-CD47

antibodies and SIRPa-Fc fusion antibodies, (ii) blockers of SIRPa
molecules in immune effector cells, and (iii) inhibitors of

glutaminase-like proteases (81). Anti-CD47 antibodies have been

shown to achieve objective (total or partial) remission in 50% of

patients by showing considerable anticancer activity in

hematological malignancies. However, treatment of solid cancers

has led to adverse effects, including anemia (57% of patients) and

lymphocytopenia (34% of patients) (82–84). Although strong effects

in preclinical studies were observed, especially those that retain

large Fc receptor (FcR) inactivation potential in human IgG1

molecules, their clinical value may be limited by non-tumor

toxicity (18). The primary reason is that CD47 lacks cancer

specificity and is widely distributed in healthy tissues, leading to a

substantial “antigen sink”; thus, high doses of anti-CD47 drugs are

required to attain anticancer efficacy. Moreover, many anti-CD47

antibodies retain effector functions via their immunoglobulin Fc

domains, which may trigger macrophages to engage in

ADCP against healthy cells (85–87). Indeed, anemia and

thrombocytopenia are common side effects of such anti-CD47

antibodies, often requiring red blood cell transfusions and low-

dose initiation strategies to mitigate the adverse situation (82, 88).

To manage these risks, current research on anti-CD47 antibodies is

focused on molecules that reduce FcgR binding ability, such as IgG4

antibodies. Most of these molecules can still induce severe anemia

in non-human primates and cancer patients. Moreover, anti-CD47

antibodies may affect how much CD47 interacts with other

receptors, such as integrins, vascular endothelial growth factor

receptor-2 (89), thrombospondin-1 (90), and SIRPg (91). Notably,
blocking the interaction between CD47 and SIRPg can inhibit T-cell

extravasation and activation, thereby diminishing the anticancer

response. Hence, CD47 signals appear to have a more complex

biological functions and its blockade may elicit unexpected cellular

responses (3, 27). Additionally, the anticancer activity of anti-CD47
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antibodies depends on CS1 glycoprotein antigen (SLAMF7)

phagocytic signaling, which is generally absent in solid cancers

but is expressed in hematological malignancies (86, 92). Since 2022,

multiple Phase III clinical trials of magrolimab were terminated or

suspended owing to a lack of survival benefits or adverse reactions,

with the regulatory agency also pausing some clinical studies of

magrolimab in solid cancers (93). The side effects caused by non-

targeted cancer cells and the negative impact on the interaction

between CD47 and other receptors have become major obstacles

limiting the widespread application of first-type antibodies in the

treatment of solid cancers (94).
6.2 Prospects of therapeutic targeting of
SIRPa in solid tumors

SIRPa is predominantly expressed in myeloid cells, including

monocytes, granulocytes, DCs, macrophages, and microglia, which

demonstrates a more limited histological distribution than CD47.

SIRPa blocking agents are less likely to be influenced by constraints

on antigen expression. Therefore, therapies targeting SIRPa have the

potential to avoid side effects associated with targeting CD47 (95, 96)

(Table 3). Research on anti-SIRPa antibodies indicates that, similar

to CD47 blocking antibodies devoid of Fc, SIRPa blocking agents

lacking Fc can effectively induce anticancer immune responses when

used along with T-cell-targeted therapies (11). Moreover,

monotherapy with anti-SIRPa can alter the composition of the

immune cell population in the tumor microenvironment, as

evidenced by a significant increase in the proportion of M1

macrophages and a decrease in M2 macrophages (60, 97). SIRPa
can negatively regulate DC activation and maturation, thus inhibiting

SIRPa can enhance DC responses (52). Anti-SIRPa antibody therapy

can stimulate an influx of tumor-infiltrating NK cells and CD8+
TABLE 3 The pros and cons of anti-CD47 antibodies versus anti-
SIRPa antibodies.

Antibody
Type

Anti-CD47 Antibody
Anti-

SIRPa Antibody

Target
Distribution

Broadly expressed in normal
cells (e.g., red blood cells)

Expressed exclusively in
myeloid cells (e.g.,
macrophages,
dendritic cells)

Biosafety
High hematotoxicity risk

(anemia, thrombocytopenia)
Favorable safety profile; low

hematotoxicity risk

Mechanism
of Action

Blocks CD47-SIRPa signaling;
activates macrophages via Fc-

dependent mechanisms

Blocks CD47-SIRPa
signaling; directly engages

FcgR to
activate macrophages

Therapeutic
Potential

More effective against
hematologic malignancies

Effective in solid tumors

Clinical
Maturity

Multiple agents in late-stage
trials (e.g., Magrolimab)

Majority in early-stage
clinical development

Clinical
Challenges

Requires antibody engineering
to mitigate hematotoxicity

Develop broad-spectrum
antibodies to target SIRPa

pan-alleles
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T-cells, as well as induce DC activation and promote T-cell effector

function when used in combination with anti-PD-1 antibodies (36).

The blockade of the SIRPa–CD47 signaling pathway combined with

T-cell ICIs can enhance adaptive immune responses. Although the

strategy of inhibiting SIRPa has advantages, such as increased

antitumor responses and lack of red blood cell toxicity, the high

polymorphism rate of the distal IgV domain in the extracellular

region of SIRPa raises a risk of cross-reactivity with other members

of the SIRP family. This makes the development of clinically

beneficial SIRPa inhibitors particularly challenging (27).When

glutaminase-like proteases are inhibited, newly synthesized CD47

molecules are unable to effectively bind to their natural binding

partners owing to the lack of pyroglutamate modification. Unlike

antagonistic molecules targeting CD47 or SIRPa directly, small-

molecule inhibitors for this pathway do not compete with natural

binding partners in the tumor microenvironment. Moreover, small-

molecule inhibitors have high tissue penetration and potential oral

bioavailability, which makes them an attractive option. However, the

risk of blocking other functions of CD47 persists with small-molecule

inhibitors (81). Collectively, anti-SIRPa antibodies capable of

blocking all SIRPa alleles hold promise as competitive candidates

for achieving the clinical goal of halting the progression of

solid cancers.
7 Discussion

The CD47–SIRPa interaction plays a key regulatory role in

numerous biological processes that influence cellular fate. It is not
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only viewed as a highly promising target in the field of cancer

immunotherapy, but also holds significant importance for

maintaining physiological tissue homeostasis (25, 98–100).

Collectively, myeloid-intrinsic SIRPa modulates the tumor

immune microenvironment by regulating the immunomodulatory

functions of macrophages, neutrophils, and DCs. Contrastingly,

tumor-intrinsic SIRPa primarily influences malignant phenotypes

—such as proliferation, migration, and invasion—via direct

intracellular signaling pathways(Figure 4). Notably, although T-

cells do not express SIRPa, macrophages and DCs exert

multifaceted regulation over T-cell functionality through SIRPa-
dependent mechanisms. Blockade of SIRPa enhances antigen

presentation in macrophages, promotes the release of pro-

inflammatory cytokines, and recruits T-cells to remodel the

immunosuppressive tumor microenvironment. Similarly, SIRPa
inhibition in DCs alleviates its suppressive effects on antigen

presentation, activates cGAS-STING signaling, and stimulates

cytokine secretion, directly augmenting CD8+ T-cell cytotoxicity

while balancing Th cell differentiation to optimize immune

responses. Intriguingly, tumor-intrinsic SIRPa expression may

also regulate T cell function. For instance, melanoma cells with

low SIRPa expression exhibit suppressed CD8+ T-cell cytotoxicity.

However, the molecular mechanisms by which tumor-intrinsic

SIRPa modulates T-cell activity remain poorly characterized.

These insights underscore the multifaceted role of SIRPa in the

tumor ecosystem. Researchers have developed various humanized

anti-SIRPa antibodies that have shown excellent anticancer effects

in preclinical studies, and some of these antibodies have entered

clinical trials. Although the unique pharmacokinetics and biosafety
FIGURE 4

Endogenous SIRPa in tumor malignancy. Blockade of myeloid-intrinsic SIRPa enhances the antigen-presenting capacity of myeloid cells, promotes
the release of pro-inflammatory cytokines and chemokines, augments the cytotoxic activity of CD8+ T cells, and modulates the differentiation of T
helper cells. Elevated tumor-intrinsic SIRPa expression may also potentiate CD8+ T cell cytotoxicity.
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of anti-SIRPa antibodies are highly anticipated, the high

polymorphism rate of the human SIRPa V domain poses a

challenge for the development of SIRPa-targeting drugs.

Fortunately, three allelic combinations (V1/V1, V1/V2, and V2/

V2) cover almost the entire human population. In addition to the

development of humanized pan-allele-targeting antibodies, future

research should focus on designing drug delivery strategies that

specifically target the tumor immune microenvironment,

developing novel SIRPa-targeting therapeutics, and elucidating

the molecular mechanisms of other SIRP family members. These

efforts are crucial for advancing the clinical translation of SIRPa-
targeted therapies for solid tumors. Further studies are warranted to

dissect the cell type-specific functions of SIRPa across immune

subsets and tumor cells, which will inform the development of

precision immunotherapies tailored to distinct immunological and

oncogenic contexts. Consequently, when designing therapeutic

strategies targeting SIRPa-overexpressing cancers, it is critical to

consider not only the immunostimulatory effects of SIRPa
inhibition on myeloid cell-mediated immunity within the tumor

microenvironment but also its direct impact on tumor cells and

whether such effects may counteract potential immunotherapeutic

benefits. In brief, targeting SIRPamay constitute a prospective path

for future research in cancer immunotherapy, and studying the role

of endogenous SIRPa in cancer cells and progression has significant

scientific value.
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